xref: /rk3399_ARM-atf/lib/psci/psci_setup.c (revision e655b00de645946f9cd494664703a871f36d7a28)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stddef.h>
9 
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/bl_common.h>
13 #include <context.h>
14 #include <lib/cpus/errata.h>
15 #include <lib/el3_runtime/context_mgmt.h>
16 #include <lib/per_cpu/per_cpu.h>
17 #include <plat/common/platform.h>
18 
19 #include "psci_private.h"
20 
21 /*
22  * Check that PLATFORM_CORE_COUNT fits into the number of cores
23  * that can be represented by PSCI_MAX_CPUS_INDEX.
24  */
25 CASSERT(PLATFORM_CORE_COUNT <= (PSCI_MAX_CPUS_INDEX + 1U), assert_psci_cores_overflow);
26 
27 /*******************************************************************************
28  * Per cpu non-secure contexts used to program the architectural state prior
29  * return to the normal world.
30  * TODO: Use the memory allocator to set aside memory for the contexts instead
31  * of relying on platform defined constants.
32  ******************************************************************************/
33 static PER_CPU_DEFINE(cpu_context_t, psci_ns_context);
34 static entry_point_info_t warmboot_ep_info[PLATFORM_CORE_COUNT];
35 
36 /******************************************************************************
37  * Define the psci capability variable.
38  *****************************************************************************/
39 unsigned int psci_caps;
40 
41 /*******************************************************************************
42  * Function which initializes the 'psci_non_cpu_pd_nodes' or the
43  * 'psci_cpu_pd_nodes' corresponding to the power level.
44  ******************************************************************************/
45 static void __init psci_init_pwr_domain_node(uint16_t node_idx,
46 					unsigned int parent_idx,
47 					unsigned char level)
48 {
49 	if (level > PSCI_CPU_PWR_LVL) {
50 		assert(node_idx < PSCI_NUM_NON_CPU_PWR_DOMAINS);
51 
52 		psci_non_cpu_pd_nodes[node_idx].level = level;
53 		psci_lock_init(psci_non_cpu_pd_nodes, node_idx);
54 		psci_non_cpu_pd_nodes[node_idx].parent_node = parent_idx;
55 		psci_non_cpu_pd_nodes[node_idx].local_state =
56 							 PLAT_MAX_OFF_STATE;
57 	} else {
58 		psci_cpu_data_t *svc_cpu_data;
59 
60 		assert(node_idx < PLATFORM_CORE_COUNT);
61 
62 		PER_CPU_BY_INDEX(psci_cpu_pd_nodes, node_idx)->parent_node = parent_idx;
63 
64 		/* Initialize with an invalid mpidr */
65 		PER_CPU_BY_INDEX(psci_cpu_pd_nodes, node_idx)->mpidr = PSCI_INVALID_MPIDR;
66 
67 		svc_cpu_data = &get_cpu_data_by_index(node_idx, psci_svc_cpu_data);
68 
69 		/* Set the Affinity Info for the cores as OFF */
70 		svc_cpu_data->aff_info_state = AFF_STATE_OFF;
71 
72 		/* Default to the highest power level when the cpu is not suspending */
73 		svc_cpu_data->target_pwrlvl = PLAT_MAX_PWR_LVL;
74 
75 		/* Set the power state to OFF state */
76 		svc_cpu_data->local_state = PLAT_MAX_OFF_STATE;
77 
78 		psci_flush_dcache_range((uintptr_t)svc_cpu_data,
79 						 sizeof(*svc_cpu_data));
80 
81 		cm_set_context_by_index(node_idx,
82 					(void *) PER_CPU_BY_INDEX(psci_ns_context,
83 					node_idx),
84 					NON_SECURE);
85 	}
86 }
87 
88 /*******************************************************************************
89  * This functions updates cpu_start_idx and ncpus field for each of the node in
90  * psci_non_cpu_pd_nodes[]. It does so by comparing the parent nodes of each of
91  * the CPUs and check whether they match with the parent of the previous
92  * CPU. The basic assumption for this work is that children of the same parent
93  * are allocated adjacent indices. The platform should ensure this though proper
94  * mapping of the CPUs to indices via plat_core_pos_by_mpidr() and
95  * plat_my_core_pos() APIs.
96  *******************************************************************************/
97 static void __init psci_update_pwrlvl_limits(void)
98 {
99 	unsigned int cpu_idx;
100 	int j;
101 	unsigned int nodes_idx[PLAT_MAX_PWR_LVL] = {0};
102 	unsigned int temp_index[PLAT_MAX_PWR_LVL] = {0};
103 
104 	for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
105 		psci_get_parent_pwr_domain_nodes(cpu_idx,
106 						 PLAT_MAX_PWR_LVL,
107 						 temp_index);
108 		for (j = (int)PLAT_MAX_PWR_LVL - 1; j >= 0; j--) {
109 			if (temp_index[j] != nodes_idx[j]) {
110 				nodes_idx[j] = temp_index[j];
111 				psci_non_cpu_pd_nodes[nodes_idx[j]].cpu_start_idx
112 					= cpu_idx;
113 			}
114 			psci_non_cpu_pd_nodes[nodes_idx[j]].ncpus++;
115 		}
116 	}
117 }
118 
119 static void __init populate_cpu_data(void)
120 {
121 	for (unsigned int idx = 0; idx < psci_plat_core_count; idx++) {
122 		set_cpu_data_by_index(idx, warmboot_ep_info, &warmboot_ep_info[idx]);
123 	}
124 }
125 
126 /*******************************************************************************
127  * Core routine to populate the power domain tree. The tree descriptor passed by
128  * the platform is populated breadth-first and the first entry in the map
129  * informs the number of root power domains. The parent nodes of the root nodes
130  * will point to an invalid entry(-1).
131  ******************************************************************************/
132 static unsigned int __init populate_power_domain_tree(const unsigned char
133 							*topology)
134 {
135 	unsigned int i, j = 0U, num_nodes_at_lvl = 1U, num_nodes_at_next_lvl;
136 	unsigned int node_index = 0U, num_children;
137 	unsigned int parent_node_index = 0U;
138 	int level = (int)PLAT_MAX_PWR_LVL;
139 
140 	/*
141 	 * For each level the inputs are:
142 	 * - number of nodes at this level in plat_array i.e. num_nodes_at_level
143 	 *   This is the sum of values of nodes at the parent level.
144 	 * - Index of first entry at this level in the plat_array i.e.
145 	 *   parent_node_index.
146 	 * - Index of first free entry in psci_non_cpu_pd_nodes[] or
147 	 *   psci_cpu_pd_nodes[] i.e. node_index depending upon the level.
148 	 */
149 	while (level >= (int) PSCI_CPU_PWR_LVL) {
150 		num_nodes_at_next_lvl = 0U;
151 		/*
152 		 * For each entry (parent node) at this level in the plat_array:
153 		 * - Find the number of children
154 		 * - Allocate a node in a power domain array for each child
155 		 * - Set the parent of the child to the parent_node_index - 1
156 		 * - Increment parent_node_index to point to the next parent
157 		 * - Accumulate the number of children at next level.
158 		 */
159 		for (i = 0U; i < num_nodes_at_lvl; i++) {
160 			assert(parent_node_index <=
161 					PSCI_NUM_NON_CPU_PWR_DOMAINS);
162 			num_children = topology[parent_node_index];
163 
164 			for (j = node_index;
165 				j < (node_index + num_children); j++) {
166 				psci_init_pwr_domain_node((uint16_t)j,
167 						  parent_node_index - 1U,
168 						  (unsigned char)level);
169 			}
170 			node_index = j;
171 			num_nodes_at_next_lvl += num_children;
172 			parent_node_index++;
173 		}
174 
175 		num_nodes_at_lvl = num_nodes_at_next_lvl;
176 		level--;
177 
178 		/* Reset the index for the cpu power domain array */
179 		if (level == (int) PSCI_CPU_PWR_LVL) {
180 			node_index = 0;
181 		}
182 	}
183 
184 	/* Validate the sanity of array exported by the platform */
185 	assert(j <= PLATFORM_CORE_COUNT);
186 	return j;
187 }
188 
189 /*******************************************************************************
190  * This function does the architectural setup and takes the warm boot
191  * entry-point `mailbox_ep` as an argument. The function also initializes the
192  * power domain topology tree by querying the platform. The power domain nodes
193  * higher than the CPU are populated in the array psci_non_cpu_pd_nodes[] and
194  * the CPU power domains are populated in psci_cpu_pd_nodes[]. The platform
195  * exports its static topology map through the
196  * populate_power_domain_topology_tree() API. The algorithm populates the
197  * psci_non_cpu_pd_nodes and psci_cpu_pd_nodes iteratively by using this
198  * topology map.  On a platform that implements two clusters of 2 cpus each,
199  * and supporting 3 domain levels, the populated psci_non_cpu_pd_nodes would
200  * look like this:
201  *
202  * ---------------------------------------------------
203  * | system node | cluster 0 node  | cluster 1 node  |
204  * ---------------------------------------------------
205  *
206  * And populated psci_cpu_pd_nodes would look like this :
207  * <-    cpus cluster0   -><-   cpus cluster1   ->
208  * ------------------------------------------------
209  * |   CPU 0   |   CPU 1   |   CPU 2   |   CPU 3  |
210  * ------------------------------------------------
211  ******************************************************************************/
212 int __init psci_setup(const psci_lib_args_t *lib_args)
213 {
214 	const unsigned char *topology_tree;
215 	unsigned int cpu_idx = plat_my_core_pos();
216 
217 	assert(VERIFY_PSCI_LIB_ARGS_V1(lib_args));
218 
219 	/* Do the Architectural initialization */
220 	psci_arch_setup();
221 
222 	/* Query the topology map from the platform */
223 	topology_tree = plat_get_power_domain_tree_desc();
224 
225 	/* Populate the power domain arrays using the platform topology map */
226 	psci_plat_core_count = populate_power_domain_tree(topology_tree);
227 
228 	/* Update the CPU limits for each node in psci_non_cpu_pd_nodes */
229 	psci_update_pwrlvl_limits();
230 
231 	/* Initialise the warmboot entrypoints */
232 	populate_cpu_data();
233 
234 	/* Populate the mpidr field of cpu node for this CPU */
235 	PER_CPU_BY_INDEX(psci_cpu_pd_nodes, cpu_idx)->mpidr =
236 		read_mpidr() & MPIDR_AFFINITY_MASK;
237 
238 	psci_init_req_local_pwr_states();
239 
240 	/*
241 	 * Set the requested and target state of this CPU and all the higher
242 	 * power domain levels for this CPU to run.
243 	 */
244 	psci_set_pwr_domains_to_run(cpu_idx, PLAT_MAX_PWR_LVL);
245 
246 	(void) plat_setup_psci_ops((uintptr_t)lib_args->mailbox_ep,
247 				   &psci_plat_pm_ops);
248 	assert(psci_plat_pm_ops != NULL);
249 
250 	/*
251 	 * Flush `psci_plat_pm_ops` as it will be accessed by secondary CPUs
252 	 * during warm boot, possibly before data cache is enabled.
253 	 */
254 	psci_flush_dcache_range((uintptr_t)&psci_plat_pm_ops,
255 					sizeof(psci_plat_pm_ops));
256 
257 	/* Initialize the psci capability */
258 	psci_caps = PSCI_GENERIC_CAP;
259 
260 	if (psci_plat_pm_ops->pwr_domain_off != NULL) {
261 		psci_caps |=  define_psci_cap(PSCI_CPU_OFF);
262 	}
263 	if ((psci_plat_pm_ops->pwr_domain_on != NULL) &&
264 	    (psci_plat_pm_ops->pwr_domain_on_finish != NULL)) {
265 		psci_caps |=  define_psci_cap(PSCI_CPU_ON_AARCH64);
266 	}
267 	if ((psci_plat_pm_ops->pwr_domain_suspend != NULL) &&
268 	    (psci_plat_pm_ops->pwr_domain_suspend_finish != NULL)) {
269 		if (psci_plat_pm_ops->validate_power_state != NULL) {
270 			psci_caps |=  define_psci_cap(PSCI_CPU_SUSPEND_AARCH64);
271 		}
272 		if (psci_plat_pm_ops->get_sys_suspend_power_state != NULL) {
273 			psci_caps |=  define_psci_cap(PSCI_SYSTEM_SUSPEND_AARCH64);
274 		}
275 #if PSCI_OS_INIT_MODE
276 		psci_caps |= define_psci_cap(PSCI_SET_SUSPEND_MODE);
277 #endif
278 	}
279 	if (psci_plat_pm_ops->system_off != NULL) {
280 		psci_caps |=  define_psci_cap(PSCI_SYSTEM_OFF);
281 	}
282 	if (psci_plat_pm_ops->system_reset != NULL) {
283 		psci_caps |=  define_psci_cap(PSCI_SYSTEM_RESET);
284 	}
285 	if (psci_plat_pm_ops->get_node_hw_state != NULL) {
286 		psci_caps |= define_psci_cap(PSCI_NODE_HW_STATE_AARCH64);
287 	}
288 	if ((psci_plat_pm_ops->read_mem_protect != NULL) &&
289 			(psci_plat_pm_ops->write_mem_protect != NULL)) {
290 		psci_caps |= define_psci_cap(PSCI_MEM_PROTECT);
291 	}
292 	if (psci_plat_pm_ops->mem_protect_chk != NULL) {
293 		psci_caps |= define_psci_cap(PSCI_MEM_CHK_RANGE_AARCH64);
294 	}
295 	if (psci_plat_pm_ops->system_reset2 != NULL) {
296 		psci_caps |= define_psci_cap(PSCI_SYSTEM_RESET2_AARCH64);
297 	}
298 #if ENABLE_PSCI_STAT
299 	psci_caps |=  define_psci_cap(PSCI_STAT_RESIDENCY_AARCH64);
300 	psci_caps |=  define_psci_cap(PSCI_STAT_COUNT_AARCH64);
301 #endif
302 
303 	return 0;
304 }
305 
306 /*******************************************************************************
307  * This duplicates what the primary cpu did after a cold boot in BL1. The same
308  * needs to be done when a cpu is hotplugged in. This function could also over-
309  * ride any EL3 setup done by BL1 as this code resides in rw memory.
310  ******************************************************************************/
311 void psci_arch_setup(void)
312 {
313 #if (ARM_ARCH_MAJOR > 7) || defined(ARMV7_SUPPORTS_GENERIC_TIMER)
314 	/* Program the counter frequency */
315 	write_cntfrq_el0(plat_get_syscnt_freq2());
316 #endif
317 
318 	/* Initialize the cpu_ops pointer. */
319 	cpu_data_init_cpu_ops();
320 
321 	/* Initialize the cached percpu ID register values */
322 	cm_init_percpu_once_regs();
323 
324 	/* Having initialized cpu_ops, we can now print errata status */
325 	print_errata_status();
326 
327 }
328 
329 /******************************************************************************
330  * PSCI Library interface to initialize the cpu context for the next non
331  * secure image during cold boot. The relevant registers in the cpu context
332  * need to be retrieved and programmed on return from this interface.
333  *****************************************************************************/
334 void psci_prepare_next_non_secure_ctx(entry_point_info_t *next_image_info)
335 {
336 	assert(GET_SECURITY_STATE(next_image_info->h.attr) == NON_SECURE);
337 	cm_init_my_context(next_image_info);
338 	cm_prepare_el3_exit(NON_SECURE);
339 }
340