xref: /rk3399_ARM-atf/lib/psci/psci_setup.c (revision df51e33b804b5f98754d2925e7f6779f7a8b5466)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stddef.h>
9 
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/bl_common.h>
13 #include <context.h>
14 #include <lib/cpus/errata.h>
15 #include <lib/el3_runtime/context_mgmt.h>
16 #include <plat/common/platform.h>
17 
18 #include "psci_private.h"
19 
20 /*
21  * Check that PLATFORM_CORE_COUNT fits into the number of cores
22  * that can be represented by PSCI_MAX_CPUS_INDEX.
23  */
24 CASSERT(PLATFORM_CORE_COUNT <= (PSCI_MAX_CPUS_INDEX + 1U), assert_psci_cores_overflow);
25 
26 /*******************************************************************************
27  * Per cpu non-secure contexts used to program the architectural state prior
28  * return to the normal world.
29  * TODO: Use the memory allocator to set aside memory for the contexts instead
30  * of relying on platform defined constants.
31  ******************************************************************************/
32 static cpu_context_t psci_ns_context[PLATFORM_CORE_COUNT];
33 static entry_point_info_t warmboot_ep_info[PLATFORM_CORE_COUNT];
34 
35 /******************************************************************************
36  * Define the psci capability variable.
37  *****************************************************************************/
38 unsigned int psci_caps;
39 
40 /*******************************************************************************
41  * Function which initializes the 'psci_non_cpu_pd_nodes' or the
42  * 'psci_cpu_pd_nodes' corresponding to the power level.
43  ******************************************************************************/
44 static void __init psci_init_pwr_domain_node(uint16_t node_idx,
45 					unsigned int parent_idx,
46 					unsigned char level)
47 {
48 	if (level > PSCI_CPU_PWR_LVL) {
49 		assert(node_idx < PSCI_NUM_NON_CPU_PWR_DOMAINS);
50 
51 		psci_non_cpu_pd_nodes[node_idx].level = level;
52 		psci_lock_init(psci_non_cpu_pd_nodes, node_idx);
53 		psci_non_cpu_pd_nodes[node_idx].parent_node = parent_idx;
54 		psci_non_cpu_pd_nodes[node_idx].local_state =
55 							 PLAT_MAX_OFF_STATE;
56 	} else {
57 		psci_cpu_data_t *svc_cpu_data;
58 
59 		assert(node_idx < PLATFORM_CORE_COUNT);
60 
61 		psci_cpu_pd_nodes[node_idx].parent_node = parent_idx;
62 
63 		/* Initialize with an invalid mpidr */
64 		psci_cpu_pd_nodes[node_idx].mpidr = PSCI_INVALID_MPIDR;
65 
66 		svc_cpu_data = &get_cpu_data_by_index(node_idx, psci_svc_cpu_data);
67 
68 		/* Set the Affinity Info for the cores as OFF */
69 		svc_cpu_data->aff_info_state = AFF_STATE_OFF;
70 
71 		/* Default to the highest power level when the cpu is not suspending */
72 		svc_cpu_data->target_pwrlvl = PLAT_MAX_PWR_LVL;
73 
74 		/* Set the power state to OFF state */
75 		svc_cpu_data->local_state = PLAT_MAX_OFF_STATE;
76 
77 		psci_flush_dcache_range((uintptr_t)svc_cpu_data,
78 						 sizeof(*svc_cpu_data));
79 
80 		cm_set_context_by_index(node_idx,
81 					(void *) &psci_ns_context[node_idx],
82 					NON_SECURE);
83 	}
84 }
85 
86 /*******************************************************************************
87  * This functions updates cpu_start_idx and ncpus field for each of the node in
88  * psci_non_cpu_pd_nodes[]. It does so by comparing the parent nodes of each of
89  * the CPUs and check whether they match with the parent of the previous
90  * CPU. The basic assumption for this work is that children of the same parent
91  * are allocated adjacent indices. The platform should ensure this though proper
92  * mapping of the CPUs to indices via plat_core_pos_by_mpidr() and
93  * plat_my_core_pos() APIs.
94  *******************************************************************************/
95 static void __init psci_update_pwrlvl_limits(void)
96 {
97 	unsigned int cpu_idx;
98 	int j;
99 	unsigned int nodes_idx[PLAT_MAX_PWR_LVL] = {0};
100 	unsigned int temp_index[PLAT_MAX_PWR_LVL] = {0};
101 
102 	for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
103 		psci_get_parent_pwr_domain_nodes(cpu_idx,
104 						 PLAT_MAX_PWR_LVL,
105 						 temp_index);
106 		for (j = (int)PLAT_MAX_PWR_LVL - 1; j >= 0; j--) {
107 			if (temp_index[j] != nodes_idx[j]) {
108 				nodes_idx[j] = temp_index[j];
109 				psci_non_cpu_pd_nodes[nodes_idx[j]].cpu_start_idx
110 					= cpu_idx;
111 			}
112 			psci_non_cpu_pd_nodes[nodes_idx[j]].ncpus++;
113 		}
114 	}
115 }
116 
117 static void __init populate_cpu_data(void)
118 {
119 	for (unsigned int idx = 0; idx < psci_plat_core_count; idx++) {
120 		set_cpu_data_by_index(idx, warmboot_ep_info, &warmboot_ep_info[idx]);
121 	}
122 }
123 
124 /*******************************************************************************
125  * Core routine to populate the power domain tree. The tree descriptor passed by
126  * the platform is populated breadth-first and the first entry in the map
127  * informs the number of root power domains. The parent nodes of the root nodes
128  * will point to an invalid entry(-1).
129  ******************************************************************************/
130 static unsigned int __init populate_power_domain_tree(const unsigned char
131 							*topology)
132 {
133 	unsigned int i, j = 0U, num_nodes_at_lvl = 1U, num_nodes_at_next_lvl;
134 	unsigned int node_index = 0U, num_children;
135 	unsigned int parent_node_index = 0U;
136 	int level = (int)PLAT_MAX_PWR_LVL;
137 
138 	/*
139 	 * For each level the inputs are:
140 	 * - number of nodes at this level in plat_array i.e. num_nodes_at_level
141 	 *   This is the sum of values of nodes at the parent level.
142 	 * - Index of first entry at this level in the plat_array i.e.
143 	 *   parent_node_index.
144 	 * - Index of first free entry in psci_non_cpu_pd_nodes[] or
145 	 *   psci_cpu_pd_nodes[] i.e. node_index depending upon the level.
146 	 */
147 	while (level >= (int) PSCI_CPU_PWR_LVL) {
148 		num_nodes_at_next_lvl = 0U;
149 		/*
150 		 * For each entry (parent node) at this level in the plat_array:
151 		 * - Find the number of children
152 		 * - Allocate a node in a power domain array for each child
153 		 * - Set the parent of the child to the parent_node_index - 1
154 		 * - Increment parent_node_index to point to the next parent
155 		 * - Accumulate the number of children at next level.
156 		 */
157 		for (i = 0U; i < num_nodes_at_lvl; i++) {
158 			assert(parent_node_index <=
159 					PSCI_NUM_NON_CPU_PWR_DOMAINS);
160 			num_children = topology[parent_node_index];
161 
162 			for (j = node_index;
163 				j < (node_index + num_children); j++)
164 				psci_init_pwr_domain_node((uint16_t)j,
165 						  parent_node_index - 1U,
166 						  (unsigned char)level);
167 
168 			node_index = j;
169 			num_nodes_at_next_lvl += num_children;
170 			parent_node_index++;
171 		}
172 
173 		num_nodes_at_lvl = num_nodes_at_next_lvl;
174 		level--;
175 
176 		/* Reset the index for the cpu power domain array */
177 		if (level == (int) PSCI_CPU_PWR_LVL)
178 			node_index = 0;
179 	}
180 
181 	/* Validate the sanity of array exported by the platform */
182 	assert(j <= PLATFORM_CORE_COUNT);
183 	return j;
184 }
185 
186 /*******************************************************************************
187  * This function does the architectural setup and takes the warm boot
188  * entry-point `mailbox_ep` as an argument. The function also initializes the
189  * power domain topology tree by querying the platform. The power domain nodes
190  * higher than the CPU are populated in the array psci_non_cpu_pd_nodes[] and
191  * the CPU power domains are populated in psci_cpu_pd_nodes[]. The platform
192  * exports its static topology map through the
193  * populate_power_domain_topology_tree() API. The algorithm populates the
194  * psci_non_cpu_pd_nodes and psci_cpu_pd_nodes iteratively by using this
195  * topology map.  On a platform that implements two clusters of 2 cpus each,
196  * and supporting 3 domain levels, the populated psci_non_cpu_pd_nodes would
197  * look like this:
198  *
199  * ---------------------------------------------------
200  * | system node | cluster 0 node  | cluster 1 node  |
201  * ---------------------------------------------------
202  *
203  * And populated psci_cpu_pd_nodes would look like this :
204  * <-    cpus cluster0   -><-   cpus cluster1   ->
205  * ------------------------------------------------
206  * |   CPU 0   |   CPU 1   |   CPU 2   |   CPU 3  |
207  * ------------------------------------------------
208  ******************************************************************************/
209 int __init psci_setup(const psci_lib_args_t *lib_args)
210 {
211 	const unsigned char *topology_tree;
212 	unsigned int cpu_idx = plat_my_core_pos();
213 
214 	assert(VERIFY_PSCI_LIB_ARGS_V1(lib_args));
215 
216 	/* Do the Architectural initialization */
217 	psci_arch_setup();
218 
219 	/* Query the topology map from the platform */
220 	topology_tree = plat_get_power_domain_tree_desc();
221 
222 	/* Populate the power domain arrays using the platform topology map */
223 	psci_plat_core_count = populate_power_domain_tree(topology_tree);
224 
225 	/* Update the CPU limits for each node in psci_non_cpu_pd_nodes */
226 	psci_update_pwrlvl_limits();
227 
228 	/* Initialise the warmboot entrypoints */
229 	populate_cpu_data();
230 
231 	/* Populate the mpidr field of cpu node for this CPU */
232 	psci_cpu_pd_nodes[cpu_idx].mpidr =
233 		read_mpidr() & MPIDR_AFFINITY_MASK;
234 
235 	psci_init_req_local_pwr_states();
236 
237 	/*
238 	 * Set the requested and target state of this CPU and all the higher
239 	 * power domain levels for this CPU to run.
240 	 */
241 	psci_set_pwr_domains_to_run(cpu_idx, PLAT_MAX_PWR_LVL);
242 
243 	(void) plat_setup_psci_ops((uintptr_t)lib_args->mailbox_ep,
244 				   &psci_plat_pm_ops);
245 	assert(psci_plat_pm_ops != NULL);
246 
247 	/*
248 	 * Flush `psci_plat_pm_ops` as it will be accessed by secondary CPUs
249 	 * during warm boot, possibly before data cache is enabled.
250 	 */
251 	psci_flush_dcache_range((uintptr_t)&psci_plat_pm_ops,
252 					sizeof(psci_plat_pm_ops));
253 
254 	/* Initialize the psci capability */
255 	psci_caps = PSCI_GENERIC_CAP;
256 
257 	if (psci_plat_pm_ops->pwr_domain_off != NULL) {
258 		psci_caps |=  define_psci_cap(PSCI_CPU_OFF);
259 	}
260 	if ((psci_plat_pm_ops->pwr_domain_on != NULL) &&
261 	    (psci_plat_pm_ops->pwr_domain_on_finish != NULL)) {
262 		psci_caps |=  define_psci_cap(PSCI_CPU_ON_AARCH64);
263 	}
264 	if ((psci_plat_pm_ops->pwr_domain_suspend != NULL) &&
265 	    (psci_plat_pm_ops->pwr_domain_suspend_finish != NULL)) {
266 		if (psci_plat_pm_ops->validate_power_state != NULL) {
267 			psci_caps |=  define_psci_cap(PSCI_CPU_SUSPEND_AARCH64);
268 		}
269 		if (psci_plat_pm_ops->get_sys_suspend_power_state != NULL) {
270 			psci_caps |=  define_psci_cap(PSCI_SYSTEM_SUSPEND_AARCH64);
271 		}
272 #if PSCI_OS_INIT_MODE
273 		psci_caps |= define_psci_cap(PSCI_SET_SUSPEND_MODE);
274 #endif
275 	}
276 	if (psci_plat_pm_ops->system_off != NULL) {
277 		psci_caps |=  define_psci_cap(PSCI_SYSTEM_OFF);
278 	}
279 	if (psci_plat_pm_ops->system_reset != NULL) {
280 		psci_caps |=  define_psci_cap(PSCI_SYSTEM_RESET);
281 	}
282 	if (psci_plat_pm_ops->get_node_hw_state != NULL) {
283 		psci_caps |= define_psci_cap(PSCI_NODE_HW_STATE_AARCH64);
284 	}
285 	if ((psci_plat_pm_ops->read_mem_protect != NULL) &&
286 			(psci_plat_pm_ops->write_mem_protect != NULL)) {
287 		psci_caps |= define_psci_cap(PSCI_MEM_PROTECT);
288 	}
289 	if (psci_plat_pm_ops->mem_protect_chk != NULL) {
290 		psci_caps |= define_psci_cap(PSCI_MEM_CHK_RANGE_AARCH64);
291 	}
292 	if (psci_plat_pm_ops->system_reset2 != NULL) {
293 		psci_caps |= define_psci_cap(PSCI_SYSTEM_RESET2_AARCH64);
294 	}
295 #if ENABLE_PSCI_STAT
296 	psci_caps |=  define_psci_cap(PSCI_STAT_RESIDENCY_AARCH64);
297 	psci_caps |=  define_psci_cap(PSCI_STAT_COUNT_AARCH64);
298 #endif
299 
300 	return 0;
301 }
302 
303 /*******************************************************************************
304  * This duplicates what the primary cpu did after a cold boot in BL1. The same
305  * needs to be done when a cpu is hotplugged in. This function could also over-
306  * ride any EL3 setup done by BL1 as this code resides in rw memory.
307  ******************************************************************************/
308 void psci_arch_setup(void)
309 {
310 #if (ARM_ARCH_MAJOR > 7) || defined(ARMV7_SUPPORTS_GENERIC_TIMER)
311 	/* Program the counter frequency */
312 	write_cntfrq_el0(plat_get_syscnt_freq2());
313 #endif
314 
315 	/* Initialize the cpu_ops pointer. */
316 	init_cpu_ops();
317 
318 	/* Having initialized cpu_ops, we can now print errata status */
319 	print_errata_status();
320 
321 }
322 
323 /******************************************************************************
324  * PSCI Library interface to initialize the cpu context for the next non
325  * secure image during cold boot. The relevant registers in the cpu context
326  * need to be retrieved and programmed on return from this interface.
327  *****************************************************************************/
328 void psci_prepare_next_non_secure_ctx(entry_point_info_t *next_image_info)
329 {
330 	assert(GET_SECURITY_STATE(next_image_info->h.attr) == NON_SECURE);
331 	cm_init_my_context(next_image_info);
332 	cm_prepare_el3_exit(NON_SECURE);
333 }
334