1 /* 2 * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <arch.h> 8 #include <arch_helpers.h> 9 #include <assert.h> 10 #include <bl_common.h> 11 #include <context.h> 12 #include <context_mgmt.h> 13 #include <errata_report.h> 14 #include <platform.h> 15 #include <stddef.h> 16 #include "psci_private.h" 17 18 /******************************************************************************* 19 * Per cpu non-secure contexts used to program the architectural state prior 20 * return to the normal world. 21 * TODO: Use the memory allocator to set aside memory for the contexts instead 22 * of relying on platform defined constants. 23 ******************************************************************************/ 24 static cpu_context_t psci_ns_context[PLATFORM_CORE_COUNT]; 25 26 /****************************************************************************** 27 * Define the psci capability variable. 28 *****************************************************************************/ 29 unsigned int psci_caps; 30 31 /******************************************************************************* 32 * Function which initializes the 'psci_non_cpu_pd_nodes' or the 33 * 'psci_cpu_pd_nodes' corresponding to the power level. 34 ******************************************************************************/ 35 static void psci_init_pwr_domain_node(unsigned char node_idx, 36 unsigned int parent_idx, 37 unsigned char level) 38 { 39 if (level > PSCI_CPU_PWR_LVL) { 40 psci_non_cpu_pd_nodes[node_idx].level = level; 41 psci_lock_init(psci_non_cpu_pd_nodes, node_idx); 42 psci_non_cpu_pd_nodes[node_idx].parent_node = parent_idx; 43 psci_non_cpu_pd_nodes[node_idx].local_state = 44 PLAT_MAX_OFF_STATE; 45 } else { 46 psci_cpu_data_t *svc_cpu_data; 47 48 psci_cpu_pd_nodes[node_idx].parent_node = parent_idx; 49 50 /* Initialize with an invalid mpidr */ 51 psci_cpu_pd_nodes[node_idx].mpidr = PSCI_INVALID_MPIDR; 52 53 svc_cpu_data = 54 &(_cpu_data_by_index(node_idx)->psci_svc_cpu_data); 55 56 /* Set the Affinity Info for the cores as OFF */ 57 svc_cpu_data->aff_info_state = AFF_STATE_OFF; 58 59 /* Invalidate the suspend level for the cpu */ 60 svc_cpu_data->target_pwrlvl = PSCI_INVALID_PWR_LVL; 61 62 /* Set the power state to OFF state */ 63 svc_cpu_data->local_state = PLAT_MAX_OFF_STATE; 64 65 psci_flush_dcache_range((uintptr_t)svc_cpu_data, 66 sizeof(*svc_cpu_data)); 67 68 cm_set_context_by_index(node_idx, 69 (void *) &psci_ns_context[node_idx], 70 NON_SECURE); 71 } 72 } 73 74 /******************************************************************************* 75 * This functions updates cpu_start_idx and ncpus field for each of the node in 76 * psci_non_cpu_pd_nodes[]. It does so by comparing the parent nodes of each of 77 * the CPUs and check whether they match with the parent of the previous 78 * CPU. The basic assumption for this work is that children of the same parent 79 * are allocated adjacent indices. The platform should ensure this though proper 80 * mapping of the CPUs to indices via plat_core_pos_by_mpidr() and 81 * plat_my_core_pos() APIs. 82 *******************************************************************************/ 83 static void psci_update_pwrlvl_limits(void) 84 { 85 int j, cpu_idx; 86 unsigned int nodes_idx[PLAT_MAX_PWR_LVL] = {0}; 87 unsigned int temp_index[PLAT_MAX_PWR_LVL]; 88 89 for (cpu_idx = 0; cpu_idx < PLATFORM_CORE_COUNT; cpu_idx++) { 90 psci_get_parent_pwr_domain_nodes(cpu_idx, 91 (unsigned int)PLAT_MAX_PWR_LVL, 92 temp_index); 93 for (j = (int) PLAT_MAX_PWR_LVL - 1; j >= 0; j--) { 94 if (temp_index[j] != nodes_idx[j]) { 95 nodes_idx[j] = temp_index[j]; 96 psci_non_cpu_pd_nodes[nodes_idx[j]].cpu_start_idx 97 = cpu_idx; 98 } 99 psci_non_cpu_pd_nodes[nodes_idx[j]].ncpus++; 100 } 101 } 102 } 103 104 /******************************************************************************* 105 * Core routine to populate the power domain tree. The tree descriptor passed by 106 * the platform is populated breadth-first and the first entry in the map 107 * informs the number of root power domains. The parent nodes of the root nodes 108 * will point to an invalid entry(-1). 109 ******************************************************************************/ 110 static void populate_power_domain_tree(const unsigned char *topology) 111 { 112 unsigned int i, j = 0U, num_nodes_at_lvl = 1U, num_nodes_at_next_lvl; 113 unsigned int node_index = 0U, num_children; 114 int parent_node_index = 0; 115 int level = (int) PLAT_MAX_PWR_LVL; 116 117 /* 118 * For each level the inputs are: 119 * - number of nodes at this level in plat_array i.e. num_nodes_at_level 120 * This is the sum of values of nodes at the parent level. 121 * - Index of first entry at this level in the plat_array i.e. 122 * parent_node_index. 123 * - Index of first free entry in psci_non_cpu_pd_nodes[] or 124 * psci_cpu_pd_nodes[] i.e. node_index depending upon the level. 125 */ 126 while (level >= (int) PSCI_CPU_PWR_LVL) { 127 num_nodes_at_next_lvl = 0U; 128 /* 129 * For each entry (parent node) at this level in the plat_array: 130 * - Find the number of children 131 * - Allocate a node in a power domain array for each child 132 * - Set the parent of the child to the parent_node_index - 1 133 * - Increment parent_node_index to point to the next parent 134 * - Accumulate the number of children at next level. 135 */ 136 for (i = 0U; i < num_nodes_at_lvl; i++) { 137 assert(parent_node_index <= 138 PSCI_NUM_NON_CPU_PWR_DOMAINS); 139 num_children = topology[parent_node_index]; 140 141 for (j = node_index; 142 j < (node_index + num_children); j++) 143 psci_init_pwr_domain_node((unsigned char)j, 144 parent_node_index - 1, 145 (unsigned char)level); 146 147 node_index = j; 148 num_nodes_at_next_lvl += num_children; 149 parent_node_index++; 150 } 151 152 num_nodes_at_lvl = num_nodes_at_next_lvl; 153 level--; 154 155 /* Reset the index for the cpu power domain array */ 156 if (level == (int) PSCI_CPU_PWR_LVL) 157 node_index = 0; 158 } 159 160 /* Validate the sanity of array exported by the platform */ 161 assert((int) j == PLATFORM_CORE_COUNT); 162 } 163 164 /******************************************************************************* 165 * This function does the architectural setup and takes the warm boot 166 * entry-point `mailbox_ep` as an argument. The function also initializes the 167 * power domain topology tree by querying the platform. The power domain nodes 168 * higher than the CPU are populated in the array psci_non_cpu_pd_nodes[] and 169 * the CPU power domains are populated in psci_cpu_pd_nodes[]. The platform 170 * exports its static topology map through the 171 * populate_power_domain_topology_tree() API. The algorithm populates the 172 * psci_non_cpu_pd_nodes and psci_cpu_pd_nodes iteratively by using this 173 * topology map. On a platform that implements two clusters of 2 cpus each, 174 * and supporting 3 domain levels, the populated psci_non_cpu_pd_nodes would 175 * look like this: 176 * 177 * --------------------------------------------------- 178 * | system node | cluster 0 node | cluster 1 node | 179 * --------------------------------------------------- 180 * 181 * And populated psci_cpu_pd_nodes would look like this : 182 * <- cpus cluster0 -><- cpus cluster1 -> 183 * ------------------------------------------------ 184 * | CPU 0 | CPU 1 | CPU 2 | CPU 3 | 185 * ------------------------------------------------ 186 ******************************************************************************/ 187 int psci_setup(const psci_lib_args_t *lib_args) 188 { 189 const unsigned char *topology_tree; 190 191 assert(VERIFY_PSCI_LIB_ARGS_V1(lib_args)); 192 193 /* Do the Architectural initialization */ 194 psci_arch_setup(); 195 196 /* Query the topology map from the platform */ 197 topology_tree = plat_get_power_domain_tree_desc(); 198 199 /* Populate the power domain arrays using the platform topology map */ 200 populate_power_domain_tree(topology_tree); 201 202 /* Update the CPU limits for each node in psci_non_cpu_pd_nodes */ 203 psci_update_pwrlvl_limits(); 204 205 /* Populate the mpidr field of cpu node for this CPU */ 206 psci_cpu_pd_nodes[plat_my_core_pos()].mpidr = 207 read_mpidr() & MPIDR_AFFINITY_MASK; 208 209 psci_init_req_local_pwr_states(); 210 211 /* 212 * Set the requested and target state of this CPU and all the higher 213 * power domain levels for this CPU to run. 214 */ 215 psci_set_pwr_domains_to_run(PLAT_MAX_PWR_LVL); 216 217 (void) plat_setup_psci_ops((uintptr_t)lib_args->mailbox_ep, 218 &psci_plat_pm_ops); 219 assert(psci_plat_pm_ops != NULL); 220 221 /* 222 * Flush `psci_plat_pm_ops` as it will be accessed by secondary CPUs 223 * during warm boot, possibly before data cache is enabled. 224 */ 225 psci_flush_dcache_range((uintptr_t)&psci_plat_pm_ops, 226 sizeof(psci_plat_pm_ops)); 227 228 /* Initialize the psci capability */ 229 psci_caps = PSCI_GENERIC_CAP; 230 231 if (psci_plat_pm_ops->pwr_domain_off != NULL) 232 psci_caps |= define_psci_cap(PSCI_CPU_OFF); 233 if ((psci_plat_pm_ops->pwr_domain_on != NULL) && 234 (psci_plat_pm_ops->pwr_domain_on_finish != NULL)) 235 psci_caps |= define_psci_cap(PSCI_CPU_ON_AARCH64); 236 if ((psci_plat_pm_ops->pwr_domain_suspend != NULL) && 237 (psci_plat_pm_ops->pwr_domain_suspend_finish != NULL)) { 238 psci_caps |= define_psci_cap(PSCI_CPU_SUSPEND_AARCH64); 239 if (psci_plat_pm_ops->get_sys_suspend_power_state != NULL) 240 psci_caps |= define_psci_cap(PSCI_SYSTEM_SUSPEND_AARCH64); 241 } 242 if (psci_plat_pm_ops->system_off != NULL) 243 psci_caps |= define_psci_cap(PSCI_SYSTEM_OFF); 244 if (psci_plat_pm_ops->system_reset != NULL) 245 psci_caps |= define_psci_cap(PSCI_SYSTEM_RESET); 246 if (psci_plat_pm_ops->get_node_hw_state != NULL) 247 psci_caps |= define_psci_cap(PSCI_NODE_HW_STATE_AARCH64); 248 if ((psci_plat_pm_ops->read_mem_protect != NULL) && 249 (psci_plat_pm_ops->write_mem_protect != NULL)) 250 psci_caps |= define_psci_cap(PSCI_MEM_PROTECT); 251 if (psci_plat_pm_ops->mem_protect_chk != NULL) 252 psci_caps |= define_psci_cap(PSCI_MEM_CHK_RANGE_AARCH64); 253 if (psci_plat_pm_ops->system_reset2 != NULL) 254 psci_caps |= define_psci_cap(PSCI_SYSTEM_RESET2_AARCH64); 255 256 #if ENABLE_PSCI_STAT 257 psci_caps |= define_psci_cap(PSCI_STAT_RESIDENCY_AARCH64); 258 psci_caps |= define_psci_cap(PSCI_STAT_COUNT_AARCH64); 259 #endif 260 261 return 0; 262 } 263 264 /******************************************************************************* 265 * This duplicates what the primary cpu did after a cold boot in BL1. The same 266 * needs to be done when a cpu is hotplugged in. This function could also over- 267 * ride any EL3 setup done by BL1 as this code resides in rw memory. 268 ******************************************************************************/ 269 void psci_arch_setup(void) 270 { 271 #if (ARM_ARCH_MAJOR > 7) || defined(ARMV7_SUPPORTS_GENERIC_TIMER) 272 /* Program the counter frequency */ 273 write_cntfrq_el0(plat_get_syscnt_freq2()); 274 #endif 275 276 /* Initialize the cpu_ops pointer. */ 277 init_cpu_ops(); 278 279 /* Having initialized cpu_ops, we can now print errata status */ 280 print_errata_status(); 281 } 282 283 /****************************************************************************** 284 * PSCI Library interface to initialize the cpu context for the next non 285 * secure image during cold boot. The relevant registers in the cpu context 286 * need to be retrieved and programmed on return from this interface. 287 *****************************************************************************/ 288 void psci_prepare_next_non_secure_ctx(entry_point_info_t *next_image_info) 289 { 290 assert(GET_SECURITY_STATE(next_image_info->h.attr) == NON_SECURE); 291 cm_init_my_context(next_image_info); 292 cm_prepare_el3_exit(NON_SECURE); 293 } 294