xref: /rk3399_ARM-atf/lib/psci/psci_setup.c (revision 530ceda57288aa931d0c8ba7b3066340d587cc9b)
1 /*
2  * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stddef.h>
9 
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/bl_common.h>
13 #include <context.h>
14 #include <lib/el3_runtime/context_mgmt.h>
15 #include <lib/cpus/errata_report.h>
16 #include <plat/common/platform.h>
17 
18 #include "psci_private.h"
19 
20 /*******************************************************************************
21  * Per cpu non-secure contexts used to program the architectural state prior
22  * return to the normal world.
23  * TODO: Use the memory allocator to set aside memory for the contexts instead
24  * of relying on platform defined constants.
25  ******************************************************************************/
26 static cpu_context_t psci_ns_context[PLATFORM_CORE_COUNT];
27 
28 /******************************************************************************
29  * Define the psci capability variable.
30  *****************************************************************************/
31 unsigned int psci_caps;
32 
33 /*******************************************************************************
34  * Function which initializes the 'psci_non_cpu_pd_nodes' or the
35  * 'psci_cpu_pd_nodes' corresponding to the power level.
36  ******************************************************************************/
37 static void __init psci_init_pwr_domain_node(unsigned char node_idx,
38 					unsigned int parent_idx,
39 					unsigned char level)
40 {
41 	if (level > PSCI_CPU_PWR_LVL) {
42 		psci_non_cpu_pd_nodes[node_idx].level = level;
43 		psci_lock_init(psci_non_cpu_pd_nodes, node_idx);
44 		psci_non_cpu_pd_nodes[node_idx].parent_node = parent_idx;
45 		psci_non_cpu_pd_nodes[node_idx].local_state =
46 							 PLAT_MAX_OFF_STATE;
47 	} else {
48 		psci_cpu_data_t *svc_cpu_data;
49 
50 		psci_cpu_pd_nodes[node_idx].parent_node = parent_idx;
51 
52 		/* Initialize with an invalid mpidr */
53 		psci_cpu_pd_nodes[node_idx].mpidr = PSCI_INVALID_MPIDR;
54 
55 		svc_cpu_data =
56 			&(_cpu_data_by_index(node_idx)->psci_svc_cpu_data);
57 
58 		/* Set the Affinity Info for the cores as OFF */
59 		svc_cpu_data->aff_info_state = AFF_STATE_OFF;
60 
61 		/* Invalidate the suspend level for the cpu */
62 		svc_cpu_data->target_pwrlvl = PSCI_INVALID_PWR_LVL;
63 
64 		/* Set the power state to OFF state */
65 		svc_cpu_data->local_state = PLAT_MAX_OFF_STATE;
66 
67 		psci_flush_dcache_range((uintptr_t)svc_cpu_data,
68 						 sizeof(*svc_cpu_data));
69 
70 		cm_set_context_by_index(node_idx,
71 					(void *) &psci_ns_context[node_idx],
72 					NON_SECURE);
73 	}
74 }
75 
76 /*******************************************************************************
77  * This functions updates cpu_start_idx and ncpus field for each of the node in
78  * psci_non_cpu_pd_nodes[]. It does so by comparing the parent nodes of each of
79  * the CPUs and check whether they match with the parent of the previous
80  * CPU. The basic assumption for this work is that children of the same parent
81  * are allocated adjacent indices. The platform should ensure this though proper
82  * mapping of the CPUs to indices via plat_core_pos_by_mpidr() and
83  * plat_my_core_pos() APIs.
84  *******************************************************************************/
85 static void __init psci_update_pwrlvl_limits(void)
86 {
87 	int j, cpu_idx;
88 	unsigned int nodes_idx[PLAT_MAX_PWR_LVL] = {0};
89 	unsigned int temp_index[PLAT_MAX_PWR_LVL];
90 
91 	for (cpu_idx = 0; cpu_idx < PLATFORM_CORE_COUNT; cpu_idx++) {
92 		psci_get_parent_pwr_domain_nodes(cpu_idx,
93 						 (unsigned int)PLAT_MAX_PWR_LVL,
94 						 temp_index);
95 		for (j = (int) PLAT_MAX_PWR_LVL - 1; j >= 0; j--) {
96 			if (temp_index[j] != nodes_idx[j]) {
97 				nodes_idx[j] = temp_index[j];
98 				psci_non_cpu_pd_nodes[nodes_idx[j]].cpu_start_idx
99 					= cpu_idx;
100 			}
101 			psci_non_cpu_pd_nodes[nodes_idx[j]].ncpus++;
102 		}
103 	}
104 }
105 
106 /*******************************************************************************
107  * Core routine to populate the power domain tree. The tree descriptor passed by
108  * the platform is populated breadth-first and the first entry in the map
109  * informs the number of root power domains. The parent nodes of the root nodes
110  * will point to an invalid entry(-1).
111  ******************************************************************************/
112 static void __init populate_power_domain_tree(const unsigned char *topology)
113 {
114 	unsigned int i, j = 0U, num_nodes_at_lvl = 1U, num_nodes_at_next_lvl;
115 	unsigned int node_index = 0U, num_children;
116 	int parent_node_index = 0;
117 	int level = (int) PLAT_MAX_PWR_LVL;
118 
119 	/*
120 	 * For each level the inputs are:
121 	 * - number of nodes at this level in plat_array i.e. num_nodes_at_level
122 	 *   This is the sum of values of nodes at the parent level.
123 	 * - Index of first entry at this level in the plat_array i.e.
124 	 *   parent_node_index.
125 	 * - Index of first free entry in psci_non_cpu_pd_nodes[] or
126 	 *   psci_cpu_pd_nodes[] i.e. node_index depending upon the level.
127 	 */
128 	while (level >= (int) PSCI_CPU_PWR_LVL) {
129 		num_nodes_at_next_lvl = 0U;
130 		/*
131 		 * For each entry (parent node) at this level in the plat_array:
132 		 * - Find the number of children
133 		 * - Allocate a node in a power domain array for each child
134 		 * - Set the parent of the child to the parent_node_index - 1
135 		 * - Increment parent_node_index to point to the next parent
136 		 * - Accumulate the number of children at next level.
137 		 */
138 		for (i = 0U; i < num_nodes_at_lvl; i++) {
139 			assert(parent_node_index <=
140 					PSCI_NUM_NON_CPU_PWR_DOMAINS);
141 			num_children = topology[parent_node_index];
142 
143 			for (j = node_index;
144 				j < (node_index + num_children); j++)
145 				psci_init_pwr_domain_node((unsigned char)j,
146 							  parent_node_index - 1,
147 							  (unsigned char)level);
148 
149 			node_index = j;
150 			num_nodes_at_next_lvl += num_children;
151 			parent_node_index++;
152 		}
153 
154 		num_nodes_at_lvl = num_nodes_at_next_lvl;
155 		level--;
156 
157 		/* Reset the index for the cpu power domain array */
158 		if (level == (int) PSCI_CPU_PWR_LVL)
159 			node_index = 0;
160 	}
161 
162 	/* Validate the sanity of array exported by the platform */
163 	assert((int) j == PLATFORM_CORE_COUNT);
164 }
165 
166 /*******************************************************************************
167  * This function does the architectural setup and takes the warm boot
168  * entry-point `mailbox_ep` as an argument. The function also initializes the
169  * power domain topology tree by querying the platform. The power domain nodes
170  * higher than the CPU are populated in the array psci_non_cpu_pd_nodes[] and
171  * the CPU power domains are populated in psci_cpu_pd_nodes[]. The platform
172  * exports its static topology map through the
173  * populate_power_domain_topology_tree() API. The algorithm populates the
174  * psci_non_cpu_pd_nodes and psci_cpu_pd_nodes iteratively by using this
175  * topology map.  On a platform that implements two clusters of 2 cpus each,
176  * and supporting 3 domain levels, the populated psci_non_cpu_pd_nodes would
177  * look like this:
178  *
179  * ---------------------------------------------------
180  * | system node | cluster 0 node  | cluster 1 node  |
181  * ---------------------------------------------------
182  *
183  * And populated psci_cpu_pd_nodes would look like this :
184  * <-    cpus cluster0   -><-   cpus cluster1   ->
185  * ------------------------------------------------
186  * |   CPU 0   |   CPU 1   |   CPU 2   |   CPU 3  |
187  * ------------------------------------------------
188  ******************************************************************************/
189 int __init psci_setup(const psci_lib_args_t *lib_args)
190 {
191 	const unsigned char *topology_tree;
192 
193 	assert(VERIFY_PSCI_LIB_ARGS_V1(lib_args));
194 
195 	/* Do the Architectural initialization */
196 	psci_arch_setup();
197 
198 	/* Query the topology map from the platform */
199 	topology_tree = plat_get_power_domain_tree_desc();
200 
201 	/* Populate the power domain arrays using the platform topology map */
202 	populate_power_domain_tree(topology_tree);
203 
204 	/* Update the CPU limits for each node in psci_non_cpu_pd_nodes */
205 	psci_update_pwrlvl_limits();
206 
207 	/* Populate the mpidr field of cpu node for this CPU */
208 	psci_cpu_pd_nodes[plat_my_core_pos()].mpidr =
209 		read_mpidr() & MPIDR_AFFINITY_MASK;
210 
211 	psci_init_req_local_pwr_states();
212 
213 	/*
214 	 * Set the requested and target state of this CPU and all the higher
215 	 * power domain levels for this CPU to run.
216 	 */
217 	psci_set_pwr_domains_to_run(PLAT_MAX_PWR_LVL);
218 
219 	(void) plat_setup_psci_ops((uintptr_t)lib_args->mailbox_ep,
220 				   &psci_plat_pm_ops);
221 	assert(psci_plat_pm_ops != NULL);
222 
223 	/*
224 	 * Flush `psci_plat_pm_ops` as it will be accessed by secondary CPUs
225 	 * during warm boot, possibly before data cache is enabled.
226 	 */
227 	psci_flush_dcache_range((uintptr_t)&psci_plat_pm_ops,
228 					sizeof(psci_plat_pm_ops));
229 
230 	/* Initialize the psci capability */
231 	psci_caps = PSCI_GENERIC_CAP;
232 
233 	if (psci_plat_pm_ops->pwr_domain_off != NULL)
234 		psci_caps |=  define_psci_cap(PSCI_CPU_OFF);
235 	if ((psci_plat_pm_ops->pwr_domain_on != NULL) &&
236 	    (psci_plat_pm_ops->pwr_domain_on_finish != NULL))
237 		psci_caps |=  define_psci_cap(PSCI_CPU_ON_AARCH64);
238 	if ((psci_plat_pm_ops->pwr_domain_suspend != NULL) &&
239 	    (psci_plat_pm_ops->pwr_domain_suspend_finish != NULL)) {
240 		psci_caps |=  define_psci_cap(PSCI_CPU_SUSPEND_AARCH64);
241 		if (psci_plat_pm_ops->get_sys_suspend_power_state != NULL)
242 			psci_caps |=  define_psci_cap(PSCI_SYSTEM_SUSPEND_AARCH64);
243 	}
244 	if (psci_plat_pm_ops->system_off != NULL)
245 		psci_caps |=  define_psci_cap(PSCI_SYSTEM_OFF);
246 	if (psci_plat_pm_ops->system_reset != NULL)
247 		psci_caps |=  define_psci_cap(PSCI_SYSTEM_RESET);
248 	if (psci_plat_pm_ops->get_node_hw_state != NULL)
249 		psci_caps |= define_psci_cap(PSCI_NODE_HW_STATE_AARCH64);
250 	if ((psci_plat_pm_ops->read_mem_protect != NULL) &&
251 			(psci_plat_pm_ops->write_mem_protect != NULL))
252 		psci_caps |= define_psci_cap(PSCI_MEM_PROTECT);
253 	if (psci_plat_pm_ops->mem_protect_chk != NULL)
254 		psci_caps |= define_psci_cap(PSCI_MEM_CHK_RANGE_AARCH64);
255 	if (psci_plat_pm_ops->system_reset2 != NULL)
256 		psci_caps |= define_psci_cap(PSCI_SYSTEM_RESET2_AARCH64);
257 
258 #if ENABLE_PSCI_STAT
259 	psci_caps |=  define_psci_cap(PSCI_STAT_RESIDENCY_AARCH64);
260 	psci_caps |=  define_psci_cap(PSCI_STAT_COUNT_AARCH64);
261 #endif
262 
263 	return 0;
264 }
265 
266 /*******************************************************************************
267  * This duplicates what the primary cpu did after a cold boot in BL1. The same
268  * needs to be done when a cpu is hotplugged in. This function could also over-
269  * ride any EL3 setup done by BL1 as this code resides in rw memory.
270  ******************************************************************************/
271 void psci_arch_setup(void)
272 {
273 #if (ARM_ARCH_MAJOR > 7) || defined(ARMV7_SUPPORTS_GENERIC_TIMER)
274 	/* Program the counter frequency */
275 	write_cntfrq_el0(plat_get_syscnt_freq2());
276 #endif
277 
278 	/* Initialize the cpu_ops pointer. */
279 	init_cpu_ops();
280 
281 	/* Having initialized cpu_ops, we can now print errata status */
282 	print_errata_status();
283 
284 #if ENABLE_PAUTH
285 	/* Store APIAKey_EL1 key */
286 	set_cpu_data(apiakey[0], read_apiakeylo_el1());
287 	set_cpu_data(apiakey[1], read_apiakeyhi_el1());
288 #endif /* ENABLE_PAUTH */
289 }
290 
291 /******************************************************************************
292  * PSCI Library interface to initialize the cpu context for the next non
293  * secure image during cold boot. The relevant registers in the cpu context
294  * need to be retrieved and programmed on return from this interface.
295  *****************************************************************************/
296 void psci_prepare_next_non_secure_ctx(entry_point_info_t *next_image_info)
297 {
298 	assert(GET_SECURITY_STATE(next_image_info->h.attr) == NON_SECURE);
299 	cm_init_my_context(next_image_info);
300 	cm_prepare_el3_exit(NON_SECURE);
301 }
302