xref: /rk3399_ARM-atf/lib/psci/psci_setup.c (revision 06f3c7058c42a9f1a9f7df75ea2de71a000855e8)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stddef.h>
9 
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/bl_common.h>
13 #include <context.h>
14 #include <lib/cpus/errata.h>
15 #include <lib/el3_runtime/context_mgmt.h>
16 #include <plat/common/platform.h>
17 
18 #include "psci_private.h"
19 
20 /*
21  * Check that PLATFORM_CORE_COUNT fits into the number of cores
22  * that can be represented by PSCI_MAX_CPUS_INDEX.
23  */
24 CASSERT(PLATFORM_CORE_COUNT <= (PSCI_MAX_CPUS_INDEX + 1U), assert_psci_cores_overflow);
25 
26 /*******************************************************************************
27  * Per cpu non-secure contexts used to program the architectural state prior
28  * return to the normal world.
29  * TODO: Use the memory allocator to set aside memory for the contexts instead
30  * of relying on platform defined constants.
31  ******************************************************************************/
32 static cpu_context_t psci_ns_context[PLATFORM_CORE_COUNT];
33 static entry_point_info_t warmboot_ep_info[PLATFORM_CORE_COUNT];
34 
35 /******************************************************************************
36  * Define the psci capability variable.
37  *****************************************************************************/
38 unsigned int psci_caps;
39 
40 /*******************************************************************************
41  * Function which initializes the 'psci_non_cpu_pd_nodes' or the
42  * 'psci_cpu_pd_nodes' corresponding to the power level.
43  ******************************************************************************/
44 static void __init psci_init_pwr_domain_node(uint16_t node_idx,
45 					unsigned int parent_idx,
46 					unsigned char level)
47 {
48 	if (level > PSCI_CPU_PWR_LVL) {
49 		assert(node_idx < PSCI_NUM_NON_CPU_PWR_DOMAINS);
50 
51 		psci_non_cpu_pd_nodes[node_idx].level = level;
52 		psci_lock_init(psci_non_cpu_pd_nodes, node_idx);
53 		psci_non_cpu_pd_nodes[node_idx].parent_node = parent_idx;
54 		psci_non_cpu_pd_nodes[node_idx].local_state =
55 							 PLAT_MAX_OFF_STATE;
56 	} else {
57 		psci_cpu_data_t *svc_cpu_data;
58 
59 		assert(node_idx < PLATFORM_CORE_COUNT);
60 
61 		psci_cpu_pd_nodes[node_idx].parent_node = parent_idx;
62 
63 		/* Initialize with an invalid mpidr */
64 		psci_cpu_pd_nodes[node_idx].mpidr = PSCI_INVALID_MPIDR;
65 
66 		svc_cpu_data =
67 			&(_cpu_data_by_index(node_idx)->psci_svc_cpu_data);
68 
69 		/* Set the Affinity Info for the cores as OFF */
70 		svc_cpu_data->aff_info_state = AFF_STATE_OFF;
71 
72 		/* Default to the highest power level when the cpu is not suspending */
73 		svc_cpu_data->target_pwrlvl = PLAT_MAX_PWR_LVL;
74 
75 		/* Set the power state to OFF state */
76 		svc_cpu_data->local_state = PLAT_MAX_OFF_STATE;
77 
78 		psci_flush_dcache_range((uintptr_t)svc_cpu_data,
79 						 sizeof(*svc_cpu_data));
80 
81 		cm_set_context_by_index(node_idx,
82 					(void *) &psci_ns_context[node_idx],
83 					NON_SECURE);
84 	}
85 }
86 
87 /*******************************************************************************
88  * This functions updates cpu_start_idx and ncpus field for each of the node in
89  * psci_non_cpu_pd_nodes[]. It does so by comparing the parent nodes of each of
90  * the CPUs and check whether they match with the parent of the previous
91  * CPU. The basic assumption for this work is that children of the same parent
92  * are allocated adjacent indices. The platform should ensure this though proper
93  * mapping of the CPUs to indices via plat_core_pos_by_mpidr() and
94  * plat_my_core_pos() APIs.
95  *******************************************************************************/
96 static void __init psci_update_pwrlvl_limits(void)
97 {
98 	unsigned int cpu_idx;
99 	int j;
100 	unsigned int nodes_idx[PLAT_MAX_PWR_LVL] = {0};
101 	unsigned int temp_index[PLAT_MAX_PWR_LVL];
102 
103 	for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
104 		psci_get_parent_pwr_domain_nodes(cpu_idx,
105 						 PLAT_MAX_PWR_LVL,
106 						 temp_index);
107 		for (j = (int)PLAT_MAX_PWR_LVL - 1; j >= 0; j--) {
108 			if (temp_index[j] != nodes_idx[j]) {
109 				nodes_idx[j] = temp_index[j];
110 				psci_non_cpu_pd_nodes[nodes_idx[j]].cpu_start_idx
111 					= cpu_idx;
112 			}
113 			psci_non_cpu_pd_nodes[nodes_idx[j]].ncpus++;
114 		}
115 	}
116 }
117 
118 static void __init populate_cpu_data(void)
119 {
120 	for (unsigned int idx = 0; idx < psci_plat_core_count; idx++) {
121 		set_cpu_data_by_index(idx, warmboot_ep_info, &warmboot_ep_info[idx]);
122 	}
123 }
124 
125 /*******************************************************************************
126  * Core routine to populate the power domain tree. The tree descriptor passed by
127  * the platform is populated breadth-first and the first entry in the map
128  * informs the number of root power domains. The parent nodes of the root nodes
129  * will point to an invalid entry(-1).
130  ******************************************************************************/
131 static unsigned int __init populate_power_domain_tree(const unsigned char
132 							*topology)
133 {
134 	unsigned int i, j = 0U, num_nodes_at_lvl = 1U, num_nodes_at_next_lvl;
135 	unsigned int node_index = 0U, num_children;
136 	unsigned int parent_node_index = 0U;
137 	int level = (int)PLAT_MAX_PWR_LVL;
138 
139 	/*
140 	 * For each level the inputs are:
141 	 * - number of nodes at this level in plat_array i.e. num_nodes_at_level
142 	 *   This is the sum of values of nodes at the parent level.
143 	 * - Index of first entry at this level in the plat_array i.e.
144 	 *   parent_node_index.
145 	 * - Index of first free entry in psci_non_cpu_pd_nodes[] or
146 	 *   psci_cpu_pd_nodes[] i.e. node_index depending upon the level.
147 	 */
148 	while (level >= (int) PSCI_CPU_PWR_LVL) {
149 		num_nodes_at_next_lvl = 0U;
150 		/*
151 		 * For each entry (parent node) at this level in the plat_array:
152 		 * - Find the number of children
153 		 * - Allocate a node in a power domain array for each child
154 		 * - Set the parent of the child to the parent_node_index - 1
155 		 * - Increment parent_node_index to point to the next parent
156 		 * - Accumulate the number of children at next level.
157 		 */
158 		for (i = 0U; i < num_nodes_at_lvl; i++) {
159 			assert(parent_node_index <=
160 					PSCI_NUM_NON_CPU_PWR_DOMAINS);
161 			num_children = topology[parent_node_index];
162 
163 			for (j = node_index;
164 				j < (node_index + num_children); j++)
165 				psci_init_pwr_domain_node((uint16_t)j,
166 						  parent_node_index - 1U,
167 						  (unsigned char)level);
168 
169 			node_index = j;
170 			num_nodes_at_next_lvl += num_children;
171 			parent_node_index++;
172 		}
173 
174 		num_nodes_at_lvl = num_nodes_at_next_lvl;
175 		level--;
176 
177 		/* Reset the index for the cpu power domain array */
178 		if (level == (int) PSCI_CPU_PWR_LVL)
179 			node_index = 0;
180 	}
181 
182 	/* Validate the sanity of array exported by the platform */
183 	assert(j <= PLATFORM_CORE_COUNT);
184 	return j;
185 }
186 
187 /*******************************************************************************
188  * This function does the architectural setup and takes the warm boot
189  * entry-point `mailbox_ep` as an argument. The function also initializes the
190  * power domain topology tree by querying the platform. The power domain nodes
191  * higher than the CPU are populated in the array psci_non_cpu_pd_nodes[] and
192  * the CPU power domains are populated in psci_cpu_pd_nodes[]. The platform
193  * exports its static topology map through the
194  * populate_power_domain_topology_tree() API. The algorithm populates the
195  * psci_non_cpu_pd_nodes and psci_cpu_pd_nodes iteratively by using this
196  * topology map.  On a platform that implements two clusters of 2 cpus each,
197  * and supporting 3 domain levels, the populated psci_non_cpu_pd_nodes would
198  * look like this:
199  *
200  * ---------------------------------------------------
201  * | system node | cluster 0 node  | cluster 1 node  |
202  * ---------------------------------------------------
203  *
204  * And populated psci_cpu_pd_nodes would look like this :
205  * <-    cpus cluster0   -><-   cpus cluster1   ->
206  * ------------------------------------------------
207  * |   CPU 0   |   CPU 1   |   CPU 2   |   CPU 3  |
208  * ------------------------------------------------
209  ******************************************************************************/
210 int __init psci_setup(const psci_lib_args_t *lib_args)
211 {
212 	const unsigned char *topology_tree;
213 	unsigned int cpu_idx = plat_my_core_pos();
214 
215 	assert(VERIFY_PSCI_LIB_ARGS_V1(lib_args));
216 
217 	/* Do the Architectural initialization */
218 	psci_arch_setup();
219 
220 	/* Query the topology map from the platform */
221 	topology_tree = plat_get_power_domain_tree_desc();
222 
223 	/* Populate the power domain arrays using the platform topology map */
224 	psci_plat_core_count = populate_power_domain_tree(topology_tree);
225 
226 	/* Update the CPU limits for each node in psci_non_cpu_pd_nodes */
227 	psci_update_pwrlvl_limits();
228 
229 	/* Initialise the warmboot entrypoints */
230 	populate_cpu_data();
231 
232 	/* Populate the mpidr field of cpu node for this CPU */
233 	psci_cpu_pd_nodes[cpu_idx].mpidr =
234 		read_mpidr() & MPIDR_AFFINITY_MASK;
235 
236 	psci_init_req_local_pwr_states();
237 
238 	/*
239 	 * Set the requested and target state of this CPU and all the higher
240 	 * power domain levels for this CPU to run.
241 	 */
242 	psci_set_pwr_domains_to_run(cpu_idx, PLAT_MAX_PWR_LVL);
243 
244 	(void) plat_setup_psci_ops((uintptr_t)lib_args->mailbox_ep,
245 				   &psci_plat_pm_ops);
246 	assert(psci_plat_pm_ops != NULL);
247 
248 	/*
249 	 * Flush `psci_plat_pm_ops` as it will be accessed by secondary CPUs
250 	 * during warm boot, possibly before data cache is enabled.
251 	 */
252 	psci_flush_dcache_range((uintptr_t)&psci_plat_pm_ops,
253 					sizeof(psci_plat_pm_ops));
254 
255 	/* Initialize the psci capability */
256 	psci_caps = PSCI_GENERIC_CAP;
257 
258 	if (psci_plat_pm_ops->pwr_domain_off != NULL) {
259 		psci_caps |=  define_psci_cap(PSCI_CPU_OFF);
260 	}
261 	if ((psci_plat_pm_ops->pwr_domain_on != NULL) &&
262 	    (psci_plat_pm_ops->pwr_domain_on_finish != NULL)) {
263 		psci_caps |=  define_psci_cap(PSCI_CPU_ON_AARCH64);
264 	}
265 	if ((psci_plat_pm_ops->pwr_domain_suspend != NULL) &&
266 	    (psci_plat_pm_ops->pwr_domain_suspend_finish != NULL)) {
267 		if (psci_plat_pm_ops->validate_power_state != NULL) {
268 			psci_caps |=  define_psci_cap(PSCI_CPU_SUSPEND_AARCH64);
269 		}
270 		if (psci_plat_pm_ops->get_sys_suspend_power_state != NULL) {
271 			psci_caps |=  define_psci_cap(PSCI_SYSTEM_SUSPEND_AARCH64);
272 		}
273 #if PSCI_OS_INIT_MODE
274 		psci_caps |= define_psci_cap(PSCI_SET_SUSPEND_MODE);
275 #endif
276 	}
277 	if (psci_plat_pm_ops->system_off != NULL) {
278 		psci_caps |=  define_psci_cap(PSCI_SYSTEM_OFF);
279 	}
280 	if (psci_plat_pm_ops->system_reset != NULL) {
281 		psci_caps |=  define_psci_cap(PSCI_SYSTEM_RESET);
282 	}
283 	if (psci_plat_pm_ops->get_node_hw_state != NULL) {
284 		psci_caps |= define_psci_cap(PSCI_NODE_HW_STATE_AARCH64);
285 	}
286 	if ((psci_plat_pm_ops->read_mem_protect != NULL) &&
287 			(psci_plat_pm_ops->write_mem_protect != NULL)) {
288 		psci_caps |= define_psci_cap(PSCI_MEM_PROTECT);
289 	}
290 	if (psci_plat_pm_ops->mem_protect_chk != NULL) {
291 		psci_caps |= define_psci_cap(PSCI_MEM_CHK_RANGE_AARCH64);
292 	}
293 	if (psci_plat_pm_ops->system_reset2 != NULL) {
294 		psci_caps |= define_psci_cap(PSCI_SYSTEM_RESET2_AARCH64);
295 	}
296 #if ENABLE_PSCI_STAT
297 	psci_caps |=  define_psci_cap(PSCI_STAT_RESIDENCY_AARCH64);
298 	psci_caps |=  define_psci_cap(PSCI_STAT_COUNT_AARCH64);
299 #endif
300 
301 	return 0;
302 }
303 
304 /*******************************************************************************
305  * This duplicates what the primary cpu did after a cold boot in BL1. The same
306  * needs to be done when a cpu is hotplugged in. This function could also over-
307  * ride any EL3 setup done by BL1 as this code resides in rw memory.
308  ******************************************************************************/
309 void psci_arch_setup(void)
310 {
311 #if (ARM_ARCH_MAJOR > 7) || defined(ARMV7_SUPPORTS_GENERIC_TIMER)
312 	/* Program the counter frequency */
313 	write_cntfrq_el0(plat_get_syscnt_freq2());
314 #endif
315 
316 	/* Initialize the cpu_ops pointer. */
317 	init_cpu_ops();
318 
319 	/* Having initialized cpu_ops, we can now print errata status */
320 	print_errata_status();
321 
322 }
323 
324 /******************************************************************************
325  * PSCI Library interface to initialize the cpu context for the next non
326  * secure image during cold boot. The relevant registers in the cpu context
327  * need to be retrieved and programmed on return from this interface.
328  *****************************************************************************/
329 void psci_prepare_next_non_secure_ctx(entry_point_info_t *next_image_info)
330 {
331 	assert(GET_SECURITY_STATE(next_image_info->h.attr) == NON_SECURE);
332 	cm_init_my_context(next_image_info);
333 	cm_prepare_el3_exit(NON_SECURE);
334 }
335