1 /* 2 * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions are met: 6 * 7 * Redistributions of source code must retain the above copyright notice, this 8 * list of conditions and the following disclaimer. 9 * 10 * Redistributions in binary form must reproduce the above copyright notice, 11 * this list of conditions and the following disclaimer in the documentation 12 * and/or other materials provided with the distribution. 13 * 14 * Neither the name of ARM nor the names of its contributors may be used 15 * to endorse or promote products derived from this software without specific 16 * prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include <arch.h> 32 #include <arch_helpers.h> 33 #include <assert.h> 34 #include <bl_common.h> 35 #include <context.h> 36 #include <context_mgmt.h> 37 #include <debug.h> 38 #include <platform.h> 39 #include <string.h> 40 #include "psci_private.h" 41 42 /* 43 * SPD power management operations, expected to be supplied by the registered 44 * SPD on successful SP initialization 45 */ 46 const spd_pm_ops_t *psci_spd_pm; 47 48 /* 49 * PSCI requested local power state map. This array is used to store the local 50 * power states requested by a CPU for power levels from level 1 to 51 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power 52 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a 53 * CPU are the same. 54 * 55 * During state coordination, the platform is passed an array containing the 56 * local states requested for a particular non cpu power domain by each cpu 57 * within the domain. 58 * 59 * TODO: Dense packing of the requested states will cause cache thrashing 60 * when multiple power domains write to it. If we allocate the requested 61 * states at each power level in a cache-line aligned per-domain memory, 62 * the cache thrashing can be avoided. 63 */ 64 static plat_local_state_t 65 psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT]; 66 67 68 /******************************************************************************* 69 * Arrays that hold the platform's power domain tree information for state 70 * management of power domains. 71 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain 72 * which is an ancestor of a CPU power domain. 73 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain 74 ******************************************************************************/ 75 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS] 76 #if USE_COHERENT_MEM 77 __section("tzfw_coherent_mem") 78 #endif 79 ; 80 81 DEFINE_BAKERY_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]); 82 83 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT]; 84 85 /******************************************************************************* 86 * Pointer to functions exported by the platform to complete power mgmt. ops 87 ******************************************************************************/ 88 const plat_psci_ops_t *psci_plat_pm_ops; 89 90 /****************************************************************************** 91 * Check that the maximum power level supported by the platform makes sense 92 *****************************************************************************/ 93 CASSERT(PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL && \ 94 PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL, \ 95 assert_platform_max_pwrlvl_check); 96 97 /* 98 * The plat_local_state used by the platform is one of these types: RUN, 99 * RETENTION and OFF. The platform can define further sub-states for each type 100 * apart from RUN. This categorization is done to verify the sanity of the 101 * psci_power_state passed by the platform and to print debug information. The 102 * categorization is done on the basis of the following conditions: 103 * 104 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN. 105 * 106 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is 107 * STATE_TYPE_RETN. 108 * 109 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is 110 * STATE_TYPE_OFF. 111 */ 112 typedef enum plat_local_state_type { 113 STATE_TYPE_RUN = 0, 114 STATE_TYPE_RETN, 115 STATE_TYPE_OFF 116 } plat_local_state_type_t; 117 118 /* The macro used to categorize plat_local_state. */ 119 #define find_local_state_type(plat_local_state) \ 120 ((plat_local_state) ? ((plat_local_state > PLAT_MAX_RET_STATE) \ 121 ? STATE_TYPE_OFF : STATE_TYPE_RETN) \ 122 : STATE_TYPE_RUN) 123 124 /****************************************************************************** 125 * Check that the maximum retention level supported by the platform is less 126 * than the maximum off level. 127 *****************************************************************************/ 128 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, \ 129 assert_platform_max_off_and_retn_state_check); 130 131 /****************************************************************************** 132 * This function ensures that the power state parameter in a CPU_SUSPEND request 133 * is valid. If so, it returns the requested states for each power level. 134 *****************************************************************************/ 135 int psci_validate_power_state(unsigned int power_state, 136 psci_power_state_t *state_info) 137 { 138 /* Check SBZ bits in power state are zero */ 139 if (psci_check_power_state(power_state)) 140 return PSCI_E_INVALID_PARAMS; 141 142 assert(psci_plat_pm_ops->validate_power_state); 143 144 /* Validate the power_state using platform pm_ops */ 145 return psci_plat_pm_ops->validate_power_state(power_state, state_info); 146 } 147 148 /****************************************************************************** 149 * This function retrieves the `psci_power_state_t` for system suspend from 150 * the platform. 151 *****************************************************************************/ 152 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info) 153 { 154 /* 155 * Assert that the required pm_ops hook is implemented to ensure that 156 * the capability detected during psci_setup() is valid. 157 */ 158 assert(psci_plat_pm_ops->get_sys_suspend_power_state); 159 160 /* 161 * Query the platform for the power_state required for system suspend 162 */ 163 psci_plat_pm_ops->get_sys_suspend_power_state(state_info); 164 } 165 166 /******************************************************************************* 167 * This function verifies that the all the other cores in the system have been 168 * turned OFF and the current CPU is the last running CPU in the system. 169 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false) 170 * otherwise. 171 ******************************************************************************/ 172 unsigned int psci_is_last_on_cpu(void) 173 { 174 unsigned int cpu_idx, my_idx = plat_my_core_pos(); 175 176 for (cpu_idx = 0; cpu_idx < PLATFORM_CORE_COUNT; cpu_idx++) { 177 if (cpu_idx == my_idx) { 178 assert(psci_get_aff_info_state() == AFF_STATE_ON); 179 continue; 180 } 181 182 if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) 183 return 0; 184 } 185 186 return 1; 187 } 188 189 /******************************************************************************* 190 * Routine to return the maximum power level to traverse to after a cpu has 191 * been physically powered up. It is expected to be called immediately after 192 * reset from assembler code. 193 ******************************************************************************/ 194 static unsigned int get_power_on_target_pwrlvl(void) 195 { 196 unsigned int pwrlvl; 197 198 /* 199 * Assume that this cpu was suspended and retrieve its target power 200 * level. If it is invalid then it could only have been turned off 201 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a 202 * cpu can be turned off to. 203 */ 204 pwrlvl = psci_get_suspend_pwrlvl(); 205 if (pwrlvl == PSCI_INVALID_PWR_LVL) 206 pwrlvl = PLAT_MAX_PWR_LVL; 207 return pwrlvl; 208 } 209 210 /****************************************************************************** 211 * Helper function to update the requested local power state array. This array 212 * does not store the requested state for the CPU power level. Hence an 213 * assertion is added to prevent us from accessing the wrong index. 214 *****************************************************************************/ 215 static void psci_set_req_local_pwr_state(unsigned int pwrlvl, 216 unsigned int cpu_idx, 217 plat_local_state_t req_pwr_state) 218 { 219 assert(pwrlvl > PSCI_CPU_PWR_LVL); 220 psci_req_local_pwr_states[pwrlvl - 1][cpu_idx] = req_pwr_state; 221 } 222 223 /****************************************************************************** 224 * This function initializes the psci_req_local_pwr_states. 225 *****************************************************************************/ 226 void psci_init_req_local_pwr_states(void) 227 { 228 /* Initialize the requested state of all non CPU power domains as OFF */ 229 memset(&psci_req_local_pwr_states, PLAT_MAX_OFF_STATE, 230 sizeof(psci_req_local_pwr_states)); 231 } 232 233 /****************************************************************************** 234 * Helper function to return a reference to an array containing the local power 235 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the 236 * array will be the number of cpu power domains of which this power domain is 237 * an ancestor. These requested states will be used to determine a suitable 238 * target state for this power domain during psci state coordination. An 239 * assertion is added to prevent us from accessing the CPU power level. 240 *****************************************************************************/ 241 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl, 242 unsigned int cpu_idx) 243 { 244 assert(pwrlvl > PSCI_CPU_PWR_LVL); 245 246 return &psci_req_local_pwr_states[pwrlvl - 1][cpu_idx]; 247 } 248 249 /****************************************************************************** 250 * Helper function to return the current local power state of each power domain 251 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This 252 * function will be called after a cpu is powered on to find the local state 253 * each power domain has emerged from. 254 *****************************************************************************/ 255 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl, 256 psci_power_state_t *target_state) 257 { 258 unsigned int parent_idx, lvl; 259 plat_local_state_t *pd_state = target_state->pwr_domain_state; 260 261 pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state(); 262 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; 263 264 /* Copy the local power state from node to state_info */ 265 for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) { 266 #if !USE_COHERENT_MEM 267 /* 268 * If using normal memory for psci_non_cpu_pd_nodes, we need 269 * to flush before reading the local power state as another 270 * cpu in the same power domain could have updated it and this 271 * code runs before caches are enabled. 272 */ 273 flush_dcache_range( 274 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 275 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 276 #endif 277 pd_state[lvl] = psci_non_cpu_pd_nodes[parent_idx].local_state; 278 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 279 } 280 281 /* Set the the higher levels to RUN */ 282 for (; lvl <= PLAT_MAX_PWR_LVL; lvl++) 283 target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 284 } 285 286 /****************************************************************************** 287 * Helper function to set the target local power state that each power domain 288 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will 289 * enter. This function will be called after coordination of requested power 290 * states has been done for each power level. 291 *****************************************************************************/ 292 static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl, 293 const psci_power_state_t *target_state) 294 { 295 unsigned int parent_idx, lvl; 296 const plat_local_state_t *pd_state = target_state->pwr_domain_state; 297 298 psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]); 299 300 /* 301 * Need to flush as local_state will be accessed with Data Cache 302 * disabled during power on 303 */ 304 flush_cpu_data(psci_svc_cpu_data.local_state); 305 306 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; 307 308 /* Copy the local_state from state_info */ 309 for (lvl = 1; lvl <= end_pwrlvl; lvl++) { 310 psci_non_cpu_pd_nodes[parent_idx].local_state = pd_state[lvl]; 311 #if !USE_COHERENT_MEM 312 flush_dcache_range( 313 (uintptr_t)&psci_non_cpu_pd_nodes[parent_idx], 314 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 315 #endif 316 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 317 } 318 } 319 320 321 /******************************************************************************* 322 * PSCI helper function to get the parent nodes corresponding to a cpu_index. 323 ******************************************************************************/ 324 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx, 325 unsigned int end_lvl, 326 unsigned int node_index[]) 327 { 328 unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node; 329 int i; 330 331 for (i = PSCI_CPU_PWR_LVL + 1; i <= end_lvl; i++) { 332 *node_index++ = parent_node; 333 parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node; 334 } 335 } 336 337 /****************************************************************************** 338 * This function is invoked post CPU power up and initialization. It sets the 339 * affinity info state, target power state and requested power state for the 340 * current CPU and all its ancestor power domains to RUN. 341 *****************************************************************************/ 342 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl) 343 { 344 unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl; 345 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 346 347 /* Reset the local_state to RUN for the non cpu power domains. */ 348 for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) { 349 psci_non_cpu_pd_nodes[parent_idx].local_state = 350 PSCI_LOCAL_STATE_RUN; 351 #if !USE_COHERENT_MEM 352 flush_dcache_range( 353 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 354 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 355 #endif 356 psci_set_req_local_pwr_state(lvl, 357 cpu_idx, 358 PSCI_LOCAL_STATE_RUN); 359 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 360 } 361 362 /* Set the affinity info state to ON */ 363 psci_set_aff_info_state(AFF_STATE_ON); 364 365 psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN); 366 flush_cpu_data(psci_svc_cpu_data); 367 } 368 369 /****************************************************************************** 370 * This function is passed the local power states requested for each power 371 * domain (state_info) between the current CPU domain and its ancestors until 372 * the target power level (end_pwrlvl). It updates the array of requested power 373 * states with this information. 374 * 375 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it 376 * retrieves the states requested by all the cpus of which the power domain at 377 * that level is an ancestor. It passes this information to the platform to 378 * coordinate and return the target power state. If the target state for a level 379 * is RUN then subsequent levels are not considered. At the CPU level, state 380 * coordination is not required. Hence, the requested and the target states are 381 * the same. 382 * 383 * The 'state_info' is updated with the target state for each level between the 384 * CPU and the 'end_pwrlvl' and returned to the caller. 385 * 386 * This function will only be invoked with data cache enabled and while 387 * powering down a core. 388 *****************************************************************************/ 389 void psci_do_state_coordination(unsigned int end_pwrlvl, 390 psci_power_state_t *state_info) 391 { 392 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos(); 393 unsigned int start_idx, ncpus; 394 plat_local_state_t target_state, *req_states; 395 396 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); 397 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 398 399 /* For level 0, the requested state will be equivalent 400 to target state */ 401 for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) { 402 403 /* First update the requested power state */ 404 psci_set_req_local_pwr_state(lvl, cpu_idx, 405 state_info->pwr_domain_state[lvl]); 406 407 /* Get the requested power states for this power level */ 408 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 409 req_states = psci_get_req_local_pwr_states(lvl, start_idx); 410 411 /* 412 * Let the platform coordinate amongst the requested states at 413 * this power level and return the target local power state. 414 */ 415 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 416 target_state = plat_get_target_pwr_state(lvl, 417 req_states, 418 ncpus); 419 420 state_info->pwr_domain_state[lvl] = target_state; 421 422 /* Break early if the negotiated target power state is RUN */ 423 if (is_local_state_run(state_info->pwr_domain_state[lvl])) 424 break; 425 426 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 427 } 428 429 /* 430 * This is for cases when we break out of the above loop early because 431 * the target power state is RUN at a power level < end_pwlvl. 432 * We update the requested power state from state_info and then 433 * set the target state as RUN. 434 */ 435 for (lvl = lvl + 1; lvl <= end_pwrlvl; lvl++) { 436 psci_set_req_local_pwr_state(lvl, cpu_idx, 437 state_info->pwr_domain_state[lvl]); 438 state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 439 440 } 441 442 /* Update the target state in the power domain nodes */ 443 psci_set_target_local_pwr_states(end_pwrlvl, state_info); 444 } 445 446 /****************************************************************************** 447 * This function validates a suspend request by making sure that if a standby 448 * state is requested then no power level is turned off and the highest power 449 * level is placed in a standby/retention state. 450 * 451 * It also ensures that the state level X will enter is not shallower than the 452 * state level X + 1 will enter. 453 * 454 * This validation will be enabled only for DEBUG builds as the platform is 455 * expected to perform these validations as well. 456 *****************************************************************************/ 457 int psci_validate_suspend_req(const psci_power_state_t *state_info, 458 unsigned int is_power_down_state) 459 { 460 unsigned int max_off_lvl, target_lvl, max_retn_lvl; 461 plat_local_state_t state; 462 plat_local_state_type_t req_state_type, deepest_state_type; 463 int i; 464 465 /* Find the target suspend power level */ 466 target_lvl = psci_find_target_suspend_lvl(state_info); 467 if (target_lvl == PSCI_INVALID_PWR_LVL) 468 return PSCI_E_INVALID_PARAMS; 469 470 /* All power domain levels are in a RUN state to begin with */ 471 deepest_state_type = STATE_TYPE_RUN; 472 473 for (i = target_lvl; i >= PSCI_CPU_PWR_LVL; i--) { 474 state = state_info->pwr_domain_state[i]; 475 req_state_type = find_local_state_type(state); 476 477 /* 478 * While traversing from the highest power level to the lowest, 479 * the state requested for lower levels has to be the same or 480 * deeper i.e. equal to or greater than the state at the higher 481 * levels. If this condition is true, then the requested state 482 * becomes the deepest state encountered so far. 483 */ 484 if (req_state_type < deepest_state_type) 485 return PSCI_E_INVALID_PARAMS; 486 deepest_state_type = req_state_type; 487 } 488 489 /* Find the highest off power level */ 490 max_off_lvl = psci_find_max_off_lvl(state_info); 491 492 /* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */ 493 max_retn_lvl = PSCI_INVALID_PWR_LVL; 494 if (target_lvl != max_off_lvl) 495 max_retn_lvl = target_lvl; 496 497 /* 498 * If this is not a request for a power down state then max off level 499 * has to be invalid and max retention level has to be a valid power 500 * level. 501 */ 502 if (!is_power_down_state && (max_off_lvl != PSCI_INVALID_PWR_LVL || 503 max_retn_lvl == PSCI_INVALID_PWR_LVL)) 504 return PSCI_E_INVALID_PARAMS; 505 506 return PSCI_E_SUCCESS; 507 } 508 509 /****************************************************************************** 510 * This function finds the highest power level which will be powered down 511 * amongst all the power levels specified in the 'state_info' structure 512 *****************************************************************************/ 513 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info) 514 { 515 int i; 516 517 for (i = PLAT_MAX_PWR_LVL; i >= PSCI_CPU_PWR_LVL; i--) { 518 if (is_local_state_off(state_info->pwr_domain_state[i])) 519 return i; 520 } 521 522 return PSCI_INVALID_PWR_LVL; 523 } 524 525 /****************************************************************************** 526 * This functions finds the level of the highest power domain which will be 527 * placed in a low power state during a suspend operation. 528 *****************************************************************************/ 529 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info) 530 { 531 int i; 532 533 for (i = PLAT_MAX_PWR_LVL; i >= PSCI_CPU_PWR_LVL; i--) { 534 if (!is_local_state_run(state_info->pwr_domain_state[i])) 535 return i; 536 } 537 538 return PSCI_INVALID_PWR_LVL; 539 } 540 541 /******************************************************************************* 542 * This function is passed a cpu_index and the highest level in the topology 543 * tree that the operation should be applied to. It picks up locks in order of 544 * increasing power domain level in the range specified. 545 ******************************************************************************/ 546 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl, 547 unsigned int cpu_idx) 548 { 549 unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 550 unsigned int level; 551 552 /* No locking required for level 0. Hence start locking from level 1 */ 553 for (level = PSCI_CPU_PWR_LVL + 1; level <= end_pwrlvl; level++) { 554 psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]); 555 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 556 } 557 } 558 559 /******************************************************************************* 560 * This function is passed a cpu_index and the highest level in the topology 561 * tree that the operation should be applied to. It releases the locks in order 562 * of decreasing power domain level in the range specified. 563 ******************************************************************************/ 564 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl, 565 unsigned int cpu_idx) 566 { 567 unsigned int parent_idx, parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 568 int level; 569 570 /* Get the parent nodes */ 571 psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes); 572 573 /* Unlock top down. No unlocking required for level 0. */ 574 for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1; level--) { 575 parent_idx = parent_nodes[level - 1]; 576 psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]); 577 } 578 } 579 580 /******************************************************************************* 581 * Simple routine to determine whether a mpidr is valid or not. 582 ******************************************************************************/ 583 int psci_validate_mpidr(u_register_t mpidr) 584 { 585 if (plat_core_pos_by_mpidr(mpidr) < 0) 586 return PSCI_E_INVALID_PARAMS; 587 588 return PSCI_E_SUCCESS; 589 } 590 591 /******************************************************************************* 592 * This function determines the full entrypoint information for the requested 593 * PSCI entrypoint on power on/resume and returns it. 594 ******************************************************************************/ 595 #ifdef AARCH32 596 static int psci_get_ns_ep_info(entry_point_info_t *ep, 597 uintptr_t entrypoint, 598 u_register_t context_id) 599 { 600 u_register_t ep_attr; 601 unsigned int aif, ee, mode; 602 u_register_t scr = read_scr(); 603 u_register_t ns_sctlr, sctlr; 604 605 /* Switch to non secure state */ 606 write_scr(scr | SCR_NS_BIT); 607 isb(); 608 ns_sctlr = read_sctlr(); 609 610 sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr; 611 612 /* Return to original state */ 613 write_scr(scr); 614 isb(); 615 ee = 0; 616 617 ep_attr = NON_SECURE | EP_ST_DISABLE; 618 if (sctlr & SCTLR_EE_BIT) { 619 ep_attr |= EP_EE_BIG; 620 ee = 1; 621 } 622 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 623 624 ep->pc = entrypoint; 625 memset(&ep->args, 0, sizeof(ep->args)); 626 ep->args.arg0 = context_id; 627 628 mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc; 629 630 /* 631 * TODO: Choose async. exception bits if HYP mode is not 632 * implemented according to the values of SCR.{AW, FW} bits 633 */ 634 aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT; 635 636 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif); 637 638 return PSCI_E_SUCCESS; 639 } 640 641 #else 642 static int psci_get_ns_ep_info(entry_point_info_t *ep, 643 uintptr_t entrypoint, 644 u_register_t context_id) 645 { 646 u_register_t ep_attr, sctlr; 647 unsigned int daif, ee, mode; 648 u_register_t ns_scr_el3 = read_scr_el3(); 649 u_register_t ns_sctlr_el1 = read_sctlr_el1(); 650 651 sctlr = ns_scr_el3 & SCR_HCE_BIT ? read_sctlr_el2() : ns_sctlr_el1; 652 ee = 0; 653 654 ep_attr = NON_SECURE | EP_ST_DISABLE; 655 if (sctlr & SCTLR_EE_BIT) { 656 ep_attr |= EP_EE_BIG; 657 ee = 1; 658 } 659 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 660 661 ep->pc = entrypoint; 662 memset(&ep->args, 0, sizeof(ep->args)); 663 ep->args.arg0 = context_id; 664 665 /* 666 * Figure out whether the cpu enters the non-secure address space 667 * in aarch32 or aarch64 668 */ 669 if (ns_scr_el3 & SCR_RW_BIT) { 670 671 /* 672 * Check whether a Thumb entry point has been provided for an 673 * aarch64 EL 674 */ 675 if (entrypoint & 0x1) 676 return PSCI_E_INVALID_ADDRESS; 677 678 mode = ns_scr_el3 & SCR_HCE_BIT ? MODE_EL2 : MODE_EL1; 679 680 ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); 681 } else { 682 683 mode = ns_scr_el3 & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc; 684 685 /* 686 * TODO: Choose async. exception bits if HYP mode is not 687 * implemented according to the values of SCR.{AW, FW} bits 688 */ 689 daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT; 690 691 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif); 692 } 693 694 return PSCI_E_SUCCESS; 695 } 696 #endif 697 698 /******************************************************************************* 699 * This function validates the entrypoint with the platform layer if the 700 * appropriate pm_ops hook is exported by the platform and returns the 701 * 'entry_point_info'. 702 ******************************************************************************/ 703 int psci_validate_entry_point(entry_point_info_t *ep, 704 uintptr_t entrypoint, 705 u_register_t context_id) 706 { 707 int rc; 708 709 /* Validate the entrypoint using platform psci_ops */ 710 if (psci_plat_pm_ops->validate_ns_entrypoint) { 711 rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint); 712 if (rc != PSCI_E_SUCCESS) 713 return PSCI_E_INVALID_ADDRESS; 714 } 715 716 /* 717 * Verify and derive the re-entry information for 718 * the non-secure world from the non-secure state from 719 * where this call originated. 720 */ 721 rc = psci_get_ns_ep_info(ep, entrypoint, context_id); 722 return rc; 723 } 724 725 /******************************************************************************* 726 * Generic handler which is called when a cpu is physically powered on. It 727 * traverses the node information and finds the highest power level powered 728 * off and performs generic, architectural, platform setup and state management 729 * to power on that power level and power levels below it. 730 * e.g. For a cpu that's been powered on, it will call the platform specific 731 * code to enable the gic cpu interface and for a cluster it will enable 732 * coherency at the interconnect level in addition to gic cpu interface. 733 ******************************************************************************/ 734 void psci_warmboot_entrypoint(void) 735 { 736 unsigned int end_pwrlvl, cpu_idx = plat_my_core_pos(); 737 psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} }; 738 739 /* 740 * Verify that we have been explicitly turned ON or resumed from 741 * suspend. 742 */ 743 if (psci_get_aff_info_state() == AFF_STATE_OFF) { 744 ERROR("Unexpected affinity info state"); 745 panic(); 746 } 747 748 /* 749 * Get the maximum power domain level to traverse to after this cpu 750 * has been physically powered up. 751 */ 752 end_pwrlvl = get_power_on_target_pwrlvl(); 753 754 /* 755 * This function acquires the lock corresponding to each power level so 756 * that by the time all locks are taken, the system topology is snapshot 757 * and state management can be done safely. 758 */ 759 psci_acquire_pwr_domain_locks(end_pwrlvl, 760 cpu_idx); 761 762 #if ENABLE_PSCI_STAT 763 plat_psci_stat_accounting_stop(&state_info); 764 #endif 765 766 psci_get_target_local_pwr_states(end_pwrlvl, &state_info); 767 768 /* 769 * This CPU could be resuming from suspend or it could have just been 770 * turned on. To distinguish between these 2 cases, we examine the 771 * affinity state of the CPU: 772 * - If the affinity state is ON_PENDING then it has just been 773 * turned on. 774 * - Else it is resuming from suspend. 775 * 776 * Depending on the type of warm reset identified, choose the right set 777 * of power management handler and perform the generic, architecture 778 * and platform specific handling. 779 */ 780 if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING) 781 psci_cpu_on_finish(cpu_idx, &state_info); 782 else 783 psci_cpu_suspend_finish(cpu_idx, &state_info); 784 785 /* 786 * Set the requested and target state of this CPU and all the higher 787 * power domains which are ancestors of this CPU to run. 788 */ 789 psci_set_pwr_domains_to_run(end_pwrlvl); 790 791 #if ENABLE_PSCI_STAT 792 /* 793 * Update PSCI stats. 794 * Caches are off when writing stats data on the power down path. 795 * Since caches are now enabled, it's necessary to do cache 796 * maintenance before reading that same data. 797 */ 798 psci_stats_update_pwr_up(end_pwrlvl, &state_info); 799 #endif 800 801 /* 802 * This loop releases the lock corresponding to each power level 803 * in the reverse order to which they were acquired. 804 */ 805 psci_release_pwr_domain_locks(end_pwrlvl, 806 cpu_idx); 807 } 808 809 /******************************************************************************* 810 * This function initializes the set of hooks that PSCI invokes as part of power 811 * management operation. The power management hooks are expected to be provided 812 * by the SPD, after it finishes all its initialization 813 ******************************************************************************/ 814 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm) 815 { 816 assert(pm); 817 psci_spd_pm = pm; 818 819 if (pm->svc_migrate) 820 psci_caps |= define_psci_cap(PSCI_MIG_AARCH64); 821 822 if (pm->svc_migrate_info) 823 psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64) 824 | define_psci_cap(PSCI_MIG_INFO_TYPE); 825 } 826 827 /******************************************************************************* 828 * This function invokes the migrate info hook in the spd_pm_ops. It performs 829 * the necessary return value validation. If the Secure Payload is UP and 830 * migrate capable, it returns the mpidr of the CPU on which the Secure payload 831 * is resident through the mpidr parameter. Else the value of the parameter on 832 * return is undefined. 833 ******************************************************************************/ 834 int psci_spd_migrate_info(u_register_t *mpidr) 835 { 836 int rc; 837 838 if (!psci_spd_pm || !psci_spd_pm->svc_migrate_info) 839 return PSCI_E_NOT_SUPPORTED; 840 841 rc = psci_spd_pm->svc_migrate_info(mpidr); 842 843 assert(rc == PSCI_TOS_UP_MIG_CAP || rc == PSCI_TOS_NOT_UP_MIG_CAP \ 844 || rc == PSCI_TOS_NOT_PRESENT_MP || rc == PSCI_E_NOT_SUPPORTED); 845 846 return rc; 847 } 848 849 850 /******************************************************************************* 851 * This function prints the state of all power domains present in the 852 * system 853 ******************************************************************************/ 854 void psci_print_power_domain_map(void) 855 { 856 #if LOG_LEVEL >= LOG_LEVEL_INFO 857 unsigned int idx; 858 plat_local_state_t state; 859 plat_local_state_type_t state_type; 860 861 /* This array maps to the PSCI_STATE_X definitions in psci.h */ 862 static const char * const psci_state_type_str[] = { 863 "ON", 864 "RETENTION", 865 "OFF", 866 }; 867 868 INFO("PSCI Power Domain Map:\n"); 869 for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - PLATFORM_CORE_COUNT); 870 idx++) { 871 state_type = find_local_state_type( 872 psci_non_cpu_pd_nodes[idx].local_state); 873 INFO(" Domain Node : Level %u, parent_node %d," 874 " State %s (0x%x)\n", 875 psci_non_cpu_pd_nodes[idx].level, 876 psci_non_cpu_pd_nodes[idx].parent_node, 877 psci_state_type_str[state_type], 878 psci_non_cpu_pd_nodes[idx].local_state); 879 } 880 881 for (idx = 0; idx < PLATFORM_CORE_COUNT; idx++) { 882 state = psci_get_cpu_local_state_by_idx(idx); 883 state_type = find_local_state_type(state); 884 INFO(" CPU Node : MPID 0x%llx, parent_node %d," 885 " State %s (0x%x)\n", 886 (unsigned long long)psci_cpu_pd_nodes[idx].mpidr, 887 psci_cpu_pd_nodes[idx].parent_node, 888 psci_state_type_str[state_type], 889 psci_get_cpu_local_state_by_idx(idx)); 890 } 891 #endif 892 } 893 894 #if ENABLE_PLAT_COMPAT 895 /******************************************************************************* 896 * PSCI Compatibility helper function to return the 'power_state' parameter of 897 * the PSCI CPU SUSPEND request for the current CPU. Returns PSCI_INVALID_DATA 898 * if not invoked within CPU_SUSPEND for the current CPU. 899 ******************************************************************************/ 900 int psci_get_suspend_powerstate(void) 901 { 902 /* Sanity check to verify that CPU is within CPU_SUSPEND */ 903 if (psci_get_aff_info_state() == AFF_STATE_ON && 904 !is_local_state_run(psci_get_cpu_local_state())) 905 return psci_power_state_compat[plat_my_core_pos()]; 906 907 return PSCI_INVALID_DATA; 908 } 909 910 /******************************************************************************* 911 * PSCI Compatibility helper function to return the state id of the current 912 * cpu encoded in the 'power_state' parameter. Returns PSCI_INVALID_DATA 913 * if not invoked within CPU_SUSPEND for the current CPU. 914 ******************************************************************************/ 915 int psci_get_suspend_stateid(void) 916 { 917 unsigned int power_state; 918 power_state = psci_get_suspend_powerstate(); 919 if (power_state != PSCI_INVALID_DATA) 920 return psci_get_pstate_id(power_state); 921 922 return PSCI_INVALID_DATA; 923 } 924 925 /******************************************************************************* 926 * PSCI Compatibility helper function to return the state id encoded in the 927 * 'power_state' parameter of the CPU specified by 'mpidr'. Returns 928 * PSCI_INVALID_DATA if the CPU is not in CPU_SUSPEND. 929 ******************************************************************************/ 930 int psci_get_suspend_stateid_by_mpidr(unsigned long mpidr) 931 { 932 int cpu_idx = plat_core_pos_by_mpidr(mpidr); 933 934 if (cpu_idx == -1) 935 return PSCI_INVALID_DATA; 936 937 /* Sanity check to verify that the CPU is in CPU_SUSPEND */ 938 if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_ON && 939 !is_local_state_run(psci_get_cpu_local_state_by_idx(cpu_idx))) 940 return psci_get_pstate_id(psci_power_state_compat[cpu_idx]); 941 942 return PSCI_INVALID_DATA; 943 } 944 945 /******************************************************************************* 946 * This function returns highest affinity level which is in OFF 947 * state. The affinity instance with which the level is associated is 948 * determined by the caller. 949 ******************************************************************************/ 950 unsigned int psci_get_max_phys_off_afflvl(void) 951 { 952 psci_power_state_t state_info; 953 954 memset(&state_info, 0, sizeof(state_info)); 955 psci_get_target_local_pwr_states(PLAT_MAX_PWR_LVL, &state_info); 956 957 return psci_find_target_suspend_lvl(&state_info); 958 } 959 960 /******************************************************************************* 961 * PSCI Compatibility helper function to return target affinity level requested 962 * for the CPU_SUSPEND. This function assumes affinity levels correspond to 963 * power domain levels on the platform. 964 ******************************************************************************/ 965 int psci_get_suspend_afflvl(void) 966 { 967 return psci_get_suspend_pwrlvl(); 968 } 969 970 #endif 971