xref: /rk3399_ARM-atf/lib/psci/psci_common.c (revision f996a5f79f62e17ec3bbf0d0bda46d81ddf6fcb3)
1 /*
2  * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <bl_common.h>
11 #include <context.h>
12 #include <context_mgmt.h>
13 #include <debug.h>
14 #include <platform.h>
15 #include <string.h>
16 #include <utils.h>
17 #include "psci_private.h"
18 
19 /*
20  * SPD power management operations, expected to be supplied by the registered
21  * SPD on successful SP initialization
22  */
23 const spd_pm_ops_t *psci_spd_pm;
24 
25 /*
26  * PSCI requested local power state map. This array is used to store the local
27  * power states requested by a CPU for power levels from level 1 to
28  * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
29  * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
30  * CPU are the same.
31  *
32  * During state coordination, the platform is passed an array containing the
33  * local states requested for a particular non cpu power domain by each cpu
34  * within the domain.
35  *
36  * TODO: Dense packing of the requested states will cause cache thrashing
37  * when multiple power domains write to it. If we allocate the requested
38  * states at each power level in a cache-line aligned per-domain memory,
39  * the cache thrashing can be avoided.
40  */
41 static plat_local_state_t
42 	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
43 
44 
45 /*******************************************************************************
46  * Arrays that hold the platform's power domain tree information for state
47  * management of power domains.
48  * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
49  * which is an ancestor of a CPU power domain.
50  * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
51  ******************************************************************************/
52 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
53 #if USE_COHERENT_MEM
54 __section("tzfw_coherent_mem")
55 #endif
56 ;
57 
58 /* Lock for PSCI state coordination */
59 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
60 
61 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
62 
63 /*******************************************************************************
64  * Pointer to functions exported by the platform to complete power mgmt. ops
65  ******************************************************************************/
66 const plat_psci_ops_t *psci_plat_pm_ops;
67 
68 /******************************************************************************
69  * Check that the maximum power level supported by the platform makes sense
70  *****************************************************************************/
71 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
72 	(PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
73 	assert_platform_max_pwrlvl_check);
74 
75 /*
76  * The plat_local_state used by the platform is one of these types: RUN,
77  * RETENTION and OFF. The platform can define further sub-states for each type
78  * apart from RUN. This categorization is done to verify the sanity of the
79  * psci_power_state passed by the platform and to print debug information. The
80  * categorization is done on the basis of the following conditions:
81  *
82  * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
83  *
84  * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
85  *    STATE_TYPE_RETN.
86  *
87  * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
88  *    STATE_TYPE_OFF.
89  */
90 typedef enum plat_local_state_type {
91 	STATE_TYPE_RUN = 0,
92 	STATE_TYPE_RETN,
93 	STATE_TYPE_OFF
94 } plat_local_state_type_t;
95 
96 /* Function used to categorize plat_local_state. */
97 static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
98 {
99 	if (state != 0U) {
100 		if (state > PLAT_MAX_RET_STATE) {
101 			return STATE_TYPE_OFF;
102 		} else {
103 			return STATE_TYPE_RETN;
104 		}
105 	} else {
106 		return STATE_TYPE_RUN;
107 	}
108 }
109 
110 /******************************************************************************
111  * Check that the maximum retention level supported by the platform is less
112  * than the maximum off level.
113  *****************************************************************************/
114 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
115 		assert_platform_max_off_and_retn_state_check);
116 
117 /******************************************************************************
118  * This function ensures that the power state parameter in a CPU_SUSPEND request
119  * is valid. If so, it returns the requested states for each power level.
120  *****************************************************************************/
121 int psci_validate_power_state(unsigned int power_state,
122 			      psci_power_state_t *state_info)
123 {
124 	/* Check SBZ bits in power state are zero */
125 	if (psci_check_power_state(power_state) != 0U)
126 		return PSCI_E_INVALID_PARAMS;
127 
128 	assert(psci_plat_pm_ops->validate_power_state != NULL);
129 
130 	/* Validate the power_state using platform pm_ops */
131 	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
132 }
133 
134 /******************************************************************************
135  * This function retrieves the `psci_power_state_t` for system suspend from
136  * the platform.
137  *****************************************************************************/
138 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
139 {
140 	/*
141 	 * Assert that the required pm_ops hook is implemented to ensure that
142 	 * the capability detected during psci_setup() is valid.
143 	 */
144 	assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
145 
146 	/*
147 	 * Query the platform for the power_state required for system suspend
148 	 */
149 	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
150 }
151 
152 /*******************************************************************************
153  * This function verifies that the all the other cores in the system have been
154  * turned OFF and the current CPU is the last running CPU in the system.
155  * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
156  * otherwise.
157  ******************************************************************************/
158 unsigned int psci_is_last_on_cpu(void)
159 {
160 	int cpu_idx, my_idx = (int) plat_my_core_pos();
161 
162 	for (cpu_idx = 0; cpu_idx < PLATFORM_CORE_COUNT; cpu_idx++) {
163 		if (cpu_idx == my_idx) {
164 			assert(psci_get_aff_info_state() == AFF_STATE_ON);
165 			continue;
166 		}
167 
168 		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF)
169 			return 0;
170 	}
171 
172 	return 1;
173 }
174 
175 /*******************************************************************************
176  * Routine to return the maximum power level to traverse to after a cpu has
177  * been physically powered up. It is expected to be called immediately after
178  * reset from assembler code.
179  ******************************************************************************/
180 static unsigned int get_power_on_target_pwrlvl(void)
181 {
182 	unsigned int pwrlvl;
183 
184 	/*
185 	 * Assume that this cpu was suspended and retrieve its target power
186 	 * level. If it is invalid then it could only have been turned off
187 	 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
188 	 * cpu can be turned off to.
189 	 */
190 	pwrlvl = psci_get_suspend_pwrlvl();
191 	if (pwrlvl == PSCI_INVALID_PWR_LVL)
192 		pwrlvl = PLAT_MAX_PWR_LVL;
193 	return pwrlvl;
194 }
195 
196 /******************************************************************************
197  * Helper function to update the requested local power state array. This array
198  * does not store the requested state for the CPU power level. Hence an
199  * assertion is added to prevent us from accessing the wrong index.
200  *****************************************************************************/
201 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
202 					 unsigned int cpu_idx,
203 					 plat_local_state_t req_pwr_state)
204 {
205 	/*
206 	 * This should never happen, we have this here to avoid
207 	 * "array subscript is above array bounds" errors in GCC.
208 	 */
209 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
210 #pragma GCC diagnostic push
211 #pragma GCC diagnostic ignored "-Warray-bounds"
212 	psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
213 #pragma GCC diagnostic pop
214 }
215 
216 /******************************************************************************
217  * This function initializes the psci_req_local_pwr_states.
218  *****************************************************************************/
219 void __init psci_init_req_local_pwr_states(void)
220 {
221 	/* Initialize the requested state of all non CPU power domains as OFF */
222 	unsigned int pwrlvl;
223 	int core;
224 
225 	for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
226 		for (core = 0; core < PLATFORM_CORE_COUNT; core++) {
227 			psci_req_local_pwr_states[pwrlvl][core] =
228 				PLAT_MAX_OFF_STATE;
229 		}
230 	}
231 }
232 
233 /******************************************************************************
234  * Helper function to return a reference to an array containing the local power
235  * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
236  * array will be the number of cpu power domains of which this power domain is
237  * an ancestor. These requested states will be used to determine a suitable
238  * target state for this power domain during psci state coordination. An
239  * assertion is added to prevent us from accessing the CPU power level.
240  *****************************************************************************/
241 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
242 							 int cpu_idx)
243 {
244 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
245 
246 	return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
247 }
248 
249 /*
250  * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
251  * memory.
252  *
253  * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
254  * it's accessed by both cached and non-cached participants. To serve the common
255  * minimum, perform a cache flush before read and after write so that non-cached
256  * participants operate on latest data in main memory.
257  *
258  * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
259  * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
260  * In both cases, no cache operations are required.
261  */
262 
263 /*
264  * Retrieve local state of non-CPU power domain node from a non-cached CPU,
265  * after any required cache maintenance operation.
266  */
267 static plat_local_state_t get_non_cpu_pd_node_local_state(
268 		unsigned int parent_idx)
269 {
270 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
271 	flush_dcache_range(
272 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
273 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
274 #endif
275 	return psci_non_cpu_pd_nodes[parent_idx].local_state;
276 }
277 
278 /*
279  * Update local state of non-CPU power domain node from a cached CPU; perform
280  * any required cache maintenance operation afterwards.
281  */
282 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
283 		plat_local_state_t state)
284 {
285 	psci_non_cpu_pd_nodes[parent_idx].local_state = state;
286 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
287 	flush_dcache_range(
288 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
289 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
290 #endif
291 }
292 
293 /******************************************************************************
294  * Helper function to return the current local power state of each power domain
295  * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
296  * function will be called after a cpu is powered on to find the local state
297  * each power domain has emerged from.
298  *****************************************************************************/
299 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
300 				      psci_power_state_t *target_state)
301 {
302 	unsigned int parent_idx, lvl;
303 	plat_local_state_t *pd_state = target_state->pwr_domain_state;
304 
305 	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
306 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
307 
308 	/* Copy the local power state from node to state_info */
309 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
310 		pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
311 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
312 	}
313 
314 	/* Set the the higher levels to RUN */
315 	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
316 		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
317 }
318 
319 /******************************************************************************
320  * Helper function to set the target local power state that each power domain
321  * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
322  * enter. This function will be called after coordination of requested power
323  * states has been done for each power level.
324  *****************************************************************************/
325 static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
326 					const psci_power_state_t *target_state)
327 {
328 	unsigned int parent_idx, lvl;
329 	const plat_local_state_t *pd_state = target_state->pwr_domain_state;
330 
331 	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
332 
333 	/*
334 	 * Need to flush as local_state might be accessed with Data Cache
335 	 * disabled during power on
336 	 */
337 	psci_flush_cpu_data(psci_svc_cpu_data.local_state);
338 
339 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
340 
341 	/* Copy the local_state from state_info */
342 	for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
343 		set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
344 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
345 	}
346 }
347 
348 
349 /*******************************************************************************
350  * PSCI helper function to get the parent nodes corresponding to a cpu_index.
351  ******************************************************************************/
352 void psci_get_parent_pwr_domain_nodes(int cpu_idx,
353 				      unsigned int end_lvl,
354 				      unsigned int *node_index)
355 {
356 	unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
357 	unsigned int i;
358 	unsigned int *node = node_index;
359 
360 	for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
361 		*node = parent_node;
362 		node++;
363 		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
364 	}
365 }
366 
367 /******************************************************************************
368  * This function is invoked post CPU power up and initialization. It sets the
369  * affinity info state, target power state and requested power state for the
370  * current CPU and all its ancestor power domains to RUN.
371  *****************************************************************************/
372 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
373 {
374 	unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
375 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
376 
377 	/* Reset the local_state to RUN for the non cpu power domains. */
378 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
379 		set_non_cpu_pd_node_local_state(parent_idx,
380 				PSCI_LOCAL_STATE_RUN);
381 		psci_set_req_local_pwr_state(lvl,
382 					     cpu_idx,
383 					     PSCI_LOCAL_STATE_RUN);
384 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
385 	}
386 
387 	/* Set the affinity info state to ON */
388 	psci_set_aff_info_state(AFF_STATE_ON);
389 
390 	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
391 	psci_flush_cpu_data(psci_svc_cpu_data);
392 }
393 
394 /******************************************************************************
395  * This function is passed the local power states requested for each power
396  * domain (state_info) between the current CPU domain and its ancestors until
397  * the target power level (end_pwrlvl). It updates the array of requested power
398  * states with this information.
399  *
400  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
401  * retrieves the states requested by all the cpus of which the power domain at
402  * that level is an ancestor. It passes this information to the platform to
403  * coordinate and return the target power state. If the target state for a level
404  * is RUN then subsequent levels are not considered. At the CPU level, state
405  * coordination is not required. Hence, the requested and the target states are
406  * the same.
407  *
408  * The 'state_info' is updated with the target state for each level between the
409  * CPU and the 'end_pwrlvl' and returned to the caller.
410  *
411  * This function will only be invoked with data cache enabled and while
412  * powering down a core.
413  *****************************************************************************/
414 void psci_do_state_coordination(unsigned int end_pwrlvl,
415 				psci_power_state_t *state_info)
416 {
417 	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
418 	int start_idx;
419 	unsigned int ncpus;
420 	plat_local_state_t target_state, *req_states;
421 
422 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
423 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
424 
425 	/* For level 0, the requested state will be equivalent
426 	   to target state */
427 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
428 
429 		/* First update the requested power state */
430 		psci_set_req_local_pwr_state(lvl, cpu_idx,
431 					     state_info->pwr_domain_state[lvl]);
432 
433 		/* Get the requested power states for this power level */
434 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
435 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
436 
437 		/*
438 		 * Let the platform coordinate amongst the requested states at
439 		 * this power level and return the target local power state.
440 		 */
441 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
442 		target_state = plat_get_target_pwr_state(lvl,
443 							 req_states,
444 							 ncpus);
445 
446 		state_info->pwr_domain_state[lvl] = target_state;
447 
448 		/* Break early if the negotiated target power state is RUN */
449 		if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0)
450 			break;
451 
452 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
453 	}
454 
455 	/*
456 	 * This is for cases when we break out of the above loop early because
457 	 * the target power state is RUN at a power level < end_pwlvl.
458 	 * We update the requested power state from state_info and then
459 	 * set the target state as RUN.
460 	 */
461 	for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
462 		psci_set_req_local_pwr_state(lvl, cpu_idx,
463 					     state_info->pwr_domain_state[lvl]);
464 		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
465 
466 	}
467 
468 	/* Update the target state in the power domain nodes */
469 	psci_set_target_local_pwr_states(end_pwrlvl, state_info);
470 }
471 
472 /******************************************************************************
473  * This function validates a suspend request by making sure that if a standby
474  * state is requested then no power level is turned off and the highest power
475  * level is placed in a standby/retention state.
476  *
477  * It also ensures that the state level X will enter is not shallower than the
478  * state level X + 1 will enter.
479  *
480  * This validation will be enabled only for DEBUG builds as the platform is
481  * expected to perform these validations as well.
482  *****************************************************************************/
483 int psci_validate_suspend_req(const psci_power_state_t *state_info,
484 			      unsigned int is_power_down_state)
485 {
486 	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
487 	plat_local_state_t state;
488 	plat_local_state_type_t req_state_type, deepest_state_type;
489 	int i;
490 
491 	/* Find the target suspend power level */
492 	target_lvl = psci_find_target_suspend_lvl(state_info);
493 	if (target_lvl == PSCI_INVALID_PWR_LVL)
494 		return PSCI_E_INVALID_PARAMS;
495 
496 	/* All power domain levels are in a RUN state to begin with */
497 	deepest_state_type = STATE_TYPE_RUN;
498 
499 	for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
500 		state = state_info->pwr_domain_state[i];
501 		req_state_type = find_local_state_type(state);
502 
503 		/*
504 		 * While traversing from the highest power level to the lowest,
505 		 * the state requested for lower levels has to be the same or
506 		 * deeper i.e. equal to or greater than the state at the higher
507 		 * levels. If this condition is true, then the requested state
508 		 * becomes the deepest state encountered so far.
509 		 */
510 		if (req_state_type < deepest_state_type)
511 			return PSCI_E_INVALID_PARAMS;
512 		deepest_state_type = req_state_type;
513 	}
514 
515 	/* Find the highest off power level */
516 	max_off_lvl = psci_find_max_off_lvl(state_info);
517 
518 	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
519 	max_retn_lvl = PSCI_INVALID_PWR_LVL;
520 	if (target_lvl != max_off_lvl)
521 		max_retn_lvl = target_lvl;
522 
523 	/*
524 	 * If this is not a request for a power down state then max off level
525 	 * has to be invalid and max retention level has to be a valid power
526 	 * level.
527 	 */
528 	if ((is_power_down_state == 0U) &&
529 			((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
530 			 (max_retn_lvl == PSCI_INVALID_PWR_LVL)))
531 		return PSCI_E_INVALID_PARAMS;
532 
533 	return PSCI_E_SUCCESS;
534 }
535 
536 /******************************************************************************
537  * This function finds the highest power level which will be powered down
538  * amongst all the power levels specified in the 'state_info' structure
539  *****************************************************************************/
540 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
541 {
542 	int i;
543 
544 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
545 		if (is_local_state_off(state_info->pwr_domain_state[i]) != 0)
546 			return (unsigned int) i;
547 	}
548 
549 	return PSCI_INVALID_PWR_LVL;
550 }
551 
552 /******************************************************************************
553  * This functions finds the level of the highest power domain which will be
554  * placed in a low power state during a suspend operation.
555  *****************************************************************************/
556 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
557 {
558 	int i;
559 
560 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
561 		if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
562 			return (unsigned int) i;
563 	}
564 
565 	return PSCI_INVALID_PWR_LVL;
566 }
567 
568 /*******************************************************************************
569  * This function is passed a cpu_index and the highest level in the topology
570  * tree that the operation should be applied to. It picks up locks in order of
571  * increasing power domain level in the range specified.
572  ******************************************************************************/
573 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl, int cpu_idx)
574 {
575 	unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
576 	unsigned int level;
577 
578 	/* No locking required for level 0. Hence start locking from level 1 */
579 	for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
580 		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
581 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
582 	}
583 }
584 
585 /*******************************************************************************
586  * This function is passed a cpu_index and the highest level in the topology
587  * tree that the operation should be applied to. It releases the locks in order
588  * of decreasing power domain level in the range specified.
589  ******************************************************************************/
590 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl, int cpu_idx)
591 {
592 	unsigned int parent_idx, parent_nodes[PLAT_MAX_PWR_LVL] = {0};
593 	unsigned int level;
594 
595 	/* Get the parent nodes */
596 	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
597 
598 	/* Unlock top down. No unlocking required for level 0. */
599 	for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1U; level--) {
600 		parent_idx = parent_nodes[level - 1U];
601 		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
602 	}
603 }
604 
605 /*******************************************************************************
606  * Simple routine to determine whether a mpidr is valid or not.
607  ******************************************************************************/
608 int psci_validate_mpidr(u_register_t mpidr)
609 {
610 	if (plat_core_pos_by_mpidr(mpidr) < 0)
611 		return PSCI_E_INVALID_PARAMS;
612 
613 	return PSCI_E_SUCCESS;
614 }
615 
616 /*******************************************************************************
617  * This function determines the full entrypoint information for the requested
618  * PSCI entrypoint on power on/resume and returns it.
619  ******************************************************************************/
620 #ifdef AARCH32
621 static int psci_get_ns_ep_info(entry_point_info_t *ep,
622 			       uintptr_t entrypoint,
623 			       u_register_t context_id)
624 {
625 	u_register_t ep_attr;
626 	unsigned int aif, ee, mode;
627 	u_register_t scr = read_scr();
628 	u_register_t ns_sctlr, sctlr;
629 
630 	/* Switch to non secure state */
631 	write_scr(scr | SCR_NS_BIT);
632 	isb();
633 	ns_sctlr = read_sctlr();
634 
635 	sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
636 
637 	/* Return to original state */
638 	write_scr(scr);
639 	isb();
640 	ee = 0;
641 
642 	ep_attr = NON_SECURE | EP_ST_DISABLE;
643 	if (sctlr & SCTLR_EE_BIT) {
644 		ep_attr |= EP_EE_BIG;
645 		ee = 1;
646 	}
647 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
648 
649 	ep->pc = entrypoint;
650 	zeromem(&ep->args, sizeof(ep->args));
651 	ep->args.arg0 = context_id;
652 
653 	mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
654 
655 	/*
656 	 * TODO: Choose async. exception bits if HYP mode is not
657 	 * implemented according to the values of SCR.{AW, FW} bits
658 	 */
659 	aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
660 
661 	ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
662 
663 	return PSCI_E_SUCCESS;
664 }
665 
666 #else
667 static int psci_get_ns_ep_info(entry_point_info_t *ep,
668 			       uintptr_t entrypoint,
669 			       u_register_t context_id)
670 {
671 	u_register_t ep_attr, sctlr;
672 	unsigned int daif, ee, mode;
673 	u_register_t ns_scr_el3 = read_scr_el3();
674 	u_register_t ns_sctlr_el1 = read_sctlr_el1();
675 
676 	sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
677 		read_sctlr_el2() : ns_sctlr_el1;
678 	ee = 0;
679 
680 	ep_attr = NON_SECURE | EP_ST_DISABLE;
681 	if ((sctlr & SCTLR_EE_BIT) != 0U) {
682 		ep_attr |= EP_EE_BIG;
683 		ee = 1;
684 	}
685 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
686 
687 	ep->pc = entrypoint;
688 	zeromem(&ep->args, sizeof(ep->args));
689 	ep->args.arg0 = context_id;
690 
691 	/*
692 	 * Figure out whether the cpu enters the non-secure address space
693 	 * in aarch32 or aarch64
694 	 */
695 	if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
696 
697 		/*
698 		 * Check whether a Thumb entry point has been provided for an
699 		 * aarch64 EL
700 		 */
701 		if ((entrypoint & 0x1UL) != 0UL)
702 			return PSCI_E_INVALID_ADDRESS;
703 
704 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
705 
706 		ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
707 	} else {
708 
709 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
710 			MODE32_hyp : MODE32_svc;
711 
712 		/*
713 		 * TODO: Choose async. exception bits if HYP mode is not
714 		 * implemented according to the values of SCR.{AW, FW} bits
715 		 */
716 		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
717 
718 		ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
719 	}
720 
721 	return PSCI_E_SUCCESS;
722 }
723 #endif
724 
725 /*******************************************************************************
726  * This function validates the entrypoint with the platform layer if the
727  * appropriate pm_ops hook is exported by the platform and returns the
728  * 'entry_point_info'.
729  ******************************************************************************/
730 int psci_validate_entry_point(entry_point_info_t *ep,
731 			      uintptr_t entrypoint,
732 			      u_register_t context_id)
733 {
734 	int rc;
735 
736 	/* Validate the entrypoint using platform psci_ops */
737 	if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
738 		rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
739 		if (rc != PSCI_E_SUCCESS)
740 			return PSCI_E_INVALID_ADDRESS;
741 	}
742 
743 	/*
744 	 * Verify and derive the re-entry information for
745 	 * the non-secure world from the non-secure state from
746 	 * where this call originated.
747 	 */
748 	rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
749 	return rc;
750 }
751 
752 /*******************************************************************************
753  * Generic handler which is called when a cpu is physically powered on. It
754  * traverses the node information and finds the highest power level powered
755  * off and performs generic, architectural, platform setup and state management
756  * to power on that power level and power levels below it.
757  * e.g. For a cpu that's been powered on, it will call the platform specific
758  * code to enable the gic cpu interface and for a cluster it will enable
759  * coherency at the interconnect level in addition to gic cpu interface.
760  ******************************************************************************/
761 void psci_warmboot_entrypoint(void)
762 {
763 	unsigned int end_pwrlvl;
764 	int cpu_idx = (int) plat_my_core_pos();
765 	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
766 
767 	/*
768 	 * Verify that we have been explicitly turned ON or resumed from
769 	 * suspend.
770 	 */
771 	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
772 		ERROR("Unexpected affinity info state");
773 		panic();
774 	}
775 
776 	/*
777 	 * Get the maximum power domain level to traverse to after this cpu
778 	 * has been physically powered up.
779 	 */
780 	end_pwrlvl = get_power_on_target_pwrlvl();
781 
782 	/*
783 	 * This function acquires the lock corresponding to each power level so
784 	 * that by the time all locks are taken, the system topology is snapshot
785 	 * and state management can be done safely.
786 	 */
787 	psci_acquire_pwr_domain_locks(end_pwrlvl, cpu_idx);
788 
789 	psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
790 
791 #if ENABLE_PSCI_STAT
792 	plat_psci_stat_accounting_stop(&state_info);
793 #endif
794 
795 	/*
796 	 * This CPU could be resuming from suspend or it could have just been
797 	 * turned on. To distinguish between these 2 cases, we examine the
798 	 * affinity state of the CPU:
799 	 *  - If the affinity state is ON_PENDING then it has just been
800 	 *    turned on.
801 	 *  - Else it is resuming from suspend.
802 	 *
803 	 * Depending on the type of warm reset identified, choose the right set
804 	 * of power management handler and perform the generic, architecture
805 	 * and platform specific handling.
806 	 */
807 	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
808 		psci_cpu_on_finish(cpu_idx, &state_info);
809 	else
810 		psci_cpu_suspend_finish(cpu_idx, &state_info);
811 
812 	/*
813 	 * Set the requested and target state of this CPU and all the higher
814 	 * power domains which are ancestors of this CPU to run.
815 	 */
816 	psci_set_pwr_domains_to_run(end_pwrlvl);
817 
818 #if ENABLE_PSCI_STAT
819 	/*
820 	 * Update PSCI stats.
821 	 * Caches are off when writing stats data on the power down path.
822 	 * Since caches are now enabled, it's necessary to do cache
823 	 * maintenance before reading that same data.
824 	 */
825 	psci_stats_update_pwr_up(end_pwrlvl, &state_info);
826 #endif
827 
828 	/*
829 	 * This loop releases the lock corresponding to each power level
830 	 * in the reverse order to which they were acquired.
831 	 */
832 	psci_release_pwr_domain_locks(end_pwrlvl, cpu_idx);
833 }
834 
835 /*******************************************************************************
836  * This function initializes the set of hooks that PSCI invokes as part of power
837  * management operation. The power management hooks are expected to be provided
838  * by the SPD, after it finishes all its initialization
839  ******************************************************************************/
840 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
841 {
842 	assert(pm != NULL);
843 	psci_spd_pm = pm;
844 
845 	if (pm->svc_migrate != NULL)
846 		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
847 
848 	if (pm->svc_migrate_info != NULL)
849 		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
850 				| define_psci_cap(PSCI_MIG_INFO_TYPE);
851 }
852 
853 /*******************************************************************************
854  * This function invokes the migrate info hook in the spd_pm_ops. It performs
855  * the necessary return value validation. If the Secure Payload is UP and
856  * migrate capable, it returns the mpidr of the CPU on which the Secure payload
857  * is resident through the mpidr parameter. Else the value of the parameter on
858  * return is undefined.
859  ******************************************************************************/
860 int psci_spd_migrate_info(u_register_t *mpidr)
861 {
862 	int rc;
863 
864 	if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
865 		return PSCI_E_NOT_SUPPORTED;
866 
867 	rc = psci_spd_pm->svc_migrate_info(mpidr);
868 
869 	assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
870 	       (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
871 
872 	return rc;
873 }
874 
875 
876 /*******************************************************************************
877  * This function prints the state of all power domains present in the
878  * system
879  ******************************************************************************/
880 void psci_print_power_domain_map(void)
881 {
882 #if LOG_LEVEL >= LOG_LEVEL_INFO
883 	int idx;
884 	plat_local_state_t state;
885 	plat_local_state_type_t state_type;
886 
887 	/* This array maps to the PSCI_STATE_X definitions in psci.h */
888 	static const char * const psci_state_type_str[] = {
889 		"ON",
890 		"RETENTION",
891 		"OFF",
892 	};
893 
894 	INFO("PSCI Power Domain Map:\n");
895 	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - PLATFORM_CORE_COUNT);
896 							idx++) {
897 		state_type = find_local_state_type(
898 				psci_non_cpu_pd_nodes[idx].local_state);
899 		INFO("  Domain Node : Level %u, parent_node %d,"
900 				" State %s (0x%x)\n",
901 				psci_non_cpu_pd_nodes[idx].level,
902 				psci_non_cpu_pd_nodes[idx].parent_node,
903 				psci_state_type_str[state_type],
904 				psci_non_cpu_pd_nodes[idx].local_state);
905 	}
906 
907 	for (idx = 0; idx < PLATFORM_CORE_COUNT; idx++) {
908 		state = psci_get_cpu_local_state_by_idx(idx);
909 		state_type = find_local_state_type(state);
910 		INFO("  CPU Node : MPID 0x%llx, parent_node %d,"
911 				" State %s (0x%x)\n",
912 				(unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
913 				psci_cpu_pd_nodes[idx].parent_node,
914 				psci_state_type_str[state_type],
915 				psci_get_cpu_local_state_by_idx(idx));
916 	}
917 #endif
918 }
919 
920 /******************************************************************************
921  * Return whether any secondaries were powered up with CPU_ON call. A CPU that
922  * have ever been powered up would have set its MPDIR value to something other
923  * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
924  * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
925  * meaningful only when called on the primary CPU during early boot.
926  *****************************************************************************/
927 int psci_secondaries_brought_up(void)
928 {
929 	unsigned int idx, n_valid = 0U;
930 
931 	for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
932 		if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
933 			n_valid++;
934 	}
935 
936 	assert(n_valid > 0U);
937 
938 	return (n_valid > 1U) ? 1 : 0;
939 }
940 
941 /*******************************************************************************
942  * Initiate power down sequence, by calling power down operations registered for
943  * this CPU.
944  ******************************************************************************/
945 void psci_do_pwrdown_sequence(unsigned int power_level)
946 {
947 #if HW_ASSISTED_COHERENCY
948 	/*
949 	 * With hardware-assisted coherency, the CPU drivers only initiate the
950 	 * power down sequence, without performing cache-maintenance operations
951 	 * in software. Data caches enabled both before and after this call.
952 	 */
953 	prepare_cpu_pwr_dwn(power_level);
954 #else
955 	/*
956 	 * Without hardware-assisted coherency, the CPU drivers disable data
957 	 * caches, then perform cache-maintenance operations in software.
958 	 *
959 	 * This also calls prepare_cpu_pwr_dwn() to initiate power down
960 	 * sequence, but that function will return with data caches disabled.
961 	 * We must ensure that the stack memory is flushed out to memory before
962 	 * we start popping from it again.
963 	 */
964 	psci_do_pwrdown_cache_maintenance(power_level);
965 #endif
966 }
967