1 /* 2 * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <arch.h> 8 #include <arch_helpers.h> 9 #include <assert.h> 10 #include <bl_common.h> 11 #include <context.h> 12 #include <context_mgmt.h> 13 #include <debug.h> 14 #include <platform.h> 15 #include <string.h> 16 #include <utils.h> 17 #include "psci_private.h" 18 19 /* 20 * SPD power management operations, expected to be supplied by the registered 21 * SPD on successful SP initialization 22 */ 23 const spd_pm_ops_t *psci_spd_pm; 24 25 /* 26 * PSCI requested local power state map. This array is used to store the local 27 * power states requested by a CPU for power levels from level 1 to 28 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power 29 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a 30 * CPU are the same. 31 * 32 * During state coordination, the platform is passed an array containing the 33 * local states requested for a particular non cpu power domain by each cpu 34 * within the domain. 35 * 36 * TODO: Dense packing of the requested states will cause cache thrashing 37 * when multiple power domains write to it. If we allocate the requested 38 * states at each power level in a cache-line aligned per-domain memory, 39 * the cache thrashing can be avoided. 40 */ 41 static plat_local_state_t 42 psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT]; 43 44 45 /******************************************************************************* 46 * Arrays that hold the platform's power domain tree information for state 47 * management of power domains. 48 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain 49 * which is an ancestor of a CPU power domain. 50 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain 51 ******************************************************************************/ 52 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS] 53 #if USE_COHERENT_MEM 54 __section("tzfw_coherent_mem") 55 #endif 56 ; 57 58 /* Lock for PSCI state coordination */ 59 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]); 60 61 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT]; 62 63 /******************************************************************************* 64 * Pointer to functions exported by the platform to complete power mgmt. ops 65 ******************************************************************************/ 66 const plat_psci_ops_t *psci_plat_pm_ops; 67 68 /****************************************************************************** 69 * Check that the maximum power level supported by the platform makes sense 70 *****************************************************************************/ 71 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) && 72 (PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL), 73 assert_platform_max_pwrlvl_check); 74 75 /* 76 * The plat_local_state used by the platform is one of these types: RUN, 77 * RETENTION and OFF. The platform can define further sub-states for each type 78 * apart from RUN. This categorization is done to verify the sanity of the 79 * psci_power_state passed by the platform and to print debug information. The 80 * categorization is done on the basis of the following conditions: 81 * 82 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN. 83 * 84 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is 85 * STATE_TYPE_RETN. 86 * 87 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is 88 * STATE_TYPE_OFF. 89 */ 90 typedef enum plat_local_state_type { 91 STATE_TYPE_RUN = 0, 92 STATE_TYPE_RETN, 93 STATE_TYPE_OFF 94 } plat_local_state_type_t; 95 96 /* Function used to categorize plat_local_state. */ 97 static plat_local_state_type_t find_local_state_type(plat_local_state_t state) 98 { 99 if (state != 0U) { 100 if (state > PLAT_MAX_RET_STATE) { 101 return STATE_TYPE_OFF; 102 } else { 103 return STATE_TYPE_RETN; 104 } 105 } else { 106 return STATE_TYPE_RUN; 107 } 108 } 109 110 /****************************************************************************** 111 * Check that the maximum retention level supported by the platform is less 112 * than the maximum off level. 113 *****************************************************************************/ 114 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, 115 assert_platform_max_off_and_retn_state_check); 116 117 /****************************************************************************** 118 * This function ensures that the power state parameter in a CPU_SUSPEND request 119 * is valid. If so, it returns the requested states for each power level. 120 *****************************************************************************/ 121 int psci_validate_power_state(unsigned int power_state, 122 psci_power_state_t *state_info) 123 { 124 /* Check SBZ bits in power state are zero */ 125 if (psci_check_power_state(power_state) != 0U) 126 return PSCI_E_INVALID_PARAMS; 127 128 assert(psci_plat_pm_ops->validate_power_state != NULL); 129 130 /* Validate the power_state using platform pm_ops */ 131 return psci_plat_pm_ops->validate_power_state(power_state, state_info); 132 } 133 134 /****************************************************************************** 135 * This function retrieves the `psci_power_state_t` for system suspend from 136 * the platform. 137 *****************************************************************************/ 138 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info) 139 { 140 /* 141 * Assert that the required pm_ops hook is implemented to ensure that 142 * the capability detected during psci_setup() is valid. 143 */ 144 assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL); 145 146 /* 147 * Query the platform for the power_state required for system suspend 148 */ 149 psci_plat_pm_ops->get_sys_suspend_power_state(state_info); 150 } 151 152 /******************************************************************************* 153 * This function verifies that the all the other cores in the system have been 154 * turned OFF and the current CPU is the last running CPU in the system. 155 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false) 156 * otherwise. 157 ******************************************************************************/ 158 unsigned int psci_is_last_on_cpu(void) 159 { 160 int cpu_idx, my_idx = (int) plat_my_core_pos(); 161 162 for (cpu_idx = 0; cpu_idx < PLATFORM_CORE_COUNT; cpu_idx++) { 163 if (cpu_idx == my_idx) { 164 assert(psci_get_aff_info_state() == AFF_STATE_ON); 165 continue; 166 } 167 168 if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) 169 return 0; 170 } 171 172 return 1; 173 } 174 175 /******************************************************************************* 176 * Routine to return the maximum power level to traverse to after a cpu has 177 * been physically powered up. It is expected to be called immediately after 178 * reset from assembler code. 179 ******************************************************************************/ 180 static unsigned int get_power_on_target_pwrlvl(void) 181 { 182 unsigned int pwrlvl; 183 184 /* 185 * Assume that this cpu was suspended and retrieve its target power 186 * level. If it is invalid then it could only have been turned off 187 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a 188 * cpu can be turned off to. 189 */ 190 pwrlvl = psci_get_suspend_pwrlvl(); 191 if (pwrlvl == PSCI_INVALID_PWR_LVL) 192 pwrlvl = PLAT_MAX_PWR_LVL; 193 return pwrlvl; 194 } 195 196 /****************************************************************************** 197 * Helper function to update the requested local power state array. This array 198 * does not store the requested state for the CPU power level. Hence an 199 * assertion is added to prevent us from accessing the wrong index. 200 *****************************************************************************/ 201 static void psci_set_req_local_pwr_state(unsigned int pwrlvl, 202 unsigned int cpu_idx, 203 plat_local_state_t req_pwr_state) 204 { 205 /* 206 * This should never happen, we have this here to avoid 207 * "array subscript is above array bounds" errors in GCC. 208 */ 209 assert(pwrlvl > PSCI_CPU_PWR_LVL); 210 #pragma GCC diagnostic push 211 #pragma GCC diagnostic ignored "-Warray-bounds" 212 psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state; 213 #pragma GCC diagnostic pop 214 } 215 216 /****************************************************************************** 217 * This function initializes the psci_req_local_pwr_states. 218 *****************************************************************************/ 219 void __init psci_init_req_local_pwr_states(void) 220 { 221 /* Initialize the requested state of all non CPU power domains as OFF */ 222 unsigned int pwrlvl; 223 int core; 224 225 for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) { 226 for (core = 0; core < PLATFORM_CORE_COUNT; core++) { 227 psci_req_local_pwr_states[pwrlvl][core] = 228 PLAT_MAX_OFF_STATE; 229 } 230 } 231 } 232 233 /****************************************************************************** 234 * Helper function to return a reference to an array containing the local power 235 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the 236 * array will be the number of cpu power domains of which this power domain is 237 * an ancestor. These requested states will be used to determine a suitable 238 * target state for this power domain during psci state coordination. An 239 * assertion is added to prevent us from accessing the CPU power level. 240 *****************************************************************************/ 241 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl, 242 int cpu_idx) 243 { 244 assert(pwrlvl > PSCI_CPU_PWR_LVL); 245 246 return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx]; 247 } 248 249 /* 250 * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent 251 * memory. 252 * 253 * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory, 254 * it's accessed by both cached and non-cached participants. To serve the common 255 * minimum, perform a cache flush before read and after write so that non-cached 256 * participants operate on latest data in main memory. 257 * 258 * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent 259 * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent. 260 * In both cases, no cache operations are required. 261 */ 262 263 /* 264 * Retrieve local state of non-CPU power domain node from a non-cached CPU, 265 * after any required cache maintenance operation. 266 */ 267 static plat_local_state_t get_non_cpu_pd_node_local_state( 268 unsigned int parent_idx) 269 { 270 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 271 flush_dcache_range( 272 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 273 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 274 #endif 275 return psci_non_cpu_pd_nodes[parent_idx].local_state; 276 } 277 278 /* 279 * Update local state of non-CPU power domain node from a cached CPU; perform 280 * any required cache maintenance operation afterwards. 281 */ 282 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx, 283 plat_local_state_t state) 284 { 285 psci_non_cpu_pd_nodes[parent_idx].local_state = state; 286 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 287 flush_dcache_range( 288 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 289 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 290 #endif 291 } 292 293 /****************************************************************************** 294 * Helper function to return the current local power state of each power domain 295 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This 296 * function will be called after a cpu is powered on to find the local state 297 * each power domain has emerged from. 298 *****************************************************************************/ 299 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl, 300 psci_power_state_t *target_state) 301 { 302 unsigned int parent_idx, lvl; 303 plat_local_state_t *pd_state = target_state->pwr_domain_state; 304 305 pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state(); 306 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; 307 308 /* Copy the local power state from node to state_info */ 309 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 310 pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx); 311 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 312 } 313 314 /* Set the the higher levels to RUN */ 315 for (; lvl <= PLAT_MAX_PWR_LVL; lvl++) 316 target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 317 } 318 319 /****************************************************************************** 320 * Helper function to set the target local power state that each power domain 321 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will 322 * enter. This function will be called after coordination of requested power 323 * states has been done for each power level. 324 *****************************************************************************/ 325 static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl, 326 const psci_power_state_t *target_state) 327 { 328 unsigned int parent_idx, lvl; 329 const plat_local_state_t *pd_state = target_state->pwr_domain_state; 330 331 psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]); 332 333 /* 334 * Need to flush as local_state might be accessed with Data Cache 335 * disabled during power on 336 */ 337 psci_flush_cpu_data(psci_svc_cpu_data.local_state); 338 339 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; 340 341 /* Copy the local_state from state_info */ 342 for (lvl = 1U; lvl <= end_pwrlvl; lvl++) { 343 set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]); 344 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 345 } 346 } 347 348 349 /******************************************************************************* 350 * PSCI helper function to get the parent nodes corresponding to a cpu_index. 351 ******************************************************************************/ 352 void psci_get_parent_pwr_domain_nodes(int cpu_idx, 353 unsigned int end_lvl, 354 unsigned int *node_index) 355 { 356 unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node; 357 unsigned int i; 358 unsigned int *node = node_index; 359 360 for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) { 361 *node = parent_node; 362 node++; 363 parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node; 364 } 365 } 366 367 /****************************************************************************** 368 * This function is invoked post CPU power up and initialization. It sets the 369 * affinity info state, target power state and requested power state for the 370 * current CPU and all its ancestor power domains to RUN. 371 *****************************************************************************/ 372 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl) 373 { 374 unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl; 375 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 376 377 /* Reset the local_state to RUN for the non cpu power domains. */ 378 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 379 set_non_cpu_pd_node_local_state(parent_idx, 380 PSCI_LOCAL_STATE_RUN); 381 psci_set_req_local_pwr_state(lvl, 382 cpu_idx, 383 PSCI_LOCAL_STATE_RUN); 384 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 385 } 386 387 /* Set the affinity info state to ON */ 388 psci_set_aff_info_state(AFF_STATE_ON); 389 390 psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN); 391 psci_flush_cpu_data(psci_svc_cpu_data); 392 } 393 394 /****************************************************************************** 395 * This function is passed the local power states requested for each power 396 * domain (state_info) between the current CPU domain and its ancestors until 397 * the target power level (end_pwrlvl). It updates the array of requested power 398 * states with this information. 399 * 400 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it 401 * retrieves the states requested by all the cpus of which the power domain at 402 * that level is an ancestor. It passes this information to the platform to 403 * coordinate and return the target power state. If the target state for a level 404 * is RUN then subsequent levels are not considered. At the CPU level, state 405 * coordination is not required. Hence, the requested and the target states are 406 * the same. 407 * 408 * The 'state_info' is updated with the target state for each level between the 409 * CPU and the 'end_pwrlvl' and returned to the caller. 410 * 411 * This function will only be invoked with data cache enabled and while 412 * powering down a core. 413 *****************************************************************************/ 414 void psci_do_state_coordination(unsigned int end_pwrlvl, 415 psci_power_state_t *state_info) 416 { 417 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos(); 418 int start_idx; 419 unsigned int ncpus; 420 plat_local_state_t target_state, *req_states; 421 422 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); 423 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 424 425 /* For level 0, the requested state will be equivalent 426 to target state */ 427 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 428 429 /* First update the requested power state */ 430 psci_set_req_local_pwr_state(lvl, cpu_idx, 431 state_info->pwr_domain_state[lvl]); 432 433 /* Get the requested power states for this power level */ 434 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 435 req_states = psci_get_req_local_pwr_states(lvl, start_idx); 436 437 /* 438 * Let the platform coordinate amongst the requested states at 439 * this power level and return the target local power state. 440 */ 441 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 442 target_state = plat_get_target_pwr_state(lvl, 443 req_states, 444 ncpus); 445 446 state_info->pwr_domain_state[lvl] = target_state; 447 448 /* Break early if the negotiated target power state is RUN */ 449 if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0) 450 break; 451 452 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 453 } 454 455 /* 456 * This is for cases when we break out of the above loop early because 457 * the target power state is RUN at a power level < end_pwlvl. 458 * We update the requested power state from state_info and then 459 * set the target state as RUN. 460 */ 461 for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) { 462 psci_set_req_local_pwr_state(lvl, cpu_idx, 463 state_info->pwr_domain_state[lvl]); 464 state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 465 466 } 467 468 /* Update the target state in the power domain nodes */ 469 psci_set_target_local_pwr_states(end_pwrlvl, state_info); 470 } 471 472 /****************************************************************************** 473 * This function validates a suspend request by making sure that if a standby 474 * state is requested then no power level is turned off and the highest power 475 * level is placed in a standby/retention state. 476 * 477 * It also ensures that the state level X will enter is not shallower than the 478 * state level X + 1 will enter. 479 * 480 * This validation will be enabled only for DEBUG builds as the platform is 481 * expected to perform these validations as well. 482 *****************************************************************************/ 483 int psci_validate_suspend_req(const psci_power_state_t *state_info, 484 unsigned int is_power_down_state) 485 { 486 unsigned int max_off_lvl, target_lvl, max_retn_lvl; 487 plat_local_state_t state; 488 plat_local_state_type_t req_state_type, deepest_state_type; 489 int i; 490 491 /* Find the target suspend power level */ 492 target_lvl = psci_find_target_suspend_lvl(state_info); 493 if (target_lvl == PSCI_INVALID_PWR_LVL) 494 return PSCI_E_INVALID_PARAMS; 495 496 /* All power domain levels are in a RUN state to begin with */ 497 deepest_state_type = STATE_TYPE_RUN; 498 499 for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) { 500 state = state_info->pwr_domain_state[i]; 501 req_state_type = find_local_state_type(state); 502 503 /* 504 * While traversing from the highest power level to the lowest, 505 * the state requested for lower levels has to be the same or 506 * deeper i.e. equal to or greater than the state at the higher 507 * levels. If this condition is true, then the requested state 508 * becomes the deepest state encountered so far. 509 */ 510 if (req_state_type < deepest_state_type) 511 return PSCI_E_INVALID_PARAMS; 512 deepest_state_type = req_state_type; 513 } 514 515 /* Find the highest off power level */ 516 max_off_lvl = psci_find_max_off_lvl(state_info); 517 518 /* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */ 519 max_retn_lvl = PSCI_INVALID_PWR_LVL; 520 if (target_lvl != max_off_lvl) 521 max_retn_lvl = target_lvl; 522 523 /* 524 * If this is not a request for a power down state then max off level 525 * has to be invalid and max retention level has to be a valid power 526 * level. 527 */ 528 if ((is_power_down_state == 0U) && 529 ((max_off_lvl != PSCI_INVALID_PWR_LVL) || 530 (max_retn_lvl == PSCI_INVALID_PWR_LVL))) 531 return PSCI_E_INVALID_PARAMS; 532 533 return PSCI_E_SUCCESS; 534 } 535 536 /****************************************************************************** 537 * This function finds the highest power level which will be powered down 538 * amongst all the power levels specified in the 'state_info' structure 539 *****************************************************************************/ 540 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info) 541 { 542 int i; 543 544 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 545 if (is_local_state_off(state_info->pwr_domain_state[i]) != 0) 546 return (unsigned int) i; 547 } 548 549 return PSCI_INVALID_PWR_LVL; 550 } 551 552 /****************************************************************************** 553 * This functions finds the level of the highest power domain which will be 554 * placed in a low power state during a suspend operation. 555 *****************************************************************************/ 556 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info) 557 { 558 int i; 559 560 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 561 if (is_local_state_run(state_info->pwr_domain_state[i]) == 0) 562 return (unsigned int) i; 563 } 564 565 return PSCI_INVALID_PWR_LVL; 566 } 567 568 /******************************************************************************* 569 * This function is passed a cpu_index and the highest level in the topology 570 * tree that the operation should be applied to. It picks up locks in order of 571 * increasing power domain level in the range specified. 572 ******************************************************************************/ 573 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl, int cpu_idx) 574 { 575 unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 576 unsigned int level; 577 578 /* No locking required for level 0. Hence start locking from level 1 */ 579 for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) { 580 psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]); 581 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 582 } 583 } 584 585 /******************************************************************************* 586 * This function is passed a cpu_index and the highest level in the topology 587 * tree that the operation should be applied to. It releases the locks in order 588 * of decreasing power domain level in the range specified. 589 ******************************************************************************/ 590 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl, int cpu_idx) 591 { 592 unsigned int parent_idx, parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 593 unsigned int level; 594 595 /* Get the parent nodes */ 596 psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes); 597 598 /* Unlock top down. No unlocking required for level 0. */ 599 for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1U; level--) { 600 parent_idx = parent_nodes[level - 1U]; 601 psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]); 602 } 603 } 604 605 /******************************************************************************* 606 * Simple routine to determine whether a mpidr is valid or not. 607 ******************************************************************************/ 608 int psci_validate_mpidr(u_register_t mpidr) 609 { 610 if (plat_core_pos_by_mpidr(mpidr) < 0) 611 return PSCI_E_INVALID_PARAMS; 612 613 return PSCI_E_SUCCESS; 614 } 615 616 /******************************************************************************* 617 * This function determines the full entrypoint information for the requested 618 * PSCI entrypoint on power on/resume and returns it. 619 ******************************************************************************/ 620 #ifdef AARCH32 621 static int psci_get_ns_ep_info(entry_point_info_t *ep, 622 uintptr_t entrypoint, 623 u_register_t context_id) 624 { 625 u_register_t ep_attr; 626 unsigned int aif, ee, mode; 627 u_register_t scr = read_scr(); 628 u_register_t ns_sctlr, sctlr; 629 630 /* Switch to non secure state */ 631 write_scr(scr | SCR_NS_BIT); 632 isb(); 633 ns_sctlr = read_sctlr(); 634 635 sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr; 636 637 /* Return to original state */ 638 write_scr(scr); 639 isb(); 640 ee = 0; 641 642 ep_attr = NON_SECURE | EP_ST_DISABLE; 643 if (sctlr & SCTLR_EE_BIT) { 644 ep_attr |= EP_EE_BIG; 645 ee = 1; 646 } 647 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 648 649 ep->pc = entrypoint; 650 zeromem(&ep->args, sizeof(ep->args)); 651 ep->args.arg0 = context_id; 652 653 mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc; 654 655 /* 656 * TODO: Choose async. exception bits if HYP mode is not 657 * implemented according to the values of SCR.{AW, FW} bits 658 */ 659 aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT; 660 661 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif); 662 663 return PSCI_E_SUCCESS; 664 } 665 666 #else 667 static int psci_get_ns_ep_info(entry_point_info_t *ep, 668 uintptr_t entrypoint, 669 u_register_t context_id) 670 { 671 u_register_t ep_attr, sctlr; 672 unsigned int daif, ee, mode; 673 u_register_t ns_scr_el3 = read_scr_el3(); 674 u_register_t ns_sctlr_el1 = read_sctlr_el1(); 675 676 sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 677 read_sctlr_el2() : ns_sctlr_el1; 678 ee = 0; 679 680 ep_attr = NON_SECURE | EP_ST_DISABLE; 681 if ((sctlr & SCTLR_EE_BIT) != 0U) { 682 ep_attr |= EP_EE_BIG; 683 ee = 1; 684 } 685 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 686 687 ep->pc = entrypoint; 688 zeromem(&ep->args, sizeof(ep->args)); 689 ep->args.arg0 = context_id; 690 691 /* 692 * Figure out whether the cpu enters the non-secure address space 693 * in aarch32 or aarch64 694 */ 695 if ((ns_scr_el3 & SCR_RW_BIT) != 0U) { 696 697 /* 698 * Check whether a Thumb entry point has been provided for an 699 * aarch64 EL 700 */ 701 if ((entrypoint & 0x1UL) != 0UL) 702 return PSCI_E_INVALID_ADDRESS; 703 704 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1; 705 706 ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); 707 } else { 708 709 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 710 MODE32_hyp : MODE32_svc; 711 712 /* 713 * TODO: Choose async. exception bits if HYP mode is not 714 * implemented according to the values of SCR.{AW, FW} bits 715 */ 716 daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT; 717 718 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif); 719 } 720 721 return PSCI_E_SUCCESS; 722 } 723 #endif 724 725 /******************************************************************************* 726 * This function validates the entrypoint with the platform layer if the 727 * appropriate pm_ops hook is exported by the platform and returns the 728 * 'entry_point_info'. 729 ******************************************************************************/ 730 int psci_validate_entry_point(entry_point_info_t *ep, 731 uintptr_t entrypoint, 732 u_register_t context_id) 733 { 734 int rc; 735 736 /* Validate the entrypoint using platform psci_ops */ 737 if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) { 738 rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint); 739 if (rc != PSCI_E_SUCCESS) 740 return PSCI_E_INVALID_ADDRESS; 741 } 742 743 /* 744 * Verify and derive the re-entry information for 745 * the non-secure world from the non-secure state from 746 * where this call originated. 747 */ 748 rc = psci_get_ns_ep_info(ep, entrypoint, context_id); 749 return rc; 750 } 751 752 /******************************************************************************* 753 * Generic handler which is called when a cpu is physically powered on. It 754 * traverses the node information and finds the highest power level powered 755 * off and performs generic, architectural, platform setup and state management 756 * to power on that power level and power levels below it. 757 * e.g. For a cpu that's been powered on, it will call the platform specific 758 * code to enable the gic cpu interface and for a cluster it will enable 759 * coherency at the interconnect level in addition to gic cpu interface. 760 ******************************************************************************/ 761 void psci_warmboot_entrypoint(void) 762 { 763 unsigned int end_pwrlvl; 764 int cpu_idx = (int) plat_my_core_pos(); 765 psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} }; 766 767 /* 768 * Verify that we have been explicitly turned ON or resumed from 769 * suspend. 770 */ 771 if (psci_get_aff_info_state() == AFF_STATE_OFF) { 772 ERROR("Unexpected affinity info state"); 773 panic(); 774 } 775 776 /* 777 * Get the maximum power domain level to traverse to after this cpu 778 * has been physically powered up. 779 */ 780 end_pwrlvl = get_power_on_target_pwrlvl(); 781 782 /* 783 * This function acquires the lock corresponding to each power level so 784 * that by the time all locks are taken, the system topology is snapshot 785 * and state management can be done safely. 786 */ 787 psci_acquire_pwr_domain_locks(end_pwrlvl, cpu_idx); 788 789 psci_get_target_local_pwr_states(end_pwrlvl, &state_info); 790 791 #if ENABLE_PSCI_STAT 792 plat_psci_stat_accounting_stop(&state_info); 793 #endif 794 795 /* 796 * This CPU could be resuming from suspend or it could have just been 797 * turned on. To distinguish between these 2 cases, we examine the 798 * affinity state of the CPU: 799 * - If the affinity state is ON_PENDING then it has just been 800 * turned on. 801 * - Else it is resuming from suspend. 802 * 803 * Depending on the type of warm reset identified, choose the right set 804 * of power management handler and perform the generic, architecture 805 * and platform specific handling. 806 */ 807 if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING) 808 psci_cpu_on_finish(cpu_idx, &state_info); 809 else 810 psci_cpu_suspend_finish(cpu_idx, &state_info); 811 812 /* 813 * Set the requested and target state of this CPU and all the higher 814 * power domains which are ancestors of this CPU to run. 815 */ 816 psci_set_pwr_domains_to_run(end_pwrlvl); 817 818 #if ENABLE_PSCI_STAT 819 /* 820 * Update PSCI stats. 821 * Caches are off when writing stats data on the power down path. 822 * Since caches are now enabled, it's necessary to do cache 823 * maintenance before reading that same data. 824 */ 825 psci_stats_update_pwr_up(end_pwrlvl, &state_info); 826 #endif 827 828 /* 829 * This loop releases the lock corresponding to each power level 830 * in the reverse order to which they were acquired. 831 */ 832 psci_release_pwr_domain_locks(end_pwrlvl, cpu_idx); 833 } 834 835 /******************************************************************************* 836 * This function initializes the set of hooks that PSCI invokes as part of power 837 * management operation. The power management hooks are expected to be provided 838 * by the SPD, after it finishes all its initialization 839 ******************************************************************************/ 840 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm) 841 { 842 assert(pm != NULL); 843 psci_spd_pm = pm; 844 845 if (pm->svc_migrate != NULL) 846 psci_caps |= define_psci_cap(PSCI_MIG_AARCH64); 847 848 if (pm->svc_migrate_info != NULL) 849 psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64) 850 | define_psci_cap(PSCI_MIG_INFO_TYPE); 851 } 852 853 /******************************************************************************* 854 * This function invokes the migrate info hook in the spd_pm_ops. It performs 855 * the necessary return value validation. If the Secure Payload is UP and 856 * migrate capable, it returns the mpidr of the CPU on which the Secure payload 857 * is resident through the mpidr parameter. Else the value of the parameter on 858 * return is undefined. 859 ******************************************************************************/ 860 int psci_spd_migrate_info(u_register_t *mpidr) 861 { 862 int rc; 863 864 if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL)) 865 return PSCI_E_NOT_SUPPORTED; 866 867 rc = psci_spd_pm->svc_migrate_info(mpidr); 868 869 assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) || 870 (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED)); 871 872 return rc; 873 } 874 875 876 /******************************************************************************* 877 * This function prints the state of all power domains present in the 878 * system 879 ******************************************************************************/ 880 void psci_print_power_domain_map(void) 881 { 882 #if LOG_LEVEL >= LOG_LEVEL_INFO 883 int idx; 884 plat_local_state_t state; 885 plat_local_state_type_t state_type; 886 887 /* This array maps to the PSCI_STATE_X definitions in psci.h */ 888 static const char * const psci_state_type_str[] = { 889 "ON", 890 "RETENTION", 891 "OFF", 892 }; 893 894 INFO("PSCI Power Domain Map:\n"); 895 for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - PLATFORM_CORE_COUNT); 896 idx++) { 897 state_type = find_local_state_type( 898 psci_non_cpu_pd_nodes[idx].local_state); 899 INFO(" Domain Node : Level %u, parent_node %d," 900 " State %s (0x%x)\n", 901 psci_non_cpu_pd_nodes[idx].level, 902 psci_non_cpu_pd_nodes[idx].parent_node, 903 psci_state_type_str[state_type], 904 psci_non_cpu_pd_nodes[idx].local_state); 905 } 906 907 for (idx = 0; idx < PLATFORM_CORE_COUNT; idx++) { 908 state = psci_get_cpu_local_state_by_idx(idx); 909 state_type = find_local_state_type(state); 910 INFO(" CPU Node : MPID 0x%llx, parent_node %d," 911 " State %s (0x%x)\n", 912 (unsigned long long)psci_cpu_pd_nodes[idx].mpidr, 913 psci_cpu_pd_nodes[idx].parent_node, 914 psci_state_type_str[state_type], 915 psci_get_cpu_local_state_by_idx(idx)); 916 } 917 #endif 918 } 919 920 /****************************************************************************** 921 * Return whether any secondaries were powered up with CPU_ON call. A CPU that 922 * have ever been powered up would have set its MPDIR value to something other 923 * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to 924 * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is 925 * meaningful only when called on the primary CPU during early boot. 926 *****************************************************************************/ 927 int psci_secondaries_brought_up(void) 928 { 929 unsigned int idx, n_valid = 0U; 930 931 for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) { 932 if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR) 933 n_valid++; 934 } 935 936 assert(n_valid > 0U); 937 938 return (n_valid > 1U) ? 1 : 0; 939 } 940 941 /******************************************************************************* 942 * Initiate power down sequence, by calling power down operations registered for 943 * this CPU. 944 ******************************************************************************/ 945 void psci_do_pwrdown_sequence(unsigned int power_level) 946 { 947 #if HW_ASSISTED_COHERENCY 948 /* 949 * With hardware-assisted coherency, the CPU drivers only initiate the 950 * power down sequence, without performing cache-maintenance operations 951 * in software. Data caches enabled both before and after this call. 952 */ 953 prepare_cpu_pwr_dwn(power_level); 954 #else 955 /* 956 * Without hardware-assisted coherency, the CPU drivers disable data 957 * caches, then perform cache-maintenance operations in software. 958 * 959 * This also calls prepare_cpu_pwr_dwn() to initiate power down 960 * sequence, but that function will return with data caches disabled. 961 * We must ensure that the stack memory is flushed out to memory before 962 * we start popping from it again. 963 */ 964 psci_do_pwrdown_cache_maintenance(power_level); 965 #endif 966 } 967