1 /* 2 * Copyright (c) 2013-2022, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 #include <string.h> 9 10 #include <arch.h> 11 #include <arch_helpers.h> 12 #include <common/bl_common.h> 13 #include <common/debug.h> 14 #include <context.h> 15 #include <drivers/delay_timer.h> 16 #include <lib/el3_runtime/context_mgmt.h> 17 #include <lib/utils.h> 18 #include <plat/common/platform.h> 19 20 #include "psci_private.h" 21 22 /* 23 * SPD power management operations, expected to be supplied by the registered 24 * SPD on successful SP initialization 25 */ 26 const spd_pm_ops_t *psci_spd_pm; 27 28 /* 29 * PSCI requested local power state map. This array is used to store the local 30 * power states requested by a CPU for power levels from level 1 to 31 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power 32 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a 33 * CPU are the same. 34 * 35 * During state coordination, the platform is passed an array containing the 36 * local states requested for a particular non cpu power domain by each cpu 37 * within the domain. 38 * 39 * TODO: Dense packing of the requested states will cause cache thrashing 40 * when multiple power domains write to it. If we allocate the requested 41 * states at each power level in a cache-line aligned per-domain memory, 42 * the cache thrashing can be avoided. 43 */ 44 static plat_local_state_t 45 psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT]; 46 47 unsigned int psci_plat_core_count; 48 49 /******************************************************************************* 50 * Arrays that hold the platform's power domain tree information for state 51 * management of power domains. 52 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain 53 * which is an ancestor of a CPU power domain. 54 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain 55 ******************************************************************************/ 56 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS] 57 #if USE_COHERENT_MEM 58 __section(".tzfw_coherent_mem") 59 #endif 60 ; 61 62 /* Lock for PSCI state coordination */ 63 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]); 64 65 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT]; 66 67 /******************************************************************************* 68 * Pointer to functions exported by the platform to complete power mgmt. ops 69 ******************************************************************************/ 70 const plat_psci_ops_t *psci_plat_pm_ops; 71 72 /****************************************************************************** 73 * Check that the maximum power level supported by the platform makes sense 74 *****************************************************************************/ 75 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) && 76 (PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL), 77 assert_platform_max_pwrlvl_check); 78 79 #if PSCI_OS_INIT_MODE 80 /******************************************************************************* 81 * The power state coordination mode used in CPU_SUSPEND. 82 * Defaults to platform-coordinated mode. 83 ******************************************************************************/ 84 suspend_mode_t psci_suspend_mode = PLAT_COORD; 85 #endif 86 87 /* 88 * The plat_local_state used by the platform is one of these types: RUN, 89 * RETENTION and OFF. The platform can define further sub-states for each type 90 * apart from RUN. This categorization is done to verify the sanity of the 91 * psci_power_state passed by the platform and to print debug information. The 92 * categorization is done on the basis of the following conditions: 93 * 94 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN. 95 * 96 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is 97 * STATE_TYPE_RETN. 98 * 99 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is 100 * STATE_TYPE_OFF. 101 */ 102 typedef enum plat_local_state_type { 103 STATE_TYPE_RUN = 0, 104 STATE_TYPE_RETN, 105 STATE_TYPE_OFF 106 } plat_local_state_type_t; 107 108 /* Function used to categorize plat_local_state. */ 109 static plat_local_state_type_t find_local_state_type(plat_local_state_t state) 110 { 111 if (state != 0U) { 112 if (state > PLAT_MAX_RET_STATE) { 113 return STATE_TYPE_OFF; 114 } else { 115 return STATE_TYPE_RETN; 116 } 117 } else { 118 return STATE_TYPE_RUN; 119 } 120 } 121 122 /****************************************************************************** 123 * Check that the maximum retention level supported by the platform is less 124 * than the maximum off level. 125 *****************************************************************************/ 126 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, 127 assert_platform_max_off_and_retn_state_check); 128 129 /****************************************************************************** 130 * This function ensures that the power state parameter in a CPU_SUSPEND request 131 * is valid. If so, it returns the requested states for each power level. 132 *****************************************************************************/ 133 int psci_validate_power_state(unsigned int power_state, 134 psci_power_state_t *state_info) 135 { 136 /* Check SBZ bits in power state are zero */ 137 if (psci_check_power_state(power_state) != 0U) 138 return PSCI_E_INVALID_PARAMS; 139 140 assert(psci_plat_pm_ops->validate_power_state != NULL); 141 142 /* Validate the power_state using platform pm_ops */ 143 return psci_plat_pm_ops->validate_power_state(power_state, state_info); 144 } 145 146 /****************************************************************************** 147 * This function retrieves the `psci_power_state_t` for system suspend from 148 * the platform. 149 *****************************************************************************/ 150 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info) 151 { 152 /* 153 * Assert that the required pm_ops hook is implemented to ensure that 154 * the capability detected during psci_setup() is valid. 155 */ 156 assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL); 157 158 /* 159 * Query the platform for the power_state required for system suspend 160 */ 161 psci_plat_pm_ops->get_sys_suspend_power_state(state_info); 162 } 163 164 #if PSCI_OS_INIT_MODE 165 /******************************************************************************* 166 * This function verifies that all the other cores at the 'end_pwrlvl' have been 167 * idled and the current CPU is the last running CPU at the 'end_pwrlvl'. 168 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false) 169 * otherwise. 170 ******************************************************************************/ 171 static bool psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int end_pwrlvl) 172 { 173 unsigned int my_idx, lvl, parent_idx; 174 unsigned int cpu_start_idx, ncpus, cpu_idx; 175 plat_local_state_t local_state; 176 177 if (end_pwrlvl == PSCI_CPU_PWR_LVL) { 178 return true; 179 } 180 181 my_idx = plat_my_core_pos(); 182 183 for (lvl = PSCI_CPU_PWR_LVL; lvl <= end_pwrlvl; lvl++) { 184 parent_idx = psci_cpu_pd_nodes[my_idx].parent_node; 185 } 186 187 cpu_start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 188 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 189 190 for (cpu_idx = cpu_start_idx; cpu_idx < cpu_start_idx + ncpus; 191 cpu_idx++) { 192 local_state = psci_get_cpu_local_state_by_idx(cpu_idx); 193 if (cpu_idx == my_idx) { 194 assert(is_local_state_run(local_state) != 0); 195 continue; 196 } 197 198 if (is_local_state_run(local_state) != 0) { 199 return false; 200 } 201 } 202 203 return true; 204 } 205 #endif 206 207 /******************************************************************************* 208 * This function verifies that all the other cores in the system have been 209 * turned OFF and the current CPU is the last running CPU in the system. 210 * Returns true, if the current CPU is the last ON CPU or false otherwise. 211 ******************************************************************************/ 212 bool psci_is_last_on_cpu(void) 213 { 214 unsigned int cpu_idx, my_idx = plat_my_core_pos(); 215 216 for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) { 217 if (cpu_idx == my_idx) { 218 assert(psci_get_aff_info_state() == AFF_STATE_ON); 219 continue; 220 } 221 222 if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) { 223 VERBOSE("core=%u other than current core=%u %s\n", 224 cpu_idx, my_idx, "running in the system"); 225 return false; 226 } 227 } 228 229 return true; 230 } 231 232 /******************************************************************************* 233 * This function verifies that all cores in the system have been turned ON. 234 * Returns true, if all CPUs are ON or false otherwise. 235 ******************************************************************************/ 236 static bool psci_are_all_cpus_on(void) 237 { 238 unsigned int cpu_idx; 239 240 for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) { 241 if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_OFF) { 242 return false; 243 } 244 } 245 246 return true; 247 } 248 249 /******************************************************************************* 250 * Routine to return the maximum power level to traverse to after a cpu has 251 * been physically powered up. It is expected to be called immediately after 252 * reset from assembler code. 253 ******************************************************************************/ 254 static unsigned int get_power_on_target_pwrlvl(void) 255 { 256 unsigned int pwrlvl; 257 258 /* 259 * Assume that this cpu was suspended and retrieve its target power 260 * level. If it is invalid then it could only have been turned off 261 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a 262 * cpu can be turned off to. 263 */ 264 pwrlvl = psci_get_suspend_pwrlvl(); 265 if (pwrlvl == PSCI_INVALID_PWR_LVL) 266 pwrlvl = PLAT_MAX_PWR_LVL; 267 assert(pwrlvl < PSCI_INVALID_PWR_LVL); 268 return pwrlvl; 269 } 270 271 /****************************************************************************** 272 * Helper function to update the requested local power state array. This array 273 * does not store the requested state for the CPU power level. Hence an 274 * assertion is added to prevent us from accessing the CPU power level. 275 *****************************************************************************/ 276 static void psci_set_req_local_pwr_state(unsigned int pwrlvl, 277 unsigned int cpu_idx, 278 plat_local_state_t req_pwr_state) 279 { 280 assert(pwrlvl > PSCI_CPU_PWR_LVL); 281 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && 282 (cpu_idx < psci_plat_core_count)) { 283 psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state; 284 } 285 } 286 287 /****************************************************************************** 288 * This function initializes the psci_req_local_pwr_states. 289 *****************************************************************************/ 290 void __init psci_init_req_local_pwr_states(void) 291 { 292 /* Initialize the requested state of all non CPU power domains as OFF */ 293 unsigned int pwrlvl; 294 unsigned int core; 295 296 for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) { 297 for (core = 0; core < psci_plat_core_count; core++) { 298 psci_req_local_pwr_states[pwrlvl][core] = 299 PLAT_MAX_OFF_STATE; 300 } 301 } 302 } 303 304 /****************************************************************************** 305 * Helper function to return a reference to an array containing the local power 306 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the 307 * array will be the number of cpu power domains of which this power domain is 308 * an ancestor. These requested states will be used to determine a suitable 309 * target state for this power domain during psci state coordination. An 310 * assertion is added to prevent us from accessing the CPU power level. 311 *****************************************************************************/ 312 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl, 313 unsigned int cpu_idx) 314 { 315 assert(pwrlvl > PSCI_CPU_PWR_LVL); 316 317 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && 318 (cpu_idx < psci_plat_core_count)) { 319 return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx]; 320 } else 321 return NULL; 322 } 323 324 #if PSCI_OS_INIT_MODE 325 /****************************************************************************** 326 * Helper function to save a copy of the psci_req_local_pwr_states (prev) for a 327 * CPU (cpu_idx), and update psci_req_local_pwr_states with the new requested 328 * local power states (state_info). 329 *****************************************************************************/ 330 void psci_update_req_local_pwr_states(unsigned int end_pwrlvl, 331 unsigned int cpu_idx, 332 psci_power_state_t *state_info, 333 plat_local_state_t *prev) 334 { 335 unsigned int lvl; 336 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL 337 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL; 338 #else 339 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL; 340 #endif 341 plat_local_state_t req_state; 342 343 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) { 344 /* Save the previous requested local power state */ 345 prev[lvl - 1U] = *psci_get_req_local_pwr_states(lvl, cpu_idx); 346 347 /* Update the new requested local power state */ 348 if (lvl <= end_pwrlvl) { 349 req_state = state_info->pwr_domain_state[lvl]; 350 } else { 351 req_state = state_info->pwr_domain_state[end_pwrlvl]; 352 } 353 psci_set_req_local_pwr_state(lvl, cpu_idx, req_state); 354 } 355 } 356 357 /****************************************************************************** 358 * Helper function to restore the previously saved requested local power states 359 * (prev) for a CPU (cpu_idx) to psci_req_local_pwr_states. 360 *****************************************************************************/ 361 void psci_restore_req_local_pwr_states(unsigned int cpu_idx, 362 plat_local_state_t *prev) 363 { 364 unsigned int lvl; 365 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL 366 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL; 367 #else 368 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL; 369 #endif 370 371 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) { 372 /* Restore the previous requested local power state */ 373 psci_set_req_local_pwr_state(lvl, cpu_idx, prev[lvl - 1U]); 374 } 375 } 376 #endif 377 378 /* 379 * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent 380 * memory. 381 * 382 * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory, 383 * it's accessed by both cached and non-cached participants. To serve the common 384 * minimum, perform a cache flush before read and after write so that non-cached 385 * participants operate on latest data in main memory. 386 * 387 * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent 388 * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent. 389 * In both cases, no cache operations are required. 390 */ 391 392 /* 393 * Retrieve local state of non-CPU power domain node from a non-cached CPU, 394 * after any required cache maintenance operation. 395 */ 396 static plat_local_state_t get_non_cpu_pd_node_local_state( 397 unsigned int parent_idx) 398 { 399 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 400 flush_dcache_range( 401 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 402 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 403 #endif 404 return psci_non_cpu_pd_nodes[parent_idx].local_state; 405 } 406 407 /* 408 * Update local state of non-CPU power domain node from a cached CPU; perform 409 * any required cache maintenance operation afterwards. 410 */ 411 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx, 412 plat_local_state_t state) 413 { 414 psci_non_cpu_pd_nodes[parent_idx].local_state = state; 415 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 416 flush_dcache_range( 417 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 418 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 419 #endif 420 } 421 422 /****************************************************************************** 423 * Helper function to return the current local power state of each power domain 424 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This 425 * function will be called after a cpu is powered on to find the local state 426 * each power domain has emerged from. 427 *****************************************************************************/ 428 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl, 429 psci_power_state_t *target_state) 430 { 431 unsigned int parent_idx, lvl; 432 plat_local_state_t *pd_state = target_state->pwr_domain_state; 433 434 pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state(); 435 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; 436 437 /* Copy the local power state from node to state_info */ 438 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 439 pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx); 440 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 441 } 442 443 /* Set the the higher levels to RUN */ 444 for (; lvl <= PLAT_MAX_PWR_LVL; lvl++) 445 target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 446 } 447 448 /****************************************************************************** 449 * Helper function to set the target local power state that each power domain 450 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will 451 * enter. This function will be called after coordination of requested power 452 * states has been done for each power level. 453 *****************************************************************************/ 454 void psci_set_target_local_pwr_states(unsigned int end_pwrlvl, 455 const psci_power_state_t *target_state) 456 { 457 unsigned int parent_idx, lvl; 458 const plat_local_state_t *pd_state = target_state->pwr_domain_state; 459 460 psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]); 461 462 /* 463 * Need to flush as local_state might be accessed with Data Cache 464 * disabled during power on 465 */ 466 psci_flush_cpu_data(psci_svc_cpu_data.local_state); 467 468 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; 469 470 /* Copy the local_state from state_info */ 471 for (lvl = 1U; lvl <= end_pwrlvl; lvl++) { 472 set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]); 473 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 474 } 475 } 476 477 /******************************************************************************* 478 * PSCI helper function to get the parent nodes corresponding to a cpu_index. 479 ******************************************************************************/ 480 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx, 481 unsigned int end_lvl, 482 unsigned int *node_index) 483 { 484 unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node; 485 unsigned int i; 486 unsigned int *node = node_index; 487 488 for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) { 489 *node = parent_node; 490 node++; 491 parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node; 492 } 493 } 494 495 /****************************************************************************** 496 * This function is invoked post CPU power up and initialization. It sets the 497 * affinity info state, target power state and requested power state for the 498 * current CPU and all its ancestor power domains to RUN. 499 *****************************************************************************/ 500 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl) 501 { 502 unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl; 503 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 504 505 /* Reset the local_state to RUN for the non cpu power domains. */ 506 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 507 set_non_cpu_pd_node_local_state(parent_idx, 508 PSCI_LOCAL_STATE_RUN); 509 psci_set_req_local_pwr_state(lvl, 510 cpu_idx, 511 PSCI_LOCAL_STATE_RUN); 512 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 513 } 514 515 /* Set the affinity info state to ON */ 516 psci_set_aff_info_state(AFF_STATE_ON); 517 518 psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN); 519 psci_flush_cpu_data(psci_svc_cpu_data); 520 } 521 522 /****************************************************************************** 523 * This function is used in platform-coordinated mode. 524 * 525 * This function is passed the local power states requested for each power 526 * domain (state_info) between the current CPU domain and its ancestors until 527 * the target power level (end_pwrlvl). It updates the array of requested power 528 * states with this information. 529 * 530 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it 531 * retrieves the states requested by all the cpus of which the power domain at 532 * that level is an ancestor. It passes this information to the platform to 533 * coordinate and return the target power state. If the target state for a level 534 * is RUN then subsequent levels are not considered. At the CPU level, state 535 * coordination is not required. Hence, the requested and the target states are 536 * the same. 537 * 538 * The 'state_info' is updated with the target state for each level between the 539 * CPU and the 'end_pwrlvl' and returned to the caller. 540 * 541 * This function will only be invoked with data cache enabled and while 542 * powering down a core. 543 *****************************************************************************/ 544 void psci_do_state_coordination(unsigned int end_pwrlvl, 545 psci_power_state_t *state_info) 546 { 547 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos(); 548 unsigned int start_idx; 549 unsigned int ncpus; 550 plat_local_state_t target_state, *req_states; 551 552 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); 553 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 554 555 /* For level 0, the requested state will be equivalent 556 to target state */ 557 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 558 559 /* First update the requested power state */ 560 psci_set_req_local_pwr_state(lvl, cpu_idx, 561 state_info->pwr_domain_state[lvl]); 562 563 /* Get the requested power states for this power level */ 564 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 565 req_states = psci_get_req_local_pwr_states(lvl, start_idx); 566 567 /* 568 * Let the platform coordinate amongst the requested states at 569 * this power level and return the target local power state. 570 */ 571 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 572 target_state = plat_get_target_pwr_state(lvl, 573 req_states, 574 ncpus); 575 576 state_info->pwr_domain_state[lvl] = target_state; 577 578 /* Break early if the negotiated target power state is RUN */ 579 if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0) 580 break; 581 582 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 583 } 584 585 /* 586 * This is for cases when we break out of the above loop early because 587 * the target power state is RUN at a power level < end_pwlvl. 588 * We update the requested power state from state_info and then 589 * set the target state as RUN. 590 */ 591 for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) { 592 psci_set_req_local_pwr_state(lvl, cpu_idx, 593 state_info->pwr_domain_state[lvl]); 594 state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 595 596 } 597 } 598 599 #if PSCI_OS_INIT_MODE 600 /****************************************************************************** 601 * This function is used in OS-initiated mode. 602 * 603 * This function is passed the local power states requested for each power 604 * domain (state_info) between the current CPU domain and its ancestors until 605 * the target power level (end_pwrlvl), and ensures the requested power states 606 * are valid. It updates the array of requested power states with this 607 * information. 608 * 609 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it 610 * retrieves the states requested by all the cpus of which the power domain at 611 * that level is an ancestor. It passes this information to the platform to 612 * coordinate and return the target power state. If the requested state does 613 * not match the target state, the request is denied. 614 * 615 * The 'state_info' is not modified. 616 * 617 * This function will only be invoked with data cache enabled and while 618 * powering down a core. 619 *****************************************************************************/ 620 int psci_validate_state_coordination(unsigned int end_pwrlvl, 621 psci_power_state_t *state_info) 622 { 623 int rc = PSCI_E_SUCCESS; 624 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos(); 625 unsigned int start_idx; 626 unsigned int ncpus; 627 plat_local_state_t target_state, *req_states; 628 plat_local_state_t prev[PLAT_MAX_PWR_LVL]; 629 630 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); 631 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 632 633 /* 634 * Save a copy of the previous requested local power states and update 635 * the new requested local power states. 636 */ 637 psci_update_req_local_pwr_states(end_pwrlvl, cpu_idx, state_info, prev); 638 639 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 640 /* Get the requested power states for this power level */ 641 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 642 req_states = psci_get_req_local_pwr_states(lvl, start_idx); 643 644 /* 645 * Let the platform coordinate amongst the requested states at 646 * this power level and return the target local power state. 647 */ 648 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 649 target_state = plat_get_target_pwr_state(lvl, 650 req_states, 651 ncpus); 652 653 /* 654 * Verify that the requested power state matches the target 655 * local power state. 656 */ 657 if (state_info->pwr_domain_state[lvl] != target_state) { 658 if (target_state == PSCI_LOCAL_STATE_RUN) { 659 rc = PSCI_E_DENIED; 660 } else { 661 rc = PSCI_E_INVALID_PARAMS; 662 } 663 goto exit; 664 } 665 } 666 667 /* 668 * Verify that the current core is the last running core at the 669 * specified power level. 670 */ 671 lvl = state_info->last_at_pwrlvl; 672 if (!psci_is_last_cpu_to_idle_at_pwrlvl(lvl)) { 673 rc = PSCI_E_DENIED; 674 } 675 676 exit: 677 if (rc != PSCI_E_SUCCESS) { 678 /* Restore the previous requested local power states. */ 679 psci_restore_req_local_pwr_states(cpu_idx, prev); 680 return rc; 681 } 682 683 return rc; 684 } 685 #endif 686 687 /****************************************************************************** 688 * This function validates a suspend request by making sure that if a standby 689 * state is requested then no power level is turned off and the highest power 690 * level is placed in a standby/retention state. 691 * 692 * It also ensures that the state level X will enter is not shallower than the 693 * state level X + 1 will enter. 694 * 695 * This validation will be enabled only for DEBUG builds as the platform is 696 * expected to perform these validations as well. 697 *****************************************************************************/ 698 int psci_validate_suspend_req(const psci_power_state_t *state_info, 699 unsigned int is_power_down_state) 700 { 701 unsigned int max_off_lvl, target_lvl, max_retn_lvl; 702 plat_local_state_t state; 703 plat_local_state_type_t req_state_type, deepest_state_type; 704 int i; 705 706 /* Find the target suspend power level */ 707 target_lvl = psci_find_target_suspend_lvl(state_info); 708 if (target_lvl == PSCI_INVALID_PWR_LVL) 709 return PSCI_E_INVALID_PARAMS; 710 711 /* All power domain levels are in a RUN state to begin with */ 712 deepest_state_type = STATE_TYPE_RUN; 713 714 for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) { 715 state = state_info->pwr_domain_state[i]; 716 req_state_type = find_local_state_type(state); 717 718 /* 719 * While traversing from the highest power level to the lowest, 720 * the state requested for lower levels has to be the same or 721 * deeper i.e. equal to or greater than the state at the higher 722 * levels. If this condition is true, then the requested state 723 * becomes the deepest state encountered so far. 724 */ 725 if (req_state_type < deepest_state_type) 726 return PSCI_E_INVALID_PARAMS; 727 deepest_state_type = req_state_type; 728 } 729 730 /* Find the highest off power level */ 731 max_off_lvl = psci_find_max_off_lvl(state_info); 732 733 /* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */ 734 max_retn_lvl = PSCI_INVALID_PWR_LVL; 735 if (target_lvl != max_off_lvl) 736 max_retn_lvl = target_lvl; 737 738 /* 739 * If this is not a request for a power down state then max off level 740 * has to be invalid and max retention level has to be a valid power 741 * level. 742 */ 743 if ((is_power_down_state == 0U) && 744 ((max_off_lvl != PSCI_INVALID_PWR_LVL) || 745 (max_retn_lvl == PSCI_INVALID_PWR_LVL))) 746 return PSCI_E_INVALID_PARAMS; 747 748 return PSCI_E_SUCCESS; 749 } 750 751 /****************************************************************************** 752 * This function finds the highest power level which will be powered down 753 * amongst all the power levels specified in the 'state_info' structure 754 *****************************************************************************/ 755 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info) 756 { 757 int i; 758 759 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 760 if (is_local_state_off(state_info->pwr_domain_state[i]) != 0) 761 return (unsigned int) i; 762 } 763 764 return PSCI_INVALID_PWR_LVL; 765 } 766 767 /****************************************************************************** 768 * This functions finds the level of the highest power domain which will be 769 * placed in a low power state during a suspend operation. 770 *****************************************************************************/ 771 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info) 772 { 773 int i; 774 775 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 776 if (is_local_state_run(state_info->pwr_domain_state[i]) == 0) 777 return (unsigned int) i; 778 } 779 780 return PSCI_INVALID_PWR_LVL; 781 } 782 783 /******************************************************************************* 784 * This function is passed the highest level in the topology tree that the 785 * operation should be applied to and a list of node indexes. It picks up locks 786 * from the node index list in order of increasing power domain level in the 787 * range specified. 788 ******************************************************************************/ 789 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl, 790 const unsigned int *parent_nodes) 791 { 792 unsigned int parent_idx; 793 unsigned int level; 794 795 /* No locking required for level 0. Hence start locking from level 1 */ 796 for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) { 797 parent_idx = parent_nodes[level - 1U]; 798 psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]); 799 } 800 } 801 802 /******************************************************************************* 803 * This function is passed the highest level in the topology tree that the 804 * operation should be applied to and a list of node indexes. It releases the 805 * locks in order of decreasing power domain level in the range specified. 806 ******************************************************************************/ 807 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl, 808 const unsigned int *parent_nodes) 809 { 810 unsigned int parent_idx; 811 unsigned int level; 812 813 /* Unlock top down. No unlocking required for level 0. */ 814 for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) { 815 parent_idx = parent_nodes[level - 1U]; 816 psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]); 817 } 818 } 819 820 /******************************************************************************* 821 * Simple routine to determine whether a mpidr is valid or not. 822 ******************************************************************************/ 823 int psci_validate_mpidr(u_register_t mpidr) 824 { 825 int pos = plat_core_pos_by_mpidr(mpidr); 826 827 if ((pos < 0) || ((unsigned int)pos >= PLATFORM_CORE_COUNT)) { 828 return PSCI_E_INVALID_PARAMS; 829 } 830 831 return PSCI_E_SUCCESS; 832 } 833 834 /******************************************************************************* 835 * This function determines the full entrypoint information for the requested 836 * PSCI entrypoint on power on/resume and returns it. 837 ******************************************************************************/ 838 #ifdef __aarch64__ 839 static int psci_get_ns_ep_info(entry_point_info_t *ep, 840 uintptr_t entrypoint, 841 u_register_t context_id) 842 { 843 u_register_t ep_attr, sctlr; 844 unsigned int daif, ee, mode; 845 u_register_t ns_scr_el3 = read_scr_el3(); 846 u_register_t ns_sctlr_el1 = read_sctlr_el1(); 847 848 sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 849 read_sctlr_el2() : ns_sctlr_el1; 850 ee = 0; 851 852 ep_attr = NON_SECURE | EP_ST_DISABLE; 853 if ((sctlr & SCTLR_EE_BIT) != 0U) { 854 ep_attr |= EP_EE_BIG; 855 ee = 1; 856 } 857 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 858 859 ep->pc = entrypoint; 860 zeromem(&ep->args, sizeof(ep->args)); 861 ep->args.arg0 = context_id; 862 863 /* 864 * Figure out whether the cpu enters the non-secure address space 865 * in aarch32 or aarch64 866 */ 867 if ((ns_scr_el3 & SCR_RW_BIT) != 0U) { 868 869 /* 870 * Check whether a Thumb entry point has been provided for an 871 * aarch64 EL 872 */ 873 if ((entrypoint & 0x1UL) != 0UL) 874 return PSCI_E_INVALID_ADDRESS; 875 876 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1; 877 878 ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX, 879 DISABLE_ALL_EXCEPTIONS); 880 } else { 881 882 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 883 MODE32_hyp : MODE32_svc; 884 885 /* 886 * TODO: Choose async. exception bits if HYP mode is not 887 * implemented according to the values of SCR.{AW, FW} bits 888 */ 889 daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT; 890 891 ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee, 892 daif); 893 } 894 895 return PSCI_E_SUCCESS; 896 } 897 #else /* !__aarch64__ */ 898 static int psci_get_ns_ep_info(entry_point_info_t *ep, 899 uintptr_t entrypoint, 900 u_register_t context_id) 901 { 902 u_register_t ep_attr; 903 unsigned int aif, ee, mode; 904 u_register_t scr = read_scr(); 905 u_register_t ns_sctlr, sctlr; 906 907 /* Switch to non secure state */ 908 write_scr(scr | SCR_NS_BIT); 909 isb(); 910 ns_sctlr = read_sctlr(); 911 912 sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr; 913 914 /* Return to original state */ 915 write_scr(scr); 916 isb(); 917 ee = 0; 918 919 ep_attr = NON_SECURE | EP_ST_DISABLE; 920 if (sctlr & SCTLR_EE_BIT) { 921 ep_attr |= EP_EE_BIG; 922 ee = 1; 923 } 924 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 925 926 ep->pc = entrypoint; 927 zeromem(&ep->args, sizeof(ep->args)); 928 ep->args.arg0 = context_id; 929 930 mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc; 931 932 /* 933 * TODO: Choose async. exception bits if HYP mode is not 934 * implemented according to the values of SCR.{AW, FW} bits 935 */ 936 aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT; 937 938 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif); 939 940 return PSCI_E_SUCCESS; 941 } 942 943 #endif /* __aarch64__ */ 944 945 /******************************************************************************* 946 * This function validates the entrypoint with the platform layer if the 947 * appropriate pm_ops hook is exported by the platform and returns the 948 * 'entry_point_info'. 949 ******************************************************************************/ 950 int psci_validate_entry_point(entry_point_info_t *ep, 951 uintptr_t entrypoint, 952 u_register_t context_id) 953 { 954 int rc; 955 956 /* Validate the entrypoint using platform psci_ops */ 957 if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) { 958 rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint); 959 if (rc != PSCI_E_SUCCESS) 960 return PSCI_E_INVALID_ADDRESS; 961 } 962 963 /* 964 * Verify and derive the re-entry information for 965 * the non-secure world from the non-secure state from 966 * where this call originated. 967 */ 968 rc = psci_get_ns_ep_info(ep, entrypoint, context_id); 969 return rc; 970 } 971 972 /******************************************************************************* 973 * Generic handler which is called when a cpu is physically powered on. It 974 * traverses the node information and finds the highest power level powered 975 * off and performs generic, architectural, platform setup and state management 976 * to power on that power level and power levels below it. 977 * e.g. For a cpu that's been powered on, it will call the platform specific 978 * code to enable the gic cpu interface and for a cluster it will enable 979 * coherency at the interconnect level in addition to gic cpu interface. 980 ******************************************************************************/ 981 void psci_warmboot_entrypoint(void) 982 { 983 unsigned int end_pwrlvl; 984 unsigned int cpu_idx = plat_my_core_pos(); 985 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 986 psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} }; 987 988 /* 989 * Verify that we have been explicitly turned ON or resumed from 990 * suspend. 991 */ 992 if (psci_get_aff_info_state() == AFF_STATE_OFF) { 993 ERROR("Unexpected affinity info state.\n"); 994 panic(); 995 } 996 997 /* 998 * Get the maximum power domain level to traverse to after this cpu 999 * has been physically powered up. 1000 */ 1001 end_pwrlvl = get_power_on_target_pwrlvl(); 1002 1003 /* Get the parent nodes */ 1004 psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes); 1005 1006 /* 1007 * This function acquires the lock corresponding to each power level so 1008 * that by the time all locks are taken, the system topology is snapshot 1009 * and state management can be done safely. 1010 */ 1011 psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes); 1012 1013 psci_get_target_local_pwr_states(end_pwrlvl, &state_info); 1014 1015 #if ENABLE_PSCI_STAT 1016 plat_psci_stat_accounting_stop(&state_info); 1017 #endif 1018 1019 /* 1020 * This CPU could be resuming from suspend or it could have just been 1021 * turned on. To distinguish between these 2 cases, we examine the 1022 * affinity state of the CPU: 1023 * - If the affinity state is ON_PENDING then it has just been 1024 * turned on. 1025 * - Else it is resuming from suspend. 1026 * 1027 * Depending on the type of warm reset identified, choose the right set 1028 * of power management handler and perform the generic, architecture 1029 * and platform specific handling. 1030 */ 1031 if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING) 1032 psci_cpu_on_finish(cpu_idx, &state_info); 1033 else 1034 psci_cpu_suspend_finish(cpu_idx, &state_info); 1035 1036 /* 1037 * Set the requested and target state of this CPU and all the higher 1038 * power domains which are ancestors of this CPU to run. 1039 */ 1040 psci_set_pwr_domains_to_run(end_pwrlvl); 1041 1042 #if ENABLE_PSCI_STAT 1043 /* 1044 * Update PSCI stats. 1045 * Caches are off when writing stats data on the power down path. 1046 * Since caches are now enabled, it's necessary to do cache 1047 * maintenance before reading that same data. 1048 */ 1049 psci_stats_update_pwr_up(end_pwrlvl, &state_info); 1050 #endif 1051 1052 /* 1053 * This loop releases the lock corresponding to each power level 1054 * in the reverse order to which they were acquired. 1055 */ 1056 psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes); 1057 } 1058 1059 /******************************************************************************* 1060 * This function initializes the set of hooks that PSCI invokes as part of power 1061 * management operation. The power management hooks are expected to be provided 1062 * by the SPD, after it finishes all its initialization 1063 ******************************************************************************/ 1064 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm) 1065 { 1066 assert(pm != NULL); 1067 psci_spd_pm = pm; 1068 1069 if (pm->svc_migrate != NULL) 1070 psci_caps |= define_psci_cap(PSCI_MIG_AARCH64); 1071 1072 if (pm->svc_migrate_info != NULL) 1073 psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64) 1074 | define_psci_cap(PSCI_MIG_INFO_TYPE); 1075 } 1076 1077 /******************************************************************************* 1078 * This function invokes the migrate info hook in the spd_pm_ops. It performs 1079 * the necessary return value validation. If the Secure Payload is UP and 1080 * migrate capable, it returns the mpidr of the CPU on which the Secure payload 1081 * is resident through the mpidr parameter. Else the value of the parameter on 1082 * return is undefined. 1083 ******************************************************************************/ 1084 int psci_spd_migrate_info(u_register_t *mpidr) 1085 { 1086 int rc; 1087 1088 if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL)) 1089 return PSCI_E_NOT_SUPPORTED; 1090 1091 rc = psci_spd_pm->svc_migrate_info(mpidr); 1092 1093 assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) || 1094 (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED)); 1095 1096 return rc; 1097 } 1098 1099 1100 /******************************************************************************* 1101 * This function prints the state of all power domains present in the 1102 * system 1103 ******************************************************************************/ 1104 void psci_print_power_domain_map(void) 1105 { 1106 #if LOG_LEVEL >= LOG_LEVEL_INFO 1107 unsigned int idx; 1108 plat_local_state_t state; 1109 plat_local_state_type_t state_type; 1110 1111 /* This array maps to the PSCI_STATE_X definitions in psci.h */ 1112 static const char * const psci_state_type_str[] = { 1113 "ON", 1114 "RETENTION", 1115 "OFF", 1116 }; 1117 1118 INFO("PSCI Power Domain Map:\n"); 1119 for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count); 1120 idx++) { 1121 state_type = find_local_state_type( 1122 psci_non_cpu_pd_nodes[idx].local_state); 1123 INFO(" Domain Node : Level %u, parent_node %u," 1124 " State %s (0x%x)\n", 1125 psci_non_cpu_pd_nodes[idx].level, 1126 psci_non_cpu_pd_nodes[idx].parent_node, 1127 psci_state_type_str[state_type], 1128 psci_non_cpu_pd_nodes[idx].local_state); 1129 } 1130 1131 for (idx = 0; idx < psci_plat_core_count; idx++) { 1132 state = psci_get_cpu_local_state_by_idx(idx); 1133 state_type = find_local_state_type(state); 1134 INFO(" CPU Node : MPID 0x%llx, parent_node %u," 1135 " State %s (0x%x)\n", 1136 (unsigned long long)psci_cpu_pd_nodes[idx].mpidr, 1137 psci_cpu_pd_nodes[idx].parent_node, 1138 psci_state_type_str[state_type], 1139 psci_get_cpu_local_state_by_idx(idx)); 1140 } 1141 #endif 1142 } 1143 1144 /****************************************************************************** 1145 * Return whether any secondaries were powered up with CPU_ON call. A CPU that 1146 * have ever been powered up would have set its MPDIR value to something other 1147 * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to 1148 * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is 1149 * meaningful only when called on the primary CPU during early boot. 1150 *****************************************************************************/ 1151 int psci_secondaries_brought_up(void) 1152 { 1153 unsigned int idx, n_valid = 0U; 1154 1155 for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) { 1156 if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR) 1157 n_valid++; 1158 } 1159 1160 assert(n_valid > 0U); 1161 1162 return (n_valid > 1U) ? 1 : 0; 1163 } 1164 1165 /******************************************************************************* 1166 * Initiate power down sequence, by calling power down operations registered for 1167 * this CPU. 1168 ******************************************************************************/ 1169 void psci_pwrdown_cpu(unsigned int power_level) 1170 { 1171 #if HW_ASSISTED_COHERENCY 1172 /* 1173 * With hardware-assisted coherency, the CPU drivers only initiate the 1174 * power down sequence, without performing cache-maintenance operations 1175 * in software. Data caches enabled both before and after this call. 1176 */ 1177 prepare_cpu_pwr_dwn(power_level); 1178 #else 1179 /* 1180 * Without hardware-assisted coherency, the CPU drivers disable data 1181 * caches, then perform cache-maintenance operations in software. 1182 * 1183 * This also calls prepare_cpu_pwr_dwn() to initiate power down 1184 * sequence, but that function will return with data caches disabled. 1185 * We must ensure that the stack memory is flushed out to memory before 1186 * we start popping from it again. 1187 */ 1188 psci_do_pwrdown_cache_maintenance(power_level); 1189 #endif 1190 } 1191 1192 /******************************************************************************* 1193 * This function invokes the callback 'stop_func()' with the 'mpidr' of each 1194 * online PE. Caller can pass suitable method to stop a remote core. 1195 * 1196 * 'wait_ms' is the timeout value in milliseconds for the other cores to 1197 * transition to power down state. Passing '0' makes it non-blocking. 1198 * 1199 * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the 1200 * given timeout. 1201 ******************************************************************************/ 1202 int psci_stop_other_cores(unsigned int wait_ms, 1203 void (*stop_func)(u_register_t mpidr)) 1204 { 1205 unsigned int idx, this_cpu_idx; 1206 1207 this_cpu_idx = plat_my_core_pos(); 1208 1209 /* Invoke stop_func for each core */ 1210 for (idx = 0U; idx < psci_plat_core_count; idx++) { 1211 /* skip current CPU */ 1212 if (idx == this_cpu_idx) { 1213 continue; 1214 } 1215 1216 /* Check if the CPU is ON */ 1217 if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) { 1218 (*stop_func)(psci_cpu_pd_nodes[idx].mpidr); 1219 } 1220 } 1221 1222 /* Need to wait for other cores to shutdown */ 1223 if (wait_ms != 0U) { 1224 while ((wait_ms-- != 0U) && (!psci_is_last_on_cpu())) { 1225 mdelay(1U); 1226 } 1227 1228 if (!psci_is_last_on_cpu()) { 1229 WARN("Failed to stop all cores!\n"); 1230 psci_print_power_domain_map(); 1231 return PSCI_E_DENIED; 1232 } 1233 } 1234 1235 return PSCI_E_SUCCESS; 1236 } 1237 1238 /******************************************************************************* 1239 * This function verifies that all the other cores in the system have been 1240 * turned OFF and the current CPU is the last running CPU in the system. 1241 * Returns true if the current CPU is the last ON CPU or false otherwise. 1242 * 1243 * This API has following differences with psci_is_last_on_cpu 1244 * 1. PSCI states are locked 1245 ******************************************************************************/ 1246 bool psci_is_last_on_cpu_safe(void) 1247 { 1248 unsigned int this_core = plat_my_core_pos(); 1249 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 1250 1251 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes); 1252 1253 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1254 1255 if (!psci_is_last_on_cpu()) { 1256 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1257 return false; 1258 } 1259 1260 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1261 1262 return true; 1263 } 1264 1265 /******************************************************************************* 1266 * This function verifies that all cores in the system have been turned ON. 1267 * Returns true, if all CPUs are ON or false otherwise. 1268 * 1269 * This API has following differences with psci_are_all_cpus_on 1270 * 1. PSCI states are locked 1271 ******************************************************************************/ 1272 bool psci_are_all_cpus_on_safe(void) 1273 { 1274 unsigned int this_core = plat_my_core_pos(); 1275 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 1276 1277 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes); 1278 1279 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1280 1281 if (!psci_are_all_cpus_on()) { 1282 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1283 return false; 1284 } 1285 1286 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1287 1288 return true; 1289 } 1290