1 /* 2 * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 #include <string.h> 9 10 #include <arch.h> 11 #include <arch_features.h> 12 #include <arch_helpers.h> 13 #include <common/bl_common.h> 14 #include <common/debug.h> 15 #include <context.h> 16 #include <drivers/delay_timer.h> 17 #include <lib/el3_runtime/context_mgmt.h> 18 #include <lib/extensions/spe.h> 19 #include <lib/pmf/pmf.h> 20 #include <lib/runtime_instr.h> 21 #include <lib/utils.h> 22 #include <plat/common/platform.h> 23 24 #include "psci_private.h" 25 26 /* 27 * SPD power management operations, expected to be supplied by the registered 28 * SPD on successful SP initialization 29 */ 30 const spd_pm_ops_t *psci_spd_pm; 31 32 /* 33 * PSCI requested local power state map. This array is used to store the local 34 * power states requested by a CPU for power levels from level 1 to 35 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power 36 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a 37 * CPU are the same. 38 * 39 * During state coordination, the platform is passed an array containing the 40 * local states requested for a particular non cpu power domain by each cpu 41 * within the domain. 42 * 43 * TODO: Dense packing of the requested states will cause cache thrashing 44 * when multiple power domains write to it. If we allocate the requested 45 * states at each power level in a cache-line aligned per-domain memory, 46 * the cache thrashing can be avoided. 47 */ 48 static plat_local_state_t 49 psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT]; 50 51 unsigned int psci_plat_core_count; 52 53 /******************************************************************************* 54 * Arrays that hold the platform's power domain tree information for state 55 * management of power domains. 56 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain 57 * which is an ancestor of a CPU power domain. 58 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain 59 ******************************************************************************/ 60 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS] 61 #if USE_COHERENT_MEM 62 __section(".tzfw_coherent_mem") 63 #endif 64 ; 65 66 /* Lock for PSCI state coordination */ 67 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]); 68 69 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT]; 70 71 /******************************************************************************* 72 * Pointer to functions exported by the platform to complete power mgmt. ops 73 ******************************************************************************/ 74 const plat_psci_ops_t *psci_plat_pm_ops; 75 76 /****************************************************************************** 77 * Check that the maximum power level supported by the platform makes sense 78 *****************************************************************************/ 79 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) && 80 (PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL), 81 assert_platform_max_pwrlvl_check); 82 83 #if PSCI_OS_INIT_MODE 84 /******************************************************************************* 85 * The power state coordination mode used in CPU_SUSPEND. 86 * Defaults to platform-coordinated mode. 87 ******************************************************************************/ 88 suspend_mode_t psci_suspend_mode = PLAT_COORD; 89 #endif 90 91 /* 92 * The plat_local_state used by the platform is one of these types: RUN, 93 * RETENTION and OFF. The platform can define further sub-states for each type 94 * apart from RUN. This categorization is done to verify the sanity of the 95 * psci_power_state passed by the platform and to print debug information. The 96 * categorization is done on the basis of the following conditions: 97 * 98 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN. 99 * 100 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is 101 * STATE_TYPE_RETN. 102 * 103 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is 104 * STATE_TYPE_OFF. 105 */ 106 typedef enum plat_local_state_type { 107 STATE_TYPE_RUN = 0, 108 STATE_TYPE_RETN, 109 STATE_TYPE_OFF 110 } plat_local_state_type_t; 111 112 /* Function used to categorize plat_local_state. */ 113 static plat_local_state_type_t find_local_state_type(plat_local_state_t state) 114 { 115 if (state != 0U) { 116 if (state > PLAT_MAX_RET_STATE) { 117 return STATE_TYPE_OFF; 118 } else { 119 return STATE_TYPE_RETN; 120 } 121 } else { 122 return STATE_TYPE_RUN; 123 } 124 } 125 126 /****************************************************************************** 127 * Check that the maximum retention level supported by the platform is less 128 * than the maximum off level. 129 *****************************************************************************/ 130 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, 131 assert_platform_max_off_and_retn_state_check); 132 133 /****************************************************************************** 134 * This function ensures that the power state parameter in a CPU_SUSPEND request 135 * is valid. If so, it returns the requested states for each power level. 136 *****************************************************************************/ 137 int psci_validate_power_state(unsigned int power_state, 138 psci_power_state_t *state_info) 139 { 140 /* Check SBZ bits in power state are zero */ 141 if (psci_check_power_state(power_state) != 0U) { 142 return PSCI_E_INVALID_PARAMS; 143 } 144 assert(psci_plat_pm_ops->validate_power_state != NULL); 145 146 /* Validate the power_state using platform pm_ops */ 147 return psci_plat_pm_ops->validate_power_state(power_state, state_info); 148 } 149 150 /****************************************************************************** 151 * This function retrieves the `psci_power_state_t` for system suspend from 152 * the platform. 153 *****************************************************************************/ 154 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info) 155 { 156 /* 157 * Assert that the required pm_ops hook is implemented to ensure that 158 * the capability detected during psci_setup() is valid. 159 */ 160 assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL); 161 162 /* 163 * Query the platform for the power_state required for system suspend 164 */ 165 psci_plat_pm_ops->get_sys_suspend_power_state(state_info); 166 } 167 168 #if PSCI_OS_INIT_MODE 169 /******************************************************************************* 170 * This function verifies that all the other cores at the 'end_pwrlvl' have been 171 * idled and the current CPU is the last running CPU at the 'end_pwrlvl'. 172 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false) 173 * otherwise. 174 ******************************************************************************/ 175 static bool psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int my_idx, unsigned int end_pwrlvl) 176 { 177 unsigned int lvl; 178 unsigned int parent_idx = 0; 179 unsigned int cpu_start_idx, ncpus, cpu_idx; 180 plat_local_state_t local_state; 181 182 if (end_pwrlvl == PSCI_CPU_PWR_LVL) { 183 return true; 184 } 185 186 parent_idx = psci_cpu_pd_nodes[my_idx].parent_node; 187 for (lvl = PSCI_CPU_PWR_LVL + U(1); lvl < end_pwrlvl; lvl++) { 188 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 189 } 190 191 cpu_start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 192 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 193 194 for (cpu_idx = cpu_start_idx; cpu_idx < cpu_start_idx + ncpus; 195 cpu_idx++) { 196 local_state = psci_get_cpu_local_state_by_idx(cpu_idx); 197 if (cpu_idx == my_idx) { 198 assert(is_local_state_run(local_state) != 0); 199 continue; 200 } 201 202 if (is_local_state_run(local_state) != 0) { 203 return false; 204 } 205 } 206 207 return true; 208 } 209 #endif 210 211 /******************************************************************************* 212 * This function verifies that all the other cores in the system have been 213 * turned OFF and the current CPU is the last running CPU in the system. 214 * Returns true, if the current CPU is the last ON CPU or false otherwise. 215 ******************************************************************************/ 216 bool psci_is_last_on_cpu(unsigned int my_idx) 217 { 218 for (unsigned int cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) { 219 if (cpu_idx == my_idx) { 220 assert(psci_get_aff_info_state() == AFF_STATE_ON); 221 continue; 222 } 223 224 if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) { 225 VERBOSE("core=%u other than current core=%u %s\n", 226 cpu_idx, my_idx, "running in the system"); 227 return false; 228 } 229 } 230 231 return true; 232 } 233 234 /******************************************************************************* 235 * This function verifies that all cores in the system have been turned ON. 236 * Returns true, if all CPUs are ON or false otherwise. 237 ******************************************************************************/ 238 static bool psci_are_all_cpus_on(void) 239 { 240 unsigned int cpu_idx; 241 242 for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) { 243 if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_OFF) { 244 return false; 245 } 246 } 247 248 return true; 249 } 250 251 /******************************************************************************* 252 * Routine to return the maximum power level to traverse to after a cpu has 253 * been physically powered up. It is expected to be called immediately after 254 * reset from assembler code. 255 ******************************************************************************/ 256 static unsigned int get_power_on_target_pwrlvl(void) 257 { 258 unsigned int pwrlvl; 259 260 /* 261 * Assume that this cpu was suspended and retrieve its target power 262 * level. If it wasn't, the cpu is off so this will be PLAT_MAX_PWR_LVL. 263 */ 264 pwrlvl = psci_get_suspend_pwrlvl(); 265 assert(pwrlvl < PSCI_INVALID_PWR_LVL); 266 return pwrlvl; 267 } 268 269 /****************************************************************************** 270 * Helper function to update the requested local power state array. This array 271 * does not store the requested state for the CPU power level. Hence an 272 * assertion is added to prevent us from accessing the CPU power level. 273 *****************************************************************************/ 274 static void psci_set_req_local_pwr_state(unsigned int pwrlvl, 275 unsigned int cpu_idx, 276 plat_local_state_t req_pwr_state) 277 { 278 assert(pwrlvl > PSCI_CPU_PWR_LVL); 279 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && 280 (cpu_idx < psci_plat_core_count)) { 281 psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state; 282 } 283 } 284 285 /****************************************************************************** 286 * This function initializes the psci_req_local_pwr_states. 287 *****************************************************************************/ 288 void __init psci_init_req_local_pwr_states(void) 289 { 290 /* Initialize the requested state of all non CPU power domains as OFF */ 291 unsigned int pwrlvl; 292 unsigned int core; 293 294 for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) { 295 for (core = 0; core < psci_plat_core_count; core++) { 296 psci_req_local_pwr_states[pwrlvl][core] = 297 PLAT_MAX_OFF_STATE; 298 } 299 } 300 } 301 302 /****************************************************************************** 303 * Helper function to return a reference to an array containing the local power 304 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the 305 * array will be the number of cpu power domains of which this power domain is 306 * an ancestor. These requested states will be used to determine a suitable 307 * target state for this power domain during psci state coordination. An 308 * assertion is added to prevent us from accessing the CPU power level. 309 *****************************************************************************/ 310 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl, 311 unsigned int cpu_idx) 312 { 313 assert(pwrlvl > PSCI_CPU_PWR_LVL); 314 315 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && 316 (cpu_idx < psci_plat_core_count)) { 317 return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx]; 318 } else 319 return NULL; 320 } 321 322 #if PSCI_OS_INIT_MODE 323 /****************************************************************************** 324 * Helper function to save a copy of the psci_req_local_pwr_states (prev) for a 325 * CPU (cpu_idx), and update psci_req_local_pwr_states with the new requested 326 * local power states (state_info). 327 *****************************************************************************/ 328 void psci_update_req_local_pwr_states(unsigned int end_pwrlvl, 329 unsigned int cpu_idx, 330 psci_power_state_t *state_info, 331 plat_local_state_t *prev) 332 { 333 unsigned int lvl; 334 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL 335 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL; 336 #else 337 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL; 338 #endif 339 plat_local_state_t req_state; 340 341 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) { 342 /* Save the previous requested local power state */ 343 prev[lvl - 1U] = *psci_get_req_local_pwr_states(lvl, cpu_idx); 344 345 /* Update the new requested local power state */ 346 if (lvl <= end_pwrlvl) { 347 req_state = state_info->pwr_domain_state[lvl]; 348 } else { 349 req_state = state_info->pwr_domain_state[end_pwrlvl]; 350 } 351 psci_set_req_local_pwr_state(lvl, cpu_idx, req_state); 352 } 353 } 354 355 /****************************************************************************** 356 * Helper function to restore the previously saved requested local power states 357 * (prev) for a CPU (cpu_idx) to psci_req_local_pwr_states. 358 *****************************************************************************/ 359 void psci_restore_req_local_pwr_states(unsigned int cpu_idx, 360 plat_local_state_t *prev) 361 { 362 unsigned int lvl; 363 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL 364 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL; 365 #else 366 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL; 367 #endif 368 369 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) { 370 /* Restore the previous requested local power state */ 371 psci_set_req_local_pwr_state(lvl, cpu_idx, prev[lvl - 1U]); 372 } 373 } 374 #endif 375 376 /* 377 * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent 378 * memory. 379 * 380 * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory, 381 * it's accessed by both cached and non-cached participants. To serve the common 382 * minimum, perform a cache flush before read and after write so that non-cached 383 * participants operate on latest data in main memory. 384 * 385 * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent 386 * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent. 387 * In both cases, no cache operations are required. 388 */ 389 390 /* 391 * Retrieve local state of non-CPU power domain node from a non-cached CPU, 392 * after any required cache maintenance operation. 393 */ 394 static plat_local_state_t get_non_cpu_pd_node_local_state( 395 unsigned int parent_idx) 396 { 397 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 398 flush_dcache_range( 399 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 400 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 401 #endif 402 return psci_non_cpu_pd_nodes[parent_idx].local_state; 403 } 404 405 /* 406 * Update local state of non-CPU power domain node from a cached CPU; perform 407 * any required cache maintenance operation afterwards. 408 */ 409 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx, 410 plat_local_state_t state) 411 { 412 psci_non_cpu_pd_nodes[parent_idx].local_state = state; 413 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 414 flush_dcache_range( 415 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 416 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 417 #endif 418 } 419 420 /****************************************************************************** 421 * Helper function to return the current local power state of each power domain 422 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This 423 * function will be called after a cpu is powered on to find the local state 424 * each power domain has emerged from. 425 *****************************************************************************/ 426 void psci_get_target_local_pwr_states(unsigned int cpu_idx, unsigned int end_pwrlvl, 427 psci_power_state_t *target_state) 428 { 429 unsigned int parent_idx, lvl; 430 plat_local_state_t *pd_state = target_state->pwr_domain_state; 431 432 pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state(); 433 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 434 435 /* Copy the local power state from node to state_info */ 436 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 437 pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx); 438 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 439 } 440 441 /* Set the the higher levels to RUN */ 442 for (; lvl <= PLAT_MAX_PWR_LVL; lvl++) { 443 target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 444 } 445 } 446 447 /****************************************************************************** 448 * Helper function to set the target local power state that each power domain 449 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will 450 * enter. This function will be called after coordination of requested power 451 * states has been done for each power level. 452 *****************************************************************************/ 453 void psci_set_target_local_pwr_states(unsigned int cpu_idx, unsigned int end_pwrlvl, 454 const psci_power_state_t *target_state) 455 { 456 unsigned int parent_idx, lvl; 457 const plat_local_state_t *pd_state = target_state->pwr_domain_state; 458 459 psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]); 460 461 /* 462 * Need to flush as local_state might be accessed with Data Cache 463 * disabled during power on 464 */ 465 psci_flush_cpu_data(psci_svc_cpu_data.local_state); 466 467 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 468 469 /* Copy the local_state from state_info */ 470 for (lvl = 1U; lvl <= end_pwrlvl; lvl++) { 471 set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]); 472 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 473 } 474 } 475 476 /******************************************************************************* 477 * PSCI helper function to get the parent nodes corresponding to a cpu_index. 478 ******************************************************************************/ 479 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx, 480 unsigned int end_lvl, 481 unsigned int *node_index) 482 { 483 unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node; 484 unsigned int i; 485 unsigned int *node = node_index; 486 487 for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) { 488 *node = parent_node; 489 node++; 490 parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node; 491 } 492 } 493 494 /****************************************************************************** 495 * This function is invoked post CPU power up and initialization. It sets the 496 * affinity info state, target power state and requested power state for the 497 * current CPU and all its ancestor power domains to RUN. 498 *****************************************************************************/ 499 void psci_set_pwr_domains_to_run(unsigned int cpu_idx, unsigned int end_pwrlvl) 500 { 501 unsigned int parent_idx, lvl; 502 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 503 504 /* Reset the local_state to RUN for the non cpu power domains. */ 505 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 506 set_non_cpu_pd_node_local_state(parent_idx, 507 PSCI_LOCAL_STATE_RUN); 508 psci_set_req_local_pwr_state(lvl, 509 cpu_idx, 510 PSCI_LOCAL_STATE_RUN); 511 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 512 } 513 514 /* Set the affinity info state to ON */ 515 psci_set_aff_info_state(AFF_STATE_ON); 516 517 psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN); 518 psci_flush_cpu_data(psci_svc_cpu_data); 519 } 520 521 /****************************************************************************** 522 * This function is used in platform-coordinated mode. 523 * 524 * This function is passed the local power states requested for each power 525 * domain (state_info) between the current CPU domain and its ancestors until 526 * the target power level (end_pwrlvl). It updates the array of requested power 527 * states with this information. 528 * 529 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it 530 * retrieves the states requested by all the cpus of which the power domain at 531 * that level is an ancestor. It passes this information to the platform to 532 * coordinate and return the target power state. If the target state for a level 533 * is RUN then subsequent levels are not considered. At the CPU level, state 534 * coordination is not required. Hence, the requested and the target states are 535 * the same. 536 * 537 * The 'state_info' is updated with the target state for each level between the 538 * CPU and the 'end_pwrlvl' and returned to the caller. 539 * 540 * This function will only be invoked with data cache enabled and while 541 * powering down a core. 542 *****************************************************************************/ 543 void psci_do_state_coordination(unsigned int cpu_idx, unsigned int end_pwrlvl, 544 psci_power_state_t *state_info) 545 { 546 unsigned int lvl, parent_idx; 547 unsigned int start_idx; 548 unsigned int ncpus; 549 plat_local_state_t target_state; 550 551 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); 552 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 553 554 /* For level 0, the requested state will be equivalent 555 to target state */ 556 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 557 558 /* First update the requested power state */ 559 psci_set_req_local_pwr_state(lvl, cpu_idx, 560 state_info->pwr_domain_state[lvl]); 561 562 /* Get the requested power states for this power level */ 563 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 564 plat_local_state_t const *req_states = psci_get_req_local_pwr_states(lvl, 565 start_idx); 566 567 /* 568 * Let the platform coordinate amongst the requested states at 569 * this power level and return the target local power state. 570 */ 571 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 572 target_state = plat_get_target_pwr_state(lvl, 573 req_states, 574 ncpus); 575 576 state_info->pwr_domain_state[lvl] = target_state; 577 578 /* Break early if the negotiated target power state is RUN */ 579 if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0) { 580 break; 581 } 582 583 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 584 } 585 586 /* 587 * This is for cases when we break out of the above loop early because 588 * the target power state is RUN at a power level < end_pwlvl. 589 * We update the requested power state from state_info and then 590 * set the target state as RUN. 591 */ 592 for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) { 593 psci_set_req_local_pwr_state(lvl, cpu_idx, 594 state_info->pwr_domain_state[lvl]); 595 state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 596 597 } 598 } 599 600 #if PSCI_OS_INIT_MODE 601 /****************************************************************************** 602 * This function is used in OS-initiated mode. 603 * 604 * This function is passed the local power states requested for each power 605 * domain (state_info) between the current CPU domain and its ancestors until 606 * the target power level (end_pwrlvl), and ensures the requested power states 607 * are valid. It updates the array of requested power states with this 608 * information. 609 * 610 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it 611 * retrieves the states requested by all the cpus of which the power domain at 612 * that level is an ancestor. It passes this information to the platform to 613 * coordinate and return the target power state. If the requested state does 614 * not match the target state, the request is denied. 615 * 616 * The 'state_info' is not modified. 617 * 618 * This function will only be invoked with data cache enabled and while 619 * powering down a core. 620 *****************************************************************************/ 621 int psci_validate_state_coordination(unsigned int cpu_idx, unsigned int end_pwrlvl, 622 psci_power_state_t *state_info) 623 { 624 int rc = PSCI_E_SUCCESS; 625 unsigned int lvl, parent_idx; 626 unsigned int start_idx; 627 unsigned int ncpus; 628 plat_local_state_t target_state, *req_states; 629 plat_local_state_t prev[PLAT_MAX_PWR_LVL]; 630 631 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); 632 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 633 634 /* 635 * Save a copy of the previous requested local power states and update 636 * the new requested local power states. 637 */ 638 psci_update_req_local_pwr_states(end_pwrlvl, cpu_idx, state_info, prev); 639 640 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 641 /* Get the requested power states for this power level */ 642 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 643 req_states = psci_get_req_local_pwr_states(lvl, start_idx); 644 645 /* 646 * Let the platform coordinate amongst the requested states at 647 * this power level and return the target local power state. 648 */ 649 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 650 target_state = plat_get_target_pwr_state(lvl, 651 req_states, 652 ncpus); 653 654 /* 655 * Verify that the requested power state matches the target 656 * local power state. 657 */ 658 if (state_info->pwr_domain_state[lvl] != target_state) { 659 if (target_state == PSCI_LOCAL_STATE_RUN) { 660 rc = PSCI_E_DENIED; 661 } else { 662 rc = PSCI_E_INVALID_PARAMS; 663 } 664 goto exit; 665 } 666 667 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 668 } 669 670 /* 671 * Verify that the current core is the last running core at the 672 * specified power level. 673 */ 674 lvl = state_info->last_at_pwrlvl; 675 if (!psci_is_last_cpu_to_idle_at_pwrlvl(cpu_idx, lvl)) { 676 rc = PSCI_E_DENIED; 677 } 678 679 exit: 680 if (rc != PSCI_E_SUCCESS) { 681 /* Restore the previous requested local power states. */ 682 psci_restore_req_local_pwr_states(cpu_idx, prev); 683 return rc; 684 } 685 686 return rc; 687 } 688 #endif 689 690 /****************************************************************************** 691 * This function validates a suspend request by making sure that if a standby 692 * state is requested then no power level is turned off and the highest power 693 * level is placed in a standby/retention state. 694 * 695 * It also ensures that the state level X will enter is not shallower than the 696 * state level X + 1 will enter. 697 * 698 * This validation will be enabled only for DEBUG builds as the platform is 699 * expected to perform these validations as well. 700 *****************************************************************************/ 701 int psci_validate_suspend_req(const psci_power_state_t *state_info, 702 unsigned int is_power_down_state) 703 { 704 unsigned int max_off_lvl, target_lvl, max_retn_lvl; 705 plat_local_state_t state; 706 plat_local_state_type_t req_state_type, deepest_state_type; 707 int i; 708 709 /* Find the target suspend power level */ 710 target_lvl = psci_find_target_suspend_lvl(state_info); 711 if (target_lvl == PSCI_INVALID_PWR_LVL) 712 return PSCI_E_INVALID_PARAMS; 713 714 /* All power domain levels are in a RUN state to begin with */ 715 deepest_state_type = STATE_TYPE_RUN; 716 717 for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) { 718 state = state_info->pwr_domain_state[i]; 719 req_state_type = find_local_state_type(state); 720 721 /* 722 * While traversing from the highest power level to the lowest, 723 * the state requested for lower levels has to be the same or 724 * deeper i.e. equal to or greater than the state at the higher 725 * levels. If this condition is true, then the requested state 726 * becomes the deepest state encountered so far. 727 */ 728 if (req_state_type < deepest_state_type) 729 return PSCI_E_INVALID_PARAMS; 730 deepest_state_type = req_state_type; 731 } 732 733 /* Find the highest off power level */ 734 max_off_lvl = psci_find_max_off_lvl(state_info); 735 736 /* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */ 737 max_retn_lvl = PSCI_INVALID_PWR_LVL; 738 if (target_lvl != max_off_lvl) 739 max_retn_lvl = target_lvl; 740 741 /* 742 * If this is not a request for a power down state then max off level 743 * has to be invalid and max retention level has to be a valid power 744 * level. 745 */ 746 if ((is_power_down_state == 0U) && 747 ((max_off_lvl != PSCI_INVALID_PWR_LVL) || 748 (max_retn_lvl == PSCI_INVALID_PWR_LVL))) 749 return PSCI_E_INVALID_PARAMS; 750 751 return PSCI_E_SUCCESS; 752 } 753 754 /****************************************************************************** 755 * This function finds the highest power level which will be powered down 756 * amongst all the power levels specified in the 'state_info' structure 757 *****************************************************************************/ 758 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info) 759 { 760 int i; 761 762 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 763 if (is_local_state_off(state_info->pwr_domain_state[i]) != 0) { 764 return (unsigned int) i; 765 } 766 } 767 768 return PSCI_INVALID_PWR_LVL; 769 } 770 771 /****************************************************************************** 772 * This functions finds the level of the highest power domain which will be 773 * placed in a low power state during a suspend operation. 774 *****************************************************************************/ 775 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info) 776 { 777 int i; 778 779 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 780 if (is_local_state_run(state_info->pwr_domain_state[i]) == 0) 781 return (unsigned int) i; 782 } 783 784 return PSCI_INVALID_PWR_LVL; 785 } 786 787 /******************************************************************************* 788 * This function is passed the highest level in the topology tree that the 789 * operation should be applied to and a list of node indexes. It picks up locks 790 * from the node index list in order of increasing power domain level in the 791 * range specified. 792 ******************************************************************************/ 793 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl, 794 const unsigned int *parent_nodes) 795 { 796 unsigned int parent_idx; 797 unsigned int level; 798 799 /* No locking required for level 0. Hence start locking from level 1 */ 800 for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) { 801 parent_idx = parent_nodes[level - 1U]; 802 psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]); 803 } 804 } 805 806 /******************************************************************************* 807 * This function is passed the highest level in the topology tree that the 808 * operation should be applied to and a list of node indexes. It releases the 809 * locks in order of decreasing power domain level in the range specified. 810 ******************************************************************************/ 811 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl, 812 const unsigned int *parent_nodes) 813 { 814 unsigned int parent_idx; 815 unsigned int level; 816 817 /* Unlock top down. No unlocking required for level 0. */ 818 for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) { 819 parent_idx = parent_nodes[level - 1U]; 820 psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]); 821 } 822 } 823 824 /******************************************************************************* 825 * This function determines the full entrypoint information for the requested 826 * PSCI entrypoint on power on/resume and returns it. 827 ******************************************************************************/ 828 #ifdef __aarch64__ 829 static int psci_get_ns_ep_info(entry_point_info_t *ep, 830 uintptr_t entrypoint, 831 u_register_t context_id) 832 { 833 u_register_t ep_attr, sctlr; 834 unsigned int daif, ee, mode; 835 u_register_t ns_scr_el3 = read_scr_el3(); 836 u_register_t ns_sctlr_el1 = read_sctlr_el1(); 837 838 sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 839 read_sctlr_el2() : ns_sctlr_el1; 840 ee = 0; 841 842 ep_attr = NON_SECURE | EP_ST_DISABLE; 843 if ((sctlr & SCTLR_EE_BIT) != 0U) { 844 ep_attr |= EP_EE_BIG; 845 ee = 1; 846 } 847 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 848 849 ep->pc = entrypoint; 850 zeromem(&ep->args, sizeof(ep->args)); 851 ep->args.arg0 = context_id; 852 853 /* 854 * Figure out whether the cpu enters the non-secure address space 855 * in aarch32 or aarch64 856 */ 857 if ((ns_scr_el3 & SCR_RW_BIT) != 0U) { 858 859 /* 860 * Check whether a Thumb entry point has been provided for an 861 * aarch64 EL 862 */ 863 if ((entrypoint & 0x1UL) != 0UL) 864 return PSCI_E_INVALID_ADDRESS; 865 866 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1; 867 868 ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX, 869 DISABLE_ALL_EXCEPTIONS); 870 } else { 871 872 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 873 MODE32_hyp : MODE32_svc; 874 875 /* 876 * TODO: Choose async. exception bits if HYP mode is not 877 * implemented according to the values of SCR.{AW, FW} bits 878 */ 879 daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT; 880 881 ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee, 882 daif); 883 } 884 885 return PSCI_E_SUCCESS; 886 } 887 #else /* !__aarch64__ */ 888 static int psci_get_ns_ep_info(entry_point_info_t *ep, 889 uintptr_t entrypoint, 890 u_register_t context_id) 891 { 892 u_register_t ep_attr; 893 unsigned int aif, ee, mode; 894 u_register_t scr = read_scr(); 895 u_register_t ns_sctlr, sctlr; 896 897 /* Switch to non secure state */ 898 write_scr(scr | SCR_NS_BIT); 899 isb(); 900 ns_sctlr = read_sctlr(); 901 902 sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr; 903 904 /* Return to original state */ 905 write_scr(scr); 906 isb(); 907 ee = 0; 908 909 ep_attr = NON_SECURE | EP_ST_DISABLE; 910 if (sctlr & SCTLR_EE_BIT) { 911 ep_attr |= EP_EE_BIG; 912 ee = 1; 913 } 914 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 915 916 ep->pc = entrypoint; 917 zeromem(&ep->args, sizeof(ep->args)); 918 ep->args.arg0 = context_id; 919 920 mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc; 921 922 /* 923 * TODO: Choose async. exception bits if HYP mode is not 924 * implemented according to the values of SCR.{AW, FW} bits 925 */ 926 aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT; 927 928 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif); 929 930 return PSCI_E_SUCCESS; 931 } 932 933 #endif /* __aarch64__ */ 934 935 /******************************************************************************* 936 * This function validates the entrypoint with the platform layer if the 937 * appropriate pm_ops hook is exported by the platform and returns the 938 * 'entry_point_info'. 939 ******************************************************************************/ 940 int psci_validate_entry_point(entry_point_info_t *ep, 941 uintptr_t entrypoint, 942 u_register_t context_id) 943 { 944 int rc; 945 946 /* Validate the entrypoint using platform psci_ops */ 947 if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) { 948 rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint); 949 if (rc != PSCI_E_SUCCESS) { 950 return PSCI_E_INVALID_ADDRESS; 951 } 952 } 953 954 /* 955 * Verify and derive the re-entry information for 956 * the non-secure world from the non-secure state from 957 * where this call originated. 958 */ 959 rc = psci_get_ns_ep_info(ep, entrypoint, context_id); 960 return rc; 961 } 962 963 /******************************************************************************* 964 * Generic handler which is called when a cpu is physically powered on. It 965 * traverses the node information and finds the highest power level powered 966 * off and performs generic, architectural, platform setup and state management 967 * to power on that power level and power levels below it. 968 * e.g. For a cpu that's been powered on, it will call the platform specific 969 * code to enable the gic cpu interface and for a cluster it will enable 970 * coherency at the interconnect level in addition to gic cpu interface. 971 ******************************************************************************/ 972 void psci_warmboot_entrypoint(void) 973 { 974 unsigned int end_pwrlvl; 975 unsigned int cpu_idx = plat_my_core_pos(); 976 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 977 psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} }; 978 979 /* Init registers that never change for the lifetime of TF-A */ 980 cm_manage_extensions_el3(cpu_idx); 981 982 /* 983 * Verify that we have been explicitly turned ON or resumed from 984 * suspend. 985 */ 986 if (psci_get_aff_info_state() == AFF_STATE_OFF) { 987 ERROR("Unexpected affinity info state.\n"); 988 panic(); 989 } 990 991 /* 992 * Get the maximum power domain level to traverse to after this cpu 993 * has been physically powered up. 994 */ 995 end_pwrlvl = get_power_on_target_pwrlvl(); 996 997 /* Get the parent nodes */ 998 psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes); 999 1000 /* 1001 * This function acquires the lock corresponding to each power level so 1002 * that by the time all locks are taken, the system topology is snapshot 1003 * and state management can be done safely. 1004 */ 1005 psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes); 1006 1007 psci_get_target_local_pwr_states(cpu_idx, end_pwrlvl, &state_info); 1008 1009 #if ENABLE_PSCI_STAT 1010 plat_psci_stat_accounting_stop(&state_info); 1011 #endif 1012 1013 /* 1014 * This CPU could be resuming from suspend or it could have just been 1015 * turned on. To distinguish between these 2 cases, we examine the 1016 * affinity state of the CPU: 1017 * - If the affinity state is ON_PENDING then it has just been 1018 * turned on. 1019 * - Else it is resuming from suspend. 1020 * 1021 * Depending on the type of warm reset identified, choose the right set 1022 * of power management handler and perform the generic, architecture 1023 * and platform specific handling. 1024 */ 1025 if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING) { 1026 psci_cpu_on_finish(cpu_idx, &state_info); 1027 } else { 1028 unsigned int max_off_lvl = psci_find_max_off_lvl(&state_info); 1029 1030 assert(max_off_lvl != PSCI_INVALID_PWR_LVL); 1031 psci_cpu_suspend_to_powerdown_finish(cpu_idx, max_off_lvl, &state_info); 1032 } 1033 1034 /* 1035 * Caches and (importantly) coherency are on so we can rely on seeing 1036 * whatever the primary gave us without explicit cache maintenance 1037 */ 1038 entry_point_info_t *ep = get_cpu_data(warmboot_ep_info); 1039 cm_init_my_context(ep); 1040 1041 /* 1042 * Generic management: Now we just need to retrieve the 1043 * information that we had stashed away during the cpu_on 1044 * call to set this cpu on its way. 1045 */ 1046 cm_prepare_el3_exit_ns(); 1047 1048 /* 1049 * Set the requested and target state of this CPU and all the higher 1050 * power domains which are ancestors of this CPU to run. 1051 */ 1052 psci_set_pwr_domains_to_run(cpu_idx, end_pwrlvl); 1053 1054 #if ENABLE_PSCI_STAT 1055 psci_stats_update_pwr_up(cpu_idx, end_pwrlvl, &state_info); 1056 #endif 1057 1058 /* 1059 * This loop releases the lock corresponding to each power level 1060 * in the reverse order to which they were acquired. 1061 */ 1062 psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes); 1063 } 1064 1065 /******************************************************************************* 1066 * This function initializes the set of hooks that PSCI invokes as part of power 1067 * management operation. The power management hooks are expected to be provided 1068 * by the SPD, after it finishes all its initialization 1069 ******************************************************************************/ 1070 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm) 1071 { 1072 assert(pm != NULL); 1073 psci_spd_pm = pm; 1074 1075 if (pm->svc_migrate != NULL) 1076 psci_caps |= define_psci_cap(PSCI_MIG_AARCH64); 1077 1078 if (pm->svc_migrate_info != NULL) 1079 psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64) 1080 | define_psci_cap(PSCI_MIG_INFO_TYPE); 1081 } 1082 1083 /******************************************************************************* 1084 * This function invokes the migrate info hook in the spd_pm_ops. It performs 1085 * the necessary return value validation. If the Secure Payload is UP and 1086 * migrate capable, it returns the mpidr of the CPU on which the Secure payload 1087 * is resident through the mpidr parameter. Else the value of the parameter on 1088 * return is undefined. 1089 ******************************************************************************/ 1090 int psci_spd_migrate_info(u_register_t *mpidr) 1091 { 1092 int rc; 1093 1094 if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL)) 1095 return PSCI_E_NOT_SUPPORTED; 1096 1097 rc = psci_spd_pm->svc_migrate_info(mpidr); 1098 1099 assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) || 1100 (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED)); 1101 1102 return rc; 1103 } 1104 1105 1106 /******************************************************************************* 1107 * This function prints the state of all power domains present in the 1108 * system 1109 ******************************************************************************/ 1110 void psci_print_power_domain_map(void) 1111 { 1112 #if LOG_LEVEL >= LOG_LEVEL_INFO 1113 unsigned int idx; 1114 plat_local_state_t state; 1115 plat_local_state_type_t state_type; 1116 1117 /* This array maps to the PSCI_STATE_X definitions in psci.h */ 1118 static const char * const psci_state_type_str[] = { 1119 "ON", 1120 "RETENTION", 1121 "OFF", 1122 }; 1123 1124 INFO("PSCI Power Domain Map:\n"); 1125 for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count); 1126 idx++) { 1127 state_type = find_local_state_type( 1128 psci_non_cpu_pd_nodes[idx].local_state); 1129 INFO(" Domain Node : Level %u, parent_node %u," 1130 " State %s (0x%x)\n", 1131 psci_non_cpu_pd_nodes[idx].level, 1132 psci_non_cpu_pd_nodes[idx].parent_node, 1133 psci_state_type_str[state_type], 1134 psci_non_cpu_pd_nodes[idx].local_state); 1135 } 1136 1137 for (idx = 0; idx < psci_plat_core_count; idx++) { 1138 state = psci_get_cpu_local_state_by_idx(idx); 1139 state_type = find_local_state_type(state); 1140 INFO(" CPU Node : MPID 0x%llx, parent_node %u," 1141 " State %s (0x%x)\n", 1142 (unsigned long long)psci_cpu_pd_nodes[idx].mpidr, 1143 psci_cpu_pd_nodes[idx].parent_node, 1144 psci_state_type_str[state_type], 1145 psci_get_cpu_local_state_by_idx(idx)); 1146 } 1147 #endif 1148 } 1149 1150 /****************************************************************************** 1151 * Return whether any secondaries were powered up with CPU_ON call. A CPU that 1152 * have ever been powered up would have set its MPDIR value to something other 1153 * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to 1154 * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is 1155 * meaningful only when called on the primary CPU during early boot. 1156 *****************************************************************************/ 1157 int psci_secondaries_brought_up(void) 1158 { 1159 unsigned int idx, n_valid = 0U; 1160 1161 for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) { 1162 if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR) 1163 n_valid++; 1164 } 1165 1166 assert(n_valid > 0U); 1167 1168 return (n_valid > 1U) ? 1 : 0; 1169 } 1170 1171 /******************************************************************************* 1172 * Initiate power down sequence, by calling power down operations registered for 1173 * this CPU. 1174 ******************************************************************************/ 1175 void psci_pwrdown_cpu_start(unsigned int power_level) 1176 { 1177 #if ENABLE_RUNTIME_INSTRUMENTATION 1178 1179 /* 1180 * Flush cache line so that even if CPU power down happens 1181 * the timestamp update is reflected in memory. 1182 */ 1183 PMF_CAPTURE_TIMESTAMP(rt_instr_svc, 1184 RT_INSTR_ENTER_CFLUSH, 1185 PMF_CACHE_MAINT); 1186 #endif 1187 1188 #if HW_ASSISTED_COHERENCY 1189 /* 1190 * With hardware-assisted coherency, the CPU drivers only initiate the 1191 * power down sequence, without performing cache-maintenance operations 1192 * in software. Data caches enabled both before and after this call. 1193 */ 1194 prepare_cpu_pwr_dwn(power_level); 1195 #else 1196 /* 1197 * Without hardware-assisted coherency, the CPU drivers disable data 1198 * caches, then perform cache-maintenance operations in software. 1199 * 1200 * This also calls prepare_cpu_pwr_dwn() to initiate power down 1201 * sequence, but that function will return with data caches disabled. 1202 * We must ensure that the stack memory is flushed out to memory before 1203 * we start popping from it again. 1204 */ 1205 psci_do_pwrdown_cache_maintenance(power_level); 1206 #endif 1207 1208 #if ENABLE_RUNTIME_INSTRUMENTATION 1209 PMF_CAPTURE_TIMESTAMP(rt_instr_svc, 1210 RT_INSTR_EXIT_CFLUSH, 1211 PMF_NO_CACHE_MAINT); 1212 #endif 1213 } 1214 1215 /******************************************************************************* 1216 * Finish a terminal power down sequence, ending with a wfi. In case of wakeup 1217 * will retry the sleep and panic if it persists. 1218 ******************************************************************************/ 1219 void __dead2 psci_pwrdown_cpu_end_terminal(void) 1220 { 1221 #if ERRATA_SME_POWER_DOWN 1222 /* 1223 * force SME off to not get power down rejected. Getting here is 1224 * terminal so we don't care if we lose context because of another 1225 * wakeup 1226 */ 1227 if (is_feat_sme_supported()) { 1228 write_svcr(0); 1229 isb(); 1230 } 1231 #endif /* ERRATA_SME_POWER_DOWN */ 1232 1233 /* 1234 * Execute a wfi which, in most cases, will allow the power controller 1235 * to physically power down this cpu. Under some circumstances that may 1236 * be denied. Hopefully this is transient, retrying a few times should 1237 * power down. 1238 */ 1239 for (int i = 0; i < 32; i++) 1240 psci_power_down_wfi(); 1241 1242 /* Wake up wasn't transient. System is probably in a bad state. */ 1243 ERROR("Could not power off CPU.\n"); 1244 panic(); 1245 } 1246 1247 /******************************************************************************* 1248 * Finish a non-terminal power down sequence, ending with a wfi. In case of 1249 * wakeup will unwind any CPU specific actions and return. 1250 ******************************************************************************/ 1251 1252 void psci_pwrdown_cpu_end_wakeup(unsigned int power_level) 1253 { 1254 /* 1255 * Usually, will be terminal. In some circumstances the powerdown will 1256 * be denied and we'll need to unwind 1257 */ 1258 psci_power_down_wfi(); 1259 1260 /* 1261 * Waking up does not require hardware-assisted coherency, but that is 1262 * the case for every core that can wake up. Untangling the cache 1263 * coherency code from powerdown is a non-trivial effort which isn't 1264 * needed for our purposes. 1265 */ 1266 #if !FEAT_PABANDON 1267 ERROR("Systems without FEAT_PABANDON shouldn't wake up.\n"); 1268 panic(); 1269 #else /* FEAT_PABANDON */ 1270 1271 /* 1272 * Begin unwinding. Everything can be shared with CPU_ON and co later, 1273 * except the CPU specific bit. Cores that have hardware-assisted 1274 * coherency don't have much to do so just calling the hook again is 1275 * the simplest way to achieve this 1276 */ 1277 prepare_cpu_pwr_dwn(power_level); 1278 #endif /* FEAT_PABANDON */ 1279 } 1280 1281 /******************************************************************************* 1282 * This function invokes the callback 'stop_func()' with the 'mpidr' of each 1283 * online PE. Caller can pass suitable method to stop a remote core. 1284 * 1285 * 'wait_ms' is the timeout value in milliseconds for the other cores to 1286 * transition to power down state. Passing '0' makes it non-blocking. 1287 * 1288 * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the 1289 * given timeout. 1290 ******************************************************************************/ 1291 int psci_stop_other_cores(unsigned int this_cpu_idx, unsigned int wait_ms, 1292 void (*stop_func)(u_register_t mpidr)) 1293 { 1294 /* Invoke stop_func for each core */ 1295 for (unsigned int idx = 0U; idx < psci_plat_core_count; idx++) { 1296 /* skip current CPU */ 1297 if (idx == this_cpu_idx) { 1298 continue; 1299 } 1300 1301 /* Check if the CPU is ON */ 1302 if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) { 1303 (*stop_func)(psci_cpu_pd_nodes[idx].mpidr); 1304 } 1305 } 1306 1307 /* Need to wait for other cores to shutdown */ 1308 if (wait_ms != 0U) { 1309 for (uint32_t delay_ms = wait_ms; ((delay_ms != 0U) && 1310 (!psci_is_last_on_cpu(this_cpu_idx))); delay_ms--) { 1311 mdelay(1U); 1312 } 1313 1314 if (!psci_is_last_on_cpu(this_cpu_idx)) { 1315 WARN("Failed to stop all cores!\n"); 1316 psci_print_power_domain_map(); 1317 return PSCI_E_DENIED; 1318 } 1319 } 1320 1321 return PSCI_E_SUCCESS; 1322 } 1323 1324 /******************************************************************************* 1325 * This function verifies that all the other cores in the system have been 1326 * turned OFF and the current CPU is the last running CPU in the system. 1327 * Returns true if the current CPU is the last ON CPU or false otherwise. 1328 * 1329 * This API has following differences with psci_is_last_on_cpu 1330 * 1. PSCI states are locked 1331 ******************************************************************************/ 1332 bool psci_is_last_on_cpu_safe(unsigned int this_core) 1333 { 1334 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 1335 1336 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes); 1337 1338 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1339 1340 if (!psci_is_last_on_cpu(this_core)) { 1341 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1342 return false; 1343 } 1344 1345 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1346 1347 return true; 1348 } 1349 1350 /******************************************************************************* 1351 * This function verifies that all cores in the system have been turned ON. 1352 * Returns true, if all CPUs are ON or false otherwise. 1353 * 1354 * This API has following differences with psci_are_all_cpus_on 1355 * 1. PSCI states are locked 1356 ******************************************************************************/ 1357 bool psci_are_all_cpus_on_safe(unsigned int this_core) 1358 { 1359 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 1360 1361 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes); 1362 1363 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1364 1365 if (!psci_are_all_cpus_on()) { 1366 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1367 return false; 1368 } 1369 1370 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1371 1372 return true; 1373 } 1374