1 /* 2 * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 #include <string.h> 9 10 #include <arch.h> 11 #include <arch_features.h> 12 #include <arch_helpers.h> 13 #include <common/bl_common.h> 14 #include <common/debug.h> 15 #include <context.h> 16 #include <drivers/delay_timer.h> 17 #include <lib/el3_runtime/context_mgmt.h> 18 #include <lib/extensions/spe.h> 19 #include <lib/utils.h> 20 #include <plat/common/platform.h> 21 22 #include "psci_private.h" 23 24 /* 25 * SPD power management operations, expected to be supplied by the registered 26 * SPD on successful SP initialization 27 */ 28 const spd_pm_ops_t *psci_spd_pm; 29 30 /* 31 * PSCI requested local power state map. This array is used to store the local 32 * power states requested by a CPU for power levels from level 1 to 33 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power 34 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a 35 * CPU are the same. 36 * 37 * During state coordination, the platform is passed an array containing the 38 * local states requested for a particular non cpu power domain by each cpu 39 * within the domain. 40 * 41 * TODO: Dense packing of the requested states will cause cache thrashing 42 * when multiple power domains write to it. If we allocate the requested 43 * states at each power level in a cache-line aligned per-domain memory, 44 * the cache thrashing can be avoided. 45 */ 46 static plat_local_state_t 47 psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT]; 48 49 unsigned int psci_plat_core_count; 50 51 /******************************************************************************* 52 * Arrays that hold the platform's power domain tree information for state 53 * management of power domains. 54 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain 55 * which is an ancestor of a CPU power domain. 56 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain 57 ******************************************************************************/ 58 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS] 59 #if USE_COHERENT_MEM 60 __section(".tzfw_coherent_mem") 61 #endif 62 ; 63 64 /* Lock for PSCI state coordination */ 65 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]); 66 67 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT]; 68 69 /******************************************************************************* 70 * Pointer to functions exported by the platform to complete power mgmt. ops 71 ******************************************************************************/ 72 const plat_psci_ops_t *psci_plat_pm_ops; 73 74 /****************************************************************************** 75 * Check that the maximum power level supported by the platform makes sense 76 *****************************************************************************/ 77 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) && 78 (PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL), 79 assert_platform_max_pwrlvl_check); 80 81 #if PSCI_OS_INIT_MODE 82 /******************************************************************************* 83 * The power state coordination mode used in CPU_SUSPEND. 84 * Defaults to platform-coordinated mode. 85 ******************************************************************************/ 86 suspend_mode_t psci_suspend_mode = PLAT_COORD; 87 #endif 88 89 /* 90 * The plat_local_state used by the platform is one of these types: RUN, 91 * RETENTION and OFF. The platform can define further sub-states for each type 92 * apart from RUN. This categorization is done to verify the sanity of the 93 * psci_power_state passed by the platform and to print debug information. The 94 * categorization is done on the basis of the following conditions: 95 * 96 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN. 97 * 98 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is 99 * STATE_TYPE_RETN. 100 * 101 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is 102 * STATE_TYPE_OFF. 103 */ 104 typedef enum plat_local_state_type { 105 STATE_TYPE_RUN = 0, 106 STATE_TYPE_RETN, 107 STATE_TYPE_OFF 108 } plat_local_state_type_t; 109 110 /* Function used to categorize plat_local_state. */ 111 static plat_local_state_type_t find_local_state_type(plat_local_state_t state) 112 { 113 if (state != 0U) { 114 if (state > PLAT_MAX_RET_STATE) { 115 return STATE_TYPE_OFF; 116 } else { 117 return STATE_TYPE_RETN; 118 } 119 } else { 120 return STATE_TYPE_RUN; 121 } 122 } 123 124 /****************************************************************************** 125 * Check that the maximum retention level supported by the platform is less 126 * than the maximum off level. 127 *****************************************************************************/ 128 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, 129 assert_platform_max_off_and_retn_state_check); 130 131 /****************************************************************************** 132 * This function ensures that the power state parameter in a CPU_SUSPEND request 133 * is valid. If so, it returns the requested states for each power level. 134 *****************************************************************************/ 135 int psci_validate_power_state(unsigned int power_state, 136 psci_power_state_t *state_info) 137 { 138 /* Check SBZ bits in power state are zero */ 139 if (psci_check_power_state(power_state) != 0U) 140 return PSCI_E_INVALID_PARAMS; 141 142 assert(psci_plat_pm_ops->validate_power_state != NULL); 143 144 /* Validate the power_state using platform pm_ops */ 145 return psci_plat_pm_ops->validate_power_state(power_state, state_info); 146 } 147 148 /****************************************************************************** 149 * This function retrieves the `psci_power_state_t` for system suspend from 150 * the platform. 151 *****************************************************************************/ 152 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info) 153 { 154 /* 155 * Assert that the required pm_ops hook is implemented to ensure that 156 * the capability detected during psci_setup() is valid. 157 */ 158 assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL); 159 160 /* 161 * Query the platform for the power_state required for system suspend 162 */ 163 psci_plat_pm_ops->get_sys_suspend_power_state(state_info); 164 } 165 166 #if PSCI_OS_INIT_MODE 167 /******************************************************************************* 168 * This function verifies that all the other cores at the 'end_pwrlvl' have been 169 * idled and the current CPU is the last running CPU at the 'end_pwrlvl'. 170 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false) 171 * otherwise. 172 ******************************************************************************/ 173 static bool psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int end_pwrlvl) 174 { 175 unsigned int my_idx, lvl; 176 unsigned int parent_idx = 0; 177 unsigned int cpu_start_idx, ncpus, cpu_idx; 178 plat_local_state_t local_state; 179 180 if (end_pwrlvl == PSCI_CPU_PWR_LVL) { 181 return true; 182 } 183 184 my_idx = plat_my_core_pos(); 185 186 for (lvl = PSCI_CPU_PWR_LVL; lvl <= end_pwrlvl; lvl++) { 187 parent_idx = psci_cpu_pd_nodes[my_idx].parent_node; 188 } 189 190 cpu_start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 191 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 192 193 for (cpu_idx = cpu_start_idx; cpu_idx < cpu_start_idx + ncpus; 194 cpu_idx++) { 195 local_state = psci_get_cpu_local_state_by_idx(cpu_idx); 196 if (cpu_idx == my_idx) { 197 assert(is_local_state_run(local_state) != 0); 198 continue; 199 } 200 201 if (is_local_state_run(local_state) != 0) { 202 return false; 203 } 204 } 205 206 return true; 207 } 208 #endif 209 210 /******************************************************************************* 211 * This function verifies that all the other cores in the system have been 212 * turned OFF and the current CPU is the last running CPU in the system. 213 * Returns true, if the current CPU is the last ON CPU or false otherwise. 214 ******************************************************************************/ 215 bool psci_is_last_on_cpu(void) 216 { 217 unsigned int cpu_idx, my_idx = plat_my_core_pos(); 218 219 for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) { 220 if (cpu_idx == my_idx) { 221 assert(psci_get_aff_info_state() == AFF_STATE_ON); 222 continue; 223 } 224 225 if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) { 226 VERBOSE("core=%u other than current core=%u %s\n", 227 cpu_idx, my_idx, "running in the system"); 228 return false; 229 } 230 } 231 232 return true; 233 } 234 235 /******************************************************************************* 236 * This function verifies that all cores in the system have been turned ON. 237 * Returns true, if all CPUs are ON or false otherwise. 238 ******************************************************************************/ 239 static bool psci_are_all_cpus_on(void) 240 { 241 unsigned int cpu_idx; 242 243 for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) { 244 if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_OFF) { 245 return false; 246 } 247 } 248 249 return true; 250 } 251 252 /******************************************************************************* 253 * Routine to return the maximum power level to traverse to after a cpu has 254 * been physically powered up. It is expected to be called immediately after 255 * reset from assembler code. 256 ******************************************************************************/ 257 static unsigned int get_power_on_target_pwrlvl(void) 258 { 259 unsigned int pwrlvl; 260 261 /* 262 * Assume that this cpu was suspended and retrieve its target power 263 * level. If it is invalid then it could only have been turned off 264 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a 265 * cpu can be turned off to. 266 */ 267 pwrlvl = psci_get_suspend_pwrlvl(); 268 if (pwrlvl == PSCI_INVALID_PWR_LVL) 269 pwrlvl = PLAT_MAX_PWR_LVL; 270 assert(pwrlvl < PSCI_INVALID_PWR_LVL); 271 return pwrlvl; 272 } 273 274 /****************************************************************************** 275 * Helper function to update the requested local power state array. This array 276 * does not store the requested state for the CPU power level. Hence an 277 * assertion is added to prevent us from accessing the CPU power level. 278 *****************************************************************************/ 279 static void psci_set_req_local_pwr_state(unsigned int pwrlvl, 280 unsigned int cpu_idx, 281 plat_local_state_t req_pwr_state) 282 { 283 assert(pwrlvl > PSCI_CPU_PWR_LVL); 284 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && 285 (cpu_idx < psci_plat_core_count)) { 286 psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state; 287 } 288 } 289 290 /****************************************************************************** 291 * This function initializes the psci_req_local_pwr_states. 292 *****************************************************************************/ 293 void __init psci_init_req_local_pwr_states(void) 294 { 295 /* Initialize the requested state of all non CPU power domains as OFF */ 296 unsigned int pwrlvl; 297 unsigned int core; 298 299 for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) { 300 for (core = 0; core < psci_plat_core_count; core++) { 301 psci_req_local_pwr_states[pwrlvl][core] = 302 PLAT_MAX_OFF_STATE; 303 } 304 } 305 } 306 307 /****************************************************************************** 308 * Helper function to return a reference to an array containing the local power 309 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the 310 * array will be the number of cpu power domains of which this power domain is 311 * an ancestor. These requested states will be used to determine a suitable 312 * target state for this power domain during psci state coordination. An 313 * assertion is added to prevent us from accessing the CPU power level. 314 *****************************************************************************/ 315 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl, 316 unsigned int cpu_idx) 317 { 318 assert(pwrlvl > PSCI_CPU_PWR_LVL); 319 320 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && 321 (cpu_idx < psci_plat_core_count)) { 322 return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx]; 323 } else 324 return NULL; 325 } 326 327 #if PSCI_OS_INIT_MODE 328 /****************************************************************************** 329 * Helper function to save a copy of the psci_req_local_pwr_states (prev) for a 330 * CPU (cpu_idx), and update psci_req_local_pwr_states with the new requested 331 * local power states (state_info). 332 *****************************************************************************/ 333 void psci_update_req_local_pwr_states(unsigned int end_pwrlvl, 334 unsigned int cpu_idx, 335 psci_power_state_t *state_info, 336 plat_local_state_t *prev) 337 { 338 unsigned int lvl; 339 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL 340 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL; 341 #else 342 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL; 343 #endif 344 plat_local_state_t req_state; 345 346 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) { 347 /* Save the previous requested local power state */ 348 prev[lvl - 1U] = *psci_get_req_local_pwr_states(lvl, cpu_idx); 349 350 /* Update the new requested local power state */ 351 if (lvl <= end_pwrlvl) { 352 req_state = state_info->pwr_domain_state[lvl]; 353 } else { 354 req_state = state_info->pwr_domain_state[end_pwrlvl]; 355 } 356 psci_set_req_local_pwr_state(lvl, cpu_idx, req_state); 357 } 358 } 359 360 /****************************************************************************** 361 * Helper function to restore the previously saved requested local power states 362 * (prev) for a CPU (cpu_idx) to psci_req_local_pwr_states. 363 *****************************************************************************/ 364 void psci_restore_req_local_pwr_states(unsigned int cpu_idx, 365 plat_local_state_t *prev) 366 { 367 unsigned int lvl; 368 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL 369 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL; 370 #else 371 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL; 372 #endif 373 374 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) { 375 /* Restore the previous requested local power state */ 376 psci_set_req_local_pwr_state(lvl, cpu_idx, prev[lvl - 1U]); 377 } 378 } 379 #endif 380 381 /* 382 * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent 383 * memory. 384 * 385 * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory, 386 * it's accessed by both cached and non-cached participants. To serve the common 387 * minimum, perform a cache flush before read and after write so that non-cached 388 * participants operate on latest data in main memory. 389 * 390 * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent 391 * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent. 392 * In both cases, no cache operations are required. 393 */ 394 395 /* 396 * Retrieve local state of non-CPU power domain node from a non-cached CPU, 397 * after any required cache maintenance operation. 398 */ 399 static plat_local_state_t get_non_cpu_pd_node_local_state( 400 unsigned int parent_idx) 401 { 402 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 403 flush_dcache_range( 404 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 405 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 406 #endif 407 return psci_non_cpu_pd_nodes[parent_idx].local_state; 408 } 409 410 /* 411 * Update local state of non-CPU power domain node from a cached CPU; perform 412 * any required cache maintenance operation afterwards. 413 */ 414 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx, 415 plat_local_state_t state) 416 { 417 psci_non_cpu_pd_nodes[parent_idx].local_state = state; 418 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 419 flush_dcache_range( 420 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 421 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 422 #endif 423 } 424 425 /****************************************************************************** 426 * Helper function to return the current local power state of each power domain 427 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This 428 * function will be called after a cpu is powered on to find the local state 429 * each power domain has emerged from. 430 *****************************************************************************/ 431 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl, 432 psci_power_state_t *target_state) 433 { 434 unsigned int parent_idx, lvl; 435 plat_local_state_t *pd_state = target_state->pwr_domain_state; 436 437 pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state(); 438 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; 439 440 /* Copy the local power state from node to state_info */ 441 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 442 pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx); 443 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 444 } 445 446 /* Set the the higher levels to RUN */ 447 for (; lvl <= PLAT_MAX_PWR_LVL; lvl++) 448 target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 449 } 450 451 /****************************************************************************** 452 * Helper function to set the target local power state that each power domain 453 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will 454 * enter. This function will be called after coordination of requested power 455 * states has been done for each power level. 456 *****************************************************************************/ 457 void psci_set_target_local_pwr_states(unsigned int end_pwrlvl, 458 const psci_power_state_t *target_state) 459 { 460 unsigned int parent_idx, lvl; 461 const plat_local_state_t *pd_state = target_state->pwr_domain_state; 462 463 psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]); 464 465 /* 466 * Need to flush as local_state might be accessed with Data Cache 467 * disabled during power on 468 */ 469 psci_flush_cpu_data(psci_svc_cpu_data.local_state); 470 471 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; 472 473 /* Copy the local_state from state_info */ 474 for (lvl = 1U; lvl <= end_pwrlvl; lvl++) { 475 set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]); 476 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 477 } 478 } 479 480 /******************************************************************************* 481 * PSCI helper function to get the parent nodes corresponding to a cpu_index. 482 ******************************************************************************/ 483 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx, 484 unsigned int end_lvl, 485 unsigned int *node_index) 486 { 487 unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node; 488 unsigned int i; 489 unsigned int *node = node_index; 490 491 for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) { 492 *node = parent_node; 493 node++; 494 parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node; 495 } 496 } 497 498 /****************************************************************************** 499 * This function is invoked post CPU power up and initialization. It sets the 500 * affinity info state, target power state and requested power state for the 501 * current CPU and all its ancestor power domains to RUN. 502 *****************************************************************************/ 503 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl) 504 { 505 unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl; 506 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 507 508 /* Reset the local_state to RUN for the non cpu power domains. */ 509 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 510 set_non_cpu_pd_node_local_state(parent_idx, 511 PSCI_LOCAL_STATE_RUN); 512 psci_set_req_local_pwr_state(lvl, 513 cpu_idx, 514 PSCI_LOCAL_STATE_RUN); 515 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 516 } 517 518 /* Set the affinity info state to ON */ 519 psci_set_aff_info_state(AFF_STATE_ON); 520 521 psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN); 522 psci_flush_cpu_data(psci_svc_cpu_data); 523 } 524 525 /****************************************************************************** 526 * This function is used in platform-coordinated mode. 527 * 528 * This function is passed the local power states requested for each power 529 * domain (state_info) between the current CPU domain and its ancestors until 530 * the target power level (end_pwrlvl). It updates the array of requested power 531 * states with this information. 532 * 533 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it 534 * retrieves the states requested by all the cpus of which the power domain at 535 * that level is an ancestor. It passes this information to the platform to 536 * coordinate and return the target power state. If the target state for a level 537 * is RUN then subsequent levels are not considered. At the CPU level, state 538 * coordination is not required. Hence, the requested and the target states are 539 * the same. 540 * 541 * The 'state_info' is updated with the target state for each level between the 542 * CPU and the 'end_pwrlvl' and returned to the caller. 543 * 544 * This function will only be invoked with data cache enabled and while 545 * powering down a core. 546 *****************************************************************************/ 547 void psci_do_state_coordination(unsigned int end_pwrlvl, 548 psci_power_state_t *state_info) 549 { 550 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos(); 551 unsigned int start_idx; 552 unsigned int ncpus; 553 plat_local_state_t target_state, *req_states; 554 555 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); 556 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 557 558 /* For level 0, the requested state will be equivalent 559 to target state */ 560 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 561 562 /* First update the requested power state */ 563 psci_set_req_local_pwr_state(lvl, cpu_idx, 564 state_info->pwr_domain_state[lvl]); 565 566 /* Get the requested power states for this power level */ 567 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 568 req_states = psci_get_req_local_pwr_states(lvl, start_idx); 569 570 /* 571 * Let the platform coordinate amongst the requested states at 572 * this power level and return the target local power state. 573 */ 574 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 575 target_state = plat_get_target_pwr_state(lvl, 576 req_states, 577 ncpus); 578 579 state_info->pwr_domain_state[lvl] = target_state; 580 581 /* Break early if the negotiated target power state is RUN */ 582 if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0) 583 break; 584 585 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 586 } 587 588 /* 589 * This is for cases when we break out of the above loop early because 590 * the target power state is RUN at a power level < end_pwlvl. 591 * We update the requested power state from state_info and then 592 * set the target state as RUN. 593 */ 594 for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) { 595 psci_set_req_local_pwr_state(lvl, cpu_idx, 596 state_info->pwr_domain_state[lvl]); 597 state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 598 599 } 600 } 601 602 #if PSCI_OS_INIT_MODE 603 /****************************************************************************** 604 * This function is used in OS-initiated mode. 605 * 606 * This function is passed the local power states requested for each power 607 * domain (state_info) between the current CPU domain and its ancestors until 608 * the target power level (end_pwrlvl), and ensures the requested power states 609 * are valid. It updates the array of requested power states with this 610 * information. 611 * 612 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it 613 * retrieves the states requested by all the cpus of which the power domain at 614 * that level is an ancestor. It passes this information to the platform to 615 * coordinate and return the target power state. If the requested state does 616 * not match the target state, the request is denied. 617 * 618 * The 'state_info' is not modified. 619 * 620 * This function will only be invoked with data cache enabled and while 621 * powering down a core. 622 *****************************************************************************/ 623 int psci_validate_state_coordination(unsigned int end_pwrlvl, 624 psci_power_state_t *state_info) 625 { 626 int rc = PSCI_E_SUCCESS; 627 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos(); 628 unsigned int start_idx; 629 unsigned int ncpus; 630 plat_local_state_t target_state, *req_states; 631 plat_local_state_t prev[PLAT_MAX_PWR_LVL]; 632 633 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); 634 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 635 636 /* 637 * Save a copy of the previous requested local power states and update 638 * the new requested local power states. 639 */ 640 psci_update_req_local_pwr_states(end_pwrlvl, cpu_idx, state_info, prev); 641 642 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 643 /* Get the requested power states for this power level */ 644 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 645 req_states = psci_get_req_local_pwr_states(lvl, start_idx); 646 647 /* 648 * Let the platform coordinate amongst the requested states at 649 * this power level and return the target local power state. 650 */ 651 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 652 target_state = plat_get_target_pwr_state(lvl, 653 req_states, 654 ncpus); 655 656 /* 657 * Verify that the requested power state matches the target 658 * local power state. 659 */ 660 if (state_info->pwr_domain_state[lvl] != target_state) { 661 if (target_state == PSCI_LOCAL_STATE_RUN) { 662 rc = PSCI_E_DENIED; 663 } else { 664 rc = PSCI_E_INVALID_PARAMS; 665 } 666 goto exit; 667 } 668 } 669 670 /* 671 * Verify that the current core is the last running core at the 672 * specified power level. 673 */ 674 lvl = state_info->last_at_pwrlvl; 675 if (!psci_is_last_cpu_to_idle_at_pwrlvl(lvl)) { 676 rc = PSCI_E_DENIED; 677 } 678 679 exit: 680 if (rc != PSCI_E_SUCCESS) { 681 /* Restore the previous requested local power states. */ 682 psci_restore_req_local_pwr_states(cpu_idx, prev); 683 return rc; 684 } 685 686 return rc; 687 } 688 #endif 689 690 /****************************************************************************** 691 * This function validates a suspend request by making sure that if a standby 692 * state is requested then no power level is turned off and the highest power 693 * level is placed in a standby/retention state. 694 * 695 * It also ensures that the state level X will enter is not shallower than the 696 * state level X + 1 will enter. 697 * 698 * This validation will be enabled only for DEBUG builds as the platform is 699 * expected to perform these validations as well. 700 *****************************************************************************/ 701 int psci_validate_suspend_req(const psci_power_state_t *state_info, 702 unsigned int is_power_down_state) 703 { 704 unsigned int max_off_lvl, target_lvl, max_retn_lvl; 705 plat_local_state_t state; 706 plat_local_state_type_t req_state_type, deepest_state_type; 707 int i; 708 709 /* Find the target suspend power level */ 710 target_lvl = psci_find_target_suspend_lvl(state_info); 711 if (target_lvl == PSCI_INVALID_PWR_LVL) 712 return PSCI_E_INVALID_PARAMS; 713 714 /* All power domain levels are in a RUN state to begin with */ 715 deepest_state_type = STATE_TYPE_RUN; 716 717 for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) { 718 state = state_info->pwr_domain_state[i]; 719 req_state_type = find_local_state_type(state); 720 721 /* 722 * While traversing from the highest power level to the lowest, 723 * the state requested for lower levels has to be the same or 724 * deeper i.e. equal to or greater than the state at the higher 725 * levels. If this condition is true, then the requested state 726 * becomes the deepest state encountered so far. 727 */ 728 if (req_state_type < deepest_state_type) 729 return PSCI_E_INVALID_PARAMS; 730 deepest_state_type = req_state_type; 731 } 732 733 /* Find the highest off power level */ 734 max_off_lvl = psci_find_max_off_lvl(state_info); 735 736 /* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */ 737 max_retn_lvl = PSCI_INVALID_PWR_LVL; 738 if (target_lvl != max_off_lvl) 739 max_retn_lvl = target_lvl; 740 741 /* 742 * If this is not a request for a power down state then max off level 743 * has to be invalid and max retention level has to be a valid power 744 * level. 745 */ 746 if ((is_power_down_state == 0U) && 747 ((max_off_lvl != PSCI_INVALID_PWR_LVL) || 748 (max_retn_lvl == PSCI_INVALID_PWR_LVL))) 749 return PSCI_E_INVALID_PARAMS; 750 751 return PSCI_E_SUCCESS; 752 } 753 754 /****************************************************************************** 755 * This function finds the highest power level which will be powered down 756 * amongst all the power levels specified in the 'state_info' structure 757 *****************************************************************************/ 758 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info) 759 { 760 int i; 761 762 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 763 if (is_local_state_off(state_info->pwr_domain_state[i]) != 0) 764 return (unsigned int) i; 765 } 766 767 return PSCI_INVALID_PWR_LVL; 768 } 769 770 /****************************************************************************** 771 * This functions finds the level of the highest power domain which will be 772 * placed in a low power state during a suspend operation. 773 *****************************************************************************/ 774 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info) 775 { 776 int i; 777 778 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 779 if (is_local_state_run(state_info->pwr_domain_state[i]) == 0) 780 return (unsigned int) i; 781 } 782 783 return PSCI_INVALID_PWR_LVL; 784 } 785 786 /******************************************************************************* 787 * This function is passed the highest level in the topology tree that the 788 * operation should be applied to and a list of node indexes. It picks up locks 789 * from the node index list in order of increasing power domain level in the 790 * range specified. 791 ******************************************************************************/ 792 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl, 793 const unsigned int *parent_nodes) 794 { 795 unsigned int parent_idx; 796 unsigned int level; 797 798 /* No locking required for level 0. Hence start locking from level 1 */ 799 for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) { 800 parent_idx = parent_nodes[level - 1U]; 801 psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]); 802 } 803 } 804 805 /******************************************************************************* 806 * This function is passed the highest level in the topology tree that the 807 * operation should be applied to and a list of node indexes. It releases the 808 * locks in order of decreasing power domain level in the range specified. 809 ******************************************************************************/ 810 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl, 811 const unsigned int *parent_nodes) 812 { 813 unsigned int parent_idx; 814 unsigned int level; 815 816 /* Unlock top down. No unlocking required for level 0. */ 817 for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) { 818 parent_idx = parent_nodes[level - 1U]; 819 psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]); 820 } 821 } 822 823 /******************************************************************************* 824 * This function determines the full entrypoint information for the requested 825 * PSCI entrypoint on power on/resume and returns it. 826 ******************************************************************************/ 827 #ifdef __aarch64__ 828 static int psci_get_ns_ep_info(entry_point_info_t *ep, 829 uintptr_t entrypoint, 830 u_register_t context_id) 831 { 832 u_register_t ep_attr, sctlr; 833 unsigned int daif, ee, mode; 834 u_register_t ns_scr_el3 = read_scr_el3(); 835 u_register_t ns_sctlr_el1 = read_sctlr_el1(); 836 837 sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 838 read_sctlr_el2() : ns_sctlr_el1; 839 ee = 0; 840 841 ep_attr = NON_SECURE | EP_ST_DISABLE; 842 if ((sctlr & SCTLR_EE_BIT) != 0U) { 843 ep_attr |= EP_EE_BIG; 844 ee = 1; 845 } 846 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 847 848 ep->pc = entrypoint; 849 zeromem(&ep->args, sizeof(ep->args)); 850 ep->args.arg0 = context_id; 851 852 /* 853 * Figure out whether the cpu enters the non-secure address space 854 * in aarch32 or aarch64 855 */ 856 if ((ns_scr_el3 & SCR_RW_BIT) != 0U) { 857 858 /* 859 * Check whether a Thumb entry point has been provided for an 860 * aarch64 EL 861 */ 862 if ((entrypoint & 0x1UL) != 0UL) 863 return PSCI_E_INVALID_ADDRESS; 864 865 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1; 866 867 ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX, 868 DISABLE_ALL_EXCEPTIONS); 869 } else { 870 871 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 872 MODE32_hyp : MODE32_svc; 873 874 /* 875 * TODO: Choose async. exception bits if HYP mode is not 876 * implemented according to the values of SCR.{AW, FW} bits 877 */ 878 daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT; 879 880 ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee, 881 daif); 882 } 883 884 return PSCI_E_SUCCESS; 885 } 886 #else /* !__aarch64__ */ 887 static int psci_get_ns_ep_info(entry_point_info_t *ep, 888 uintptr_t entrypoint, 889 u_register_t context_id) 890 { 891 u_register_t ep_attr; 892 unsigned int aif, ee, mode; 893 u_register_t scr = read_scr(); 894 u_register_t ns_sctlr, sctlr; 895 896 /* Switch to non secure state */ 897 write_scr(scr | SCR_NS_BIT); 898 isb(); 899 ns_sctlr = read_sctlr(); 900 901 sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr; 902 903 /* Return to original state */ 904 write_scr(scr); 905 isb(); 906 ee = 0; 907 908 ep_attr = NON_SECURE | EP_ST_DISABLE; 909 if (sctlr & SCTLR_EE_BIT) { 910 ep_attr |= EP_EE_BIG; 911 ee = 1; 912 } 913 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 914 915 ep->pc = entrypoint; 916 zeromem(&ep->args, sizeof(ep->args)); 917 ep->args.arg0 = context_id; 918 919 mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc; 920 921 /* 922 * TODO: Choose async. exception bits if HYP mode is not 923 * implemented according to the values of SCR.{AW, FW} bits 924 */ 925 aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT; 926 927 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif); 928 929 return PSCI_E_SUCCESS; 930 } 931 932 #endif /* __aarch64__ */ 933 934 /******************************************************************************* 935 * This function validates the entrypoint with the platform layer if the 936 * appropriate pm_ops hook is exported by the platform and returns the 937 * 'entry_point_info'. 938 ******************************************************************************/ 939 int psci_validate_entry_point(entry_point_info_t *ep, 940 uintptr_t entrypoint, 941 u_register_t context_id) 942 { 943 int rc; 944 945 /* Validate the entrypoint using platform psci_ops */ 946 if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) { 947 rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint); 948 if (rc != PSCI_E_SUCCESS) 949 return PSCI_E_INVALID_ADDRESS; 950 } 951 952 /* 953 * Verify and derive the re-entry information for 954 * the non-secure world from the non-secure state from 955 * where this call originated. 956 */ 957 rc = psci_get_ns_ep_info(ep, entrypoint, context_id); 958 return rc; 959 } 960 961 /******************************************************************************* 962 * Generic handler which is called when a cpu is physically powered on. It 963 * traverses the node information and finds the highest power level powered 964 * off and performs generic, architectural, platform setup and state management 965 * to power on that power level and power levels below it. 966 * e.g. For a cpu that's been powered on, it will call the platform specific 967 * code to enable the gic cpu interface and for a cluster it will enable 968 * coherency at the interconnect level in addition to gic cpu interface. 969 ******************************************************************************/ 970 void psci_warmboot_entrypoint(void) 971 { 972 unsigned int end_pwrlvl; 973 unsigned int cpu_idx = plat_my_core_pos(); 974 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 975 psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} }; 976 977 /* Init registers that never change for the lifetime of TF-A */ 978 cm_manage_extensions_el3(); 979 980 /* 981 * Verify that we have been explicitly turned ON or resumed from 982 * suspend. 983 */ 984 if (psci_get_aff_info_state() == AFF_STATE_OFF) { 985 ERROR("Unexpected affinity info state.\n"); 986 panic(); 987 } 988 989 /* 990 * Get the maximum power domain level to traverse to after this cpu 991 * has been physically powered up. 992 */ 993 end_pwrlvl = get_power_on_target_pwrlvl(); 994 995 /* Get the parent nodes */ 996 psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes); 997 998 /* 999 * This function acquires the lock corresponding to each power level so 1000 * that by the time all locks are taken, the system topology is snapshot 1001 * and state management can be done safely. 1002 */ 1003 psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes); 1004 1005 psci_get_target_local_pwr_states(end_pwrlvl, &state_info); 1006 1007 #if ENABLE_PSCI_STAT 1008 plat_psci_stat_accounting_stop(&state_info); 1009 #endif 1010 1011 /* 1012 * This CPU could be resuming from suspend or it could have just been 1013 * turned on. To distinguish between these 2 cases, we examine the 1014 * affinity state of the CPU: 1015 * - If the affinity state is ON_PENDING then it has just been 1016 * turned on. 1017 * - Else it is resuming from suspend. 1018 * 1019 * Depending on the type of warm reset identified, choose the right set 1020 * of power management handler and perform the generic, architecture 1021 * and platform specific handling. 1022 */ 1023 if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING) 1024 psci_cpu_on_finish(cpu_idx, &state_info); 1025 else 1026 psci_cpu_suspend_finish(cpu_idx, &state_info); 1027 1028 /* 1029 * Generic management: Now we just need to retrieve the 1030 * information that we had stashed away during the cpu_on 1031 * call to set this cpu on its way. 1032 */ 1033 cm_prepare_el3_exit_ns(); 1034 1035 /* 1036 * Set the requested and target state of this CPU and all the higher 1037 * power domains which are ancestors of this CPU to run. 1038 */ 1039 psci_set_pwr_domains_to_run(end_pwrlvl); 1040 1041 #if ENABLE_PSCI_STAT 1042 /* 1043 * Update PSCI stats. 1044 * Caches are off when writing stats data on the power down path. 1045 * Since caches are now enabled, it's necessary to do cache 1046 * maintenance before reading that same data. 1047 */ 1048 psci_stats_update_pwr_up(end_pwrlvl, &state_info); 1049 #endif 1050 1051 /* 1052 * This loop releases the lock corresponding to each power level 1053 * in the reverse order to which they were acquired. 1054 */ 1055 psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes); 1056 } 1057 1058 /******************************************************************************* 1059 * This function initializes the set of hooks that PSCI invokes as part of power 1060 * management operation. The power management hooks are expected to be provided 1061 * by the SPD, after it finishes all its initialization 1062 ******************************************************************************/ 1063 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm) 1064 { 1065 assert(pm != NULL); 1066 psci_spd_pm = pm; 1067 1068 if (pm->svc_migrate != NULL) 1069 psci_caps |= define_psci_cap(PSCI_MIG_AARCH64); 1070 1071 if (pm->svc_migrate_info != NULL) 1072 psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64) 1073 | define_psci_cap(PSCI_MIG_INFO_TYPE); 1074 } 1075 1076 /******************************************************************************* 1077 * This function invokes the migrate info hook in the spd_pm_ops. It performs 1078 * the necessary return value validation. If the Secure Payload is UP and 1079 * migrate capable, it returns the mpidr of the CPU on which the Secure payload 1080 * is resident through the mpidr parameter. Else the value of the parameter on 1081 * return is undefined. 1082 ******************************************************************************/ 1083 int psci_spd_migrate_info(u_register_t *mpidr) 1084 { 1085 int rc; 1086 1087 if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL)) 1088 return PSCI_E_NOT_SUPPORTED; 1089 1090 rc = psci_spd_pm->svc_migrate_info(mpidr); 1091 1092 assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) || 1093 (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED)); 1094 1095 return rc; 1096 } 1097 1098 1099 /******************************************************************************* 1100 * This function prints the state of all power domains present in the 1101 * system 1102 ******************************************************************************/ 1103 void psci_print_power_domain_map(void) 1104 { 1105 #if LOG_LEVEL >= LOG_LEVEL_INFO 1106 unsigned int idx; 1107 plat_local_state_t state; 1108 plat_local_state_type_t state_type; 1109 1110 /* This array maps to the PSCI_STATE_X definitions in psci.h */ 1111 static const char * const psci_state_type_str[] = { 1112 "ON", 1113 "RETENTION", 1114 "OFF", 1115 }; 1116 1117 INFO("PSCI Power Domain Map:\n"); 1118 for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count); 1119 idx++) { 1120 state_type = find_local_state_type( 1121 psci_non_cpu_pd_nodes[idx].local_state); 1122 INFO(" Domain Node : Level %u, parent_node %u," 1123 " State %s (0x%x)\n", 1124 psci_non_cpu_pd_nodes[idx].level, 1125 psci_non_cpu_pd_nodes[idx].parent_node, 1126 psci_state_type_str[state_type], 1127 psci_non_cpu_pd_nodes[idx].local_state); 1128 } 1129 1130 for (idx = 0; idx < psci_plat_core_count; idx++) { 1131 state = psci_get_cpu_local_state_by_idx(idx); 1132 state_type = find_local_state_type(state); 1133 INFO(" CPU Node : MPID 0x%llx, parent_node %u," 1134 " State %s (0x%x)\n", 1135 (unsigned long long)psci_cpu_pd_nodes[idx].mpidr, 1136 psci_cpu_pd_nodes[idx].parent_node, 1137 psci_state_type_str[state_type], 1138 psci_get_cpu_local_state_by_idx(idx)); 1139 } 1140 #endif 1141 } 1142 1143 /****************************************************************************** 1144 * Return whether any secondaries were powered up with CPU_ON call. A CPU that 1145 * have ever been powered up would have set its MPDIR value to something other 1146 * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to 1147 * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is 1148 * meaningful only when called on the primary CPU during early boot. 1149 *****************************************************************************/ 1150 int psci_secondaries_brought_up(void) 1151 { 1152 unsigned int idx, n_valid = 0U; 1153 1154 for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) { 1155 if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR) 1156 n_valid++; 1157 } 1158 1159 assert(n_valid > 0U); 1160 1161 return (n_valid > 1U) ? 1 : 0; 1162 } 1163 1164 /******************************************************************************* 1165 * Initiate power down sequence, by calling power down operations registered for 1166 * this CPU. 1167 ******************************************************************************/ 1168 void psci_pwrdown_cpu(unsigned int power_level) 1169 { 1170 psci_do_manage_extensions(); 1171 1172 #if HW_ASSISTED_COHERENCY 1173 /* 1174 * With hardware-assisted coherency, the CPU drivers only initiate the 1175 * power down sequence, without performing cache-maintenance operations 1176 * in software. Data caches enabled both before and after this call. 1177 */ 1178 prepare_cpu_pwr_dwn(power_level); 1179 #else 1180 /* 1181 * Without hardware-assisted coherency, the CPU drivers disable data 1182 * caches, then perform cache-maintenance operations in software. 1183 * 1184 * This also calls prepare_cpu_pwr_dwn() to initiate power down 1185 * sequence, but that function will return with data caches disabled. 1186 * We must ensure that the stack memory is flushed out to memory before 1187 * we start popping from it again. 1188 */ 1189 psci_do_pwrdown_cache_maintenance(power_level); 1190 #endif 1191 } 1192 1193 /******************************************************************************* 1194 * This function invokes the callback 'stop_func()' with the 'mpidr' of each 1195 * online PE. Caller can pass suitable method to stop a remote core. 1196 * 1197 * 'wait_ms' is the timeout value in milliseconds for the other cores to 1198 * transition to power down state. Passing '0' makes it non-blocking. 1199 * 1200 * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the 1201 * given timeout. 1202 ******************************************************************************/ 1203 int psci_stop_other_cores(unsigned int wait_ms, 1204 void (*stop_func)(u_register_t mpidr)) 1205 { 1206 unsigned int idx, this_cpu_idx; 1207 1208 this_cpu_idx = plat_my_core_pos(); 1209 1210 /* Invoke stop_func for each core */ 1211 for (idx = 0U; idx < psci_plat_core_count; idx++) { 1212 /* skip current CPU */ 1213 if (idx == this_cpu_idx) { 1214 continue; 1215 } 1216 1217 /* Check if the CPU is ON */ 1218 if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) { 1219 (*stop_func)(psci_cpu_pd_nodes[idx].mpidr); 1220 } 1221 } 1222 1223 /* Need to wait for other cores to shutdown */ 1224 if (wait_ms != 0U) { 1225 while ((wait_ms-- != 0U) && (!psci_is_last_on_cpu())) { 1226 mdelay(1U); 1227 } 1228 1229 if (!psci_is_last_on_cpu()) { 1230 WARN("Failed to stop all cores!\n"); 1231 psci_print_power_domain_map(); 1232 return PSCI_E_DENIED; 1233 } 1234 } 1235 1236 return PSCI_E_SUCCESS; 1237 } 1238 1239 /******************************************************************************* 1240 * This function verifies that all the other cores in the system have been 1241 * turned OFF and the current CPU is the last running CPU in the system. 1242 * Returns true if the current CPU is the last ON CPU or false otherwise. 1243 * 1244 * This API has following differences with psci_is_last_on_cpu 1245 * 1. PSCI states are locked 1246 ******************************************************************************/ 1247 bool psci_is_last_on_cpu_safe(void) 1248 { 1249 unsigned int this_core = plat_my_core_pos(); 1250 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 1251 1252 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes); 1253 1254 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1255 1256 if (!psci_is_last_on_cpu()) { 1257 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1258 return false; 1259 } 1260 1261 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1262 1263 return true; 1264 } 1265 1266 /******************************************************************************* 1267 * This function verifies that all cores in the system have been turned ON. 1268 * Returns true, if all CPUs are ON or false otherwise. 1269 * 1270 * This API has following differences with psci_are_all_cpus_on 1271 * 1. PSCI states are locked 1272 ******************************************************************************/ 1273 bool psci_are_all_cpus_on_safe(void) 1274 { 1275 unsigned int this_core = plat_my_core_pos(); 1276 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 1277 1278 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes); 1279 1280 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1281 1282 if (!psci_are_all_cpus_on()) { 1283 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1284 return false; 1285 } 1286 1287 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1288 1289 return true; 1290 } 1291 1292 /******************************************************************************* 1293 * This function performs architectural feature specific management. 1294 * It ensures the architectural features are disabled during cpu 1295 * power off/suspend operations. 1296 ******************************************************************************/ 1297 void psci_do_manage_extensions(void) 1298 { 1299 /* 1300 * On power down we need to disable statistical profiling extensions 1301 * before exiting coherency. 1302 */ 1303 if (is_feat_spe_supported()) { 1304 spe_disable(); 1305 } 1306 1307 } 1308