xref: /rk3399_ARM-atf/lib/psci/psci_common.c (revision 9f407e448be8ca93d2e5ee47ccec99ef4ed64946)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <string.h>
9 
10 #include <arch.h>
11 #include <arch_features.h>
12 #include <arch_helpers.h>
13 #include <common/bl_common.h>
14 #include <common/debug.h>
15 #include <context.h>
16 #include <drivers/delay_timer.h>
17 #include <lib/cpus/cpu_ops.h>
18 #include <lib/el3_runtime/context_mgmt.h>
19 #include <lib/extensions/spe.h>
20 #include <lib/per_cpu/per_cpu.h>
21 #include <lib/pmf/pmf.h>
22 #include <lib/runtime_instr.h>
23 #include <lib/utils.h>
24 #include <plat/common/platform.h>
25 
26 #include "psci_private.h"
27 
28 /*
29  * SPD power management operations, expected to be supplied by the registered
30  * SPD on successful SP initialization
31  */
32 const spd_pm_ops_t *psci_spd_pm;
33 
34 /*
35  * PSCI requested local power state map. This array is used to store the local
36  * power states requested by a CPU for power levels from level 1 to
37  * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
38  * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
39  * CPU are the same.
40  *
41  * During state coordination, the platform is passed an array containing the
42  * local states requested for a particular non cpu power domain by each cpu
43  * within the domain.
44  *
45  * TODO: Dense packing of the requested states will cause cache thrashing
46  * when multiple power domains write to it. If we allocate the requested
47  * states at each power level in a cache-line aligned per-domain memory,
48  * the cache thrashing can be avoided.
49  */
50 static plat_local_state_t
51 	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
52 
53 unsigned int psci_plat_core_count;
54 
55 /*******************************************************************************
56  * Arrays that hold the platform's power domain tree information for state
57  * management of power domains.
58  * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
59  * which is an ancestor of a CPU power domain.
60  * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
61  ******************************************************************************/
62 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
63 #if USE_COHERENT_MEM
64 __section(".tzfw_coherent_mem")
65 #endif
66 ;
67 
68 /* Lock for PSCI state coordination */
69 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
70 
71 PER_CPU_DEFINE(cpu_pd_node_t, psci_cpu_pd_nodes);
72 
73 /*******************************************************************************
74  * Pointer to functions exported by the platform to complete power mgmt. ops
75  ******************************************************************************/
76 const plat_psci_ops_t *psci_plat_pm_ops;
77 
78 /******************************************************************************
79  * Check that the maximum power level supported by the platform makes sense
80  *****************************************************************************/
81 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
82 	(PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
83 	assert_platform_max_pwrlvl_check);
84 
85 #if PSCI_OS_INIT_MODE
86 /*******************************************************************************
87  * The power state coordination mode used in CPU_SUSPEND.
88  * Defaults to platform-coordinated mode.
89  ******************************************************************************/
90 suspend_mode_t psci_suspend_mode = PLAT_COORD;
91 #endif
92 
93 /*
94  * The plat_local_state used by the platform is one of these types: RUN,
95  * RETENTION and OFF. The platform can define further sub-states for each type
96  * apart from RUN. This categorization is done to verify the sanity of the
97  * psci_power_state passed by the platform and to print debug information. The
98  * categorization is done on the basis of the following conditions:
99  *
100  * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
101  *
102  * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
103  *    STATE_TYPE_RETN.
104  *
105  * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
106  *    STATE_TYPE_OFF.
107  */
108 typedef enum plat_local_state_type {
109 	STATE_TYPE_RUN = 0,
110 	STATE_TYPE_RETN,
111 	STATE_TYPE_OFF
112 } plat_local_state_type_t;
113 
114 /* Function used to categorize plat_local_state. */
115 static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
116 {
117 	if (state != 0U) {
118 		if (state > PLAT_MAX_RET_STATE) {
119 			return STATE_TYPE_OFF;
120 		} else {
121 			return STATE_TYPE_RETN;
122 		}
123 	} else {
124 		return STATE_TYPE_RUN;
125 	}
126 }
127 
128 /******************************************************************************
129  * Check that the maximum retention level supported by the platform is less
130  * than the maximum off level.
131  *****************************************************************************/
132 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
133 		assert_platform_max_off_and_retn_state_check);
134 
135 /******************************************************************************
136  * This function ensures that the power state parameter in a CPU_SUSPEND request
137  * is valid. If so, it returns the requested states for each power level.
138  *****************************************************************************/
139 int psci_validate_power_state(unsigned int power_state,
140 			      psci_power_state_t *state_info)
141 {
142 	/* Check SBZ bits in power state are zero */
143 	if (psci_check_power_state(power_state) != 0U) {
144 		return PSCI_E_INVALID_PARAMS;
145 	}
146 	assert(psci_plat_pm_ops->validate_power_state != NULL);
147 
148 	/* Validate the power_state using platform pm_ops */
149 	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
150 }
151 
152 /******************************************************************************
153  * This function retrieves the `psci_power_state_t` for system suspend from
154  * the platform.
155  *****************************************************************************/
156 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
157 {
158 	/*
159 	 * Assert that the required pm_ops hook is implemented to ensure that
160 	 * the capability detected during psci_setup() is valid.
161 	 */
162 	assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
163 
164 	/*
165 	 * Query the platform for the power_state required for system suspend
166 	 */
167 	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
168 }
169 
170 #if PSCI_OS_INIT_MODE
171 /*******************************************************************************
172  * This function verifies that all the other cores at the 'end_pwrlvl' have been
173  * idled and the current CPU is the last running CPU at the 'end_pwrlvl'.
174  * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
175  * otherwise.
176  ******************************************************************************/
177 static bool psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int my_idx, unsigned int end_pwrlvl)
178 {
179 	unsigned int lvl;
180 	unsigned int parent_idx = 0;
181 	unsigned int cpu_start_idx, ncpus, cpu_idx;
182 	plat_local_state_t local_state;
183 
184 	if (end_pwrlvl == PSCI_CPU_PWR_LVL) {
185 		return true;
186 	}
187 
188 	parent_idx = PER_CPU_BY_INDEX(psci_cpu_pd_nodes, my_idx)->parent_node;
189 	for (lvl = PSCI_CPU_PWR_LVL + U(1); lvl < end_pwrlvl; lvl++) {
190 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
191 	}
192 
193 	cpu_start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
194 	ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
195 
196 	for (cpu_idx = cpu_start_idx; cpu_idx < cpu_start_idx + ncpus;
197 			cpu_idx++) {
198 		local_state = psci_get_cpu_local_state_by_idx(cpu_idx);
199 		if (cpu_idx == my_idx) {
200 			assert(is_local_state_run(local_state) != 0);
201 			continue;
202 		}
203 
204 		if (is_local_state_run(local_state) != 0) {
205 			return false;
206 		}
207 	}
208 
209 	return true;
210 }
211 #endif
212 
213 /*******************************************************************************
214  * This function verifies that all the other cores in the system have been
215  * turned OFF and the current CPU is the last running CPU in the system.
216  * Returns true, if the current CPU is the last ON CPU or false otherwise.
217  ******************************************************************************/
218 bool psci_is_last_on_cpu(unsigned int my_idx)
219 {
220 	for (unsigned int cpu_idx = 0U; cpu_idx < psci_plat_core_count; cpu_idx++) {
221 		if (cpu_idx == my_idx) {
222 			assert(psci_get_aff_info_state() == AFF_STATE_ON);
223 			continue;
224 		}
225 
226 		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) {
227 			VERBOSE("core=%u other than current core=%u %s\n",
228 				cpu_idx, my_idx, "running in the system");
229 			return false;
230 		}
231 	}
232 
233 	return true;
234 }
235 
236 /*******************************************************************************
237  * This function verifies that all cores in the system have been turned ON.
238  * Returns true, if all CPUs are ON or false otherwise.
239  ******************************************************************************/
240 static bool psci_are_all_cpus_on(void)
241 {
242 	unsigned int cpu_idx;
243 
244 	for (cpu_idx = 0U; cpu_idx < psci_plat_core_count; cpu_idx++) {
245 		if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_OFF) {
246 			return false;
247 		}
248 	}
249 
250 	return true;
251 }
252 
253 /*******************************************************************************
254  * Counts the number of CPUs in the system that are currently in the ON or
255  * ON_PENDING state.
256  *
257  * @note This function does not acquire any power domain locks. It must only be
258  *       called in contexts where it is guaranteed that PSCI state transitions
259  *       are not concurrently happening, or where locks are already held.
260  *
261  * @return The number of CPUs currently in AFF_STATE_ON or AFF_STATE_ON_PENDING.
262  ******************************************************************************/
263 static unsigned int psci_num_cpus_running(void)
264 {
265 	unsigned int cpu_idx;
266 	unsigned int no_of_cpus = 0U;
267 	aff_info_state_t aff_state;
268 
269 	for (cpu_idx = 0U; cpu_idx < psci_plat_core_count; cpu_idx++) {
270 		aff_state = psci_get_aff_info_state_by_idx(cpu_idx);
271 		if (aff_state == AFF_STATE_ON ||
272 		    aff_state == AFF_STATE_ON_PENDING) {
273 			no_of_cpus++;
274 		}
275 	}
276 
277 	return no_of_cpus;
278 }
279 
280 /*******************************************************************************
281  * Routine to return the maximum power level to traverse to after a cpu has
282  * been physically powered up. It is expected to be called immediately after
283  * reset from assembler code.
284  ******************************************************************************/
285 static unsigned int get_power_on_target_pwrlvl(void)
286 {
287 	unsigned int pwrlvl;
288 
289 	/*
290 	 * Assume that this cpu was suspended and retrieve its target power
291 	 * level. If it wasn't, the cpu is off so this will be PLAT_MAX_PWR_LVL.
292 	 */
293 	pwrlvl = psci_get_suspend_pwrlvl();
294 	assert(pwrlvl < PSCI_INVALID_PWR_LVL);
295 	return pwrlvl;
296 }
297 
298 /******************************************************************************
299  * Helper function to update the requested local power state array. This array
300  * does not store the requested state for the CPU power level. Hence an
301  * assertion is added to prevent us from accessing the CPU power level.
302  *****************************************************************************/
303 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
304 					 unsigned int cpu_idx,
305 					 plat_local_state_t req_pwr_state)
306 {
307 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
308 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
309 			(cpu_idx < psci_plat_core_count)) {
310 		psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
311 	}
312 }
313 
314 /******************************************************************************
315  * This function initializes the psci_req_local_pwr_states.
316  *****************************************************************************/
317 void __init psci_init_req_local_pwr_states(void)
318 {
319 	/* Initialize the requested state of all non CPU power domains as OFF */
320 	unsigned int pwrlvl;
321 	unsigned int core;
322 
323 	for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
324 		for (core = 0; core < psci_plat_core_count; core++) {
325 			psci_req_local_pwr_states[pwrlvl][core] =
326 				PLAT_MAX_OFF_STATE;
327 		}
328 	}
329 }
330 
331 /******************************************************************************
332  * Helper function to return a reference to an array containing the local power
333  * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
334  * array will be the number of cpu power domains of which this power domain is
335  * an ancestor. These requested states will be used to determine a suitable
336  * target state for this power domain during psci state coordination. An
337  * assertion is added to prevent us from accessing the CPU power level.
338  *****************************************************************************/
339 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
340 							 unsigned int cpu_idx)
341 {
342 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
343 
344 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
345 			(cpu_idx < psci_plat_core_count)) {
346 		return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
347 	} else {
348 		return NULL;
349 	}
350 }
351 
352 #if PSCI_OS_INIT_MODE
353 /******************************************************************************
354  * Helper function to save a copy of the psci_req_local_pwr_states (prev) for a
355  * CPU (cpu_idx), and update psci_req_local_pwr_states with the new requested
356  * local power states (state_info).
357  *****************************************************************************/
358 void psci_update_req_local_pwr_states(unsigned int end_pwrlvl,
359 				      unsigned int cpu_idx,
360 				      psci_power_state_t *state_info,
361 				      plat_local_state_t *prev)
362 {
363 	unsigned int lvl;
364 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
365 	unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
366 #else
367 	unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
368 #endif
369 	plat_local_state_t req_state;
370 
371 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
372 		/* Save the previous requested local power state */
373 		prev[lvl - 1U] = *psci_get_req_local_pwr_states(lvl, cpu_idx);
374 
375 		/* Update the new requested local power state */
376 		if (lvl <= end_pwrlvl) {
377 			req_state = state_info->pwr_domain_state[lvl];
378 		} else {
379 			req_state = state_info->pwr_domain_state[end_pwrlvl];
380 		}
381 		psci_set_req_local_pwr_state(lvl, cpu_idx, req_state);
382 	}
383 }
384 
385 /******************************************************************************
386  * Helper function to restore the previously saved requested local power states
387  * (prev) for a CPU (cpu_idx) to psci_req_local_pwr_states.
388  *****************************************************************************/
389 void psci_restore_req_local_pwr_states(unsigned int cpu_idx,
390 				       plat_local_state_t *prev)
391 {
392 	unsigned int lvl;
393 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
394 	unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
395 #else
396 	unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
397 #endif
398 
399 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
400 		/* Restore the previous requested local power state */
401 		psci_set_req_local_pwr_state(lvl, cpu_idx, prev[lvl - 1U]);
402 	}
403 }
404 #endif
405 
406 /*
407  * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
408  * memory.
409  *
410  * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
411  * it's accessed by both cached and non-cached participants. To serve the common
412  * minimum, perform a cache flush before read and after write so that non-cached
413  * participants operate on latest data in main memory.
414  *
415  * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
416  * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
417  * In both cases, no cache operations are required.
418  */
419 
420 /*
421  * Retrieve local state of non-CPU power domain node from a non-cached CPU,
422  * after any required cache maintenance operation.
423  */
424 static plat_local_state_t get_non_cpu_pd_node_local_state(
425 		unsigned int parent_idx)
426 {
427 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
428 	flush_dcache_range(
429 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
430 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
431 #endif
432 	return psci_non_cpu_pd_nodes[parent_idx].local_state;
433 }
434 
435 /*
436  * Update local state of non-CPU power domain node from a cached CPU; perform
437  * any required cache maintenance operation afterwards.
438  */
439 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
440 		plat_local_state_t state)
441 {
442 	psci_non_cpu_pd_nodes[parent_idx].local_state = state;
443 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
444 	flush_dcache_range(
445 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
446 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
447 #endif
448 }
449 
450 /******************************************************************************
451  * Helper function to return the current local power state of each power domain
452  * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
453  * function will be called after a cpu is powered on to find the local state
454  * each power domain has emerged from.
455  *****************************************************************************/
456 void psci_get_target_local_pwr_states(unsigned int cpu_idx, unsigned int end_pwrlvl,
457 				      psci_power_state_t *target_state)
458 {
459 	unsigned int parent_idx, lvl;
460 	plat_local_state_t *pd_state = target_state->pwr_domain_state;
461 
462 	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
463 	parent_idx = PER_CPU_BY_INDEX(psci_cpu_pd_nodes, cpu_idx)->parent_node;
464 
465 	/* Copy the local power state from node to state_info */
466 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
467 		pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
468 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
469 	}
470 
471 	/* Set the the higher levels to RUN */
472 	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++) {
473 		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
474 	}
475 }
476 
477 /******************************************************************************
478  * Helper function to set the target local power state that each power domain
479  * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
480  * enter. This function will be called after coordination of requested power
481  * states has been done for each power level.
482  *****************************************************************************/
483 void psci_set_target_local_pwr_states(unsigned int cpu_idx, unsigned int end_pwrlvl,
484 				      const psci_power_state_t *target_state)
485 {
486 	unsigned int parent_idx, lvl;
487 	const plat_local_state_t *pd_state = target_state->pwr_domain_state;
488 
489 	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
490 
491 	/*
492 	 * Need to flush as local_state might be accessed with Data Cache
493 	 * disabled during power on
494 	 */
495 	psci_flush_cpu_data(psci_svc_cpu_data.local_state);
496 
497 	parent_idx = PER_CPU_BY_INDEX(psci_cpu_pd_nodes, cpu_idx)->parent_node;
498 
499 	/* Copy the local_state from state_info */
500 	for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
501 		set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
502 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
503 	}
504 }
505 
506 /*******************************************************************************
507  * PSCI helper function to get the parent nodes corresponding to a cpu_index.
508  ******************************************************************************/
509 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
510 				      unsigned int end_lvl,
511 				      unsigned int *node_index)
512 {
513 	unsigned int parent_node =
514 		PER_CPU_BY_INDEX(psci_cpu_pd_nodes, cpu_idx)->parent_node;
515 	unsigned int i;
516 	unsigned int *node = node_index;
517 
518 	for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
519 		*node = parent_node;
520 		node++;
521 		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
522 	}
523 }
524 
525 /******************************************************************************
526  * This function is invoked post CPU power up and initialization. It sets the
527  * affinity info state, target power state and requested power state for the
528  * current CPU and all its ancestor power domains to RUN.
529  *****************************************************************************/
530 void psci_set_pwr_domains_to_run(unsigned int cpu_idx, unsigned int end_pwrlvl)
531 {
532 	unsigned int parent_idx, lvl;
533 	parent_idx = PER_CPU_BY_INDEX(psci_cpu_pd_nodes, cpu_idx)->parent_node;
534 
535 	/* Reset the local_state to RUN for the non cpu power domains. */
536 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
537 		set_non_cpu_pd_node_local_state(parent_idx,
538 				PSCI_LOCAL_STATE_RUN);
539 		psci_set_req_local_pwr_state(lvl,
540 					     cpu_idx,
541 					     PSCI_LOCAL_STATE_RUN);
542 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
543 	}
544 
545 	/* Set the affinity info state to ON */
546 	psci_set_aff_info_state(AFF_STATE_ON);
547 
548 	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
549 	psci_flush_cpu_data(psci_svc_cpu_data);
550 }
551 
552 /******************************************************************************
553  * This function is used in platform-coordinated mode.
554  *
555  * This function is passed the local power states requested for each power
556  * domain (state_info) between the current CPU domain and its ancestors until
557  * the target power level (end_pwrlvl). It updates the array of requested power
558  * states with this information.
559  *
560  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
561  * retrieves the states requested by all the cpus of which the power domain at
562  * that level is an ancestor. It passes this information to the platform to
563  * coordinate and return the target power state. If the target state for a level
564  * is RUN then subsequent levels are not considered. At the CPU level, state
565  * coordination is not required. Hence, the requested and the target states are
566  * the same.
567  *
568  * The 'state_info' is updated with the target state for each level between the
569  * CPU and the 'end_pwrlvl' and returned to the caller.
570  *
571  * This function will only be invoked with data cache enabled and while
572  * powering down a core.
573  *****************************************************************************/
574 void psci_do_state_coordination(unsigned int cpu_idx, unsigned int end_pwrlvl,
575 				psci_power_state_t *state_info)
576 {
577 	unsigned int lvl, parent_idx;
578 	unsigned int start_idx;
579 	unsigned int ncpus;
580 	plat_local_state_t target_state;
581 
582 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
583 	parent_idx = PER_CPU_BY_INDEX(psci_cpu_pd_nodes, cpu_idx)->parent_node;
584 
585 	/* For level 0, the requested state will be equivalent
586 	   to target state */
587 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
588 
589 		/* First update the requested power state */
590 		psci_set_req_local_pwr_state(lvl, cpu_idx,
591 					     state_info->pwr_domain_state[lvl]);
592 
593 		/* Get the requested power states for this power level */
594 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
595 		plat_local_state_t const *req_states = psci_get_req_local_pwr_states(lvl,
596 										start_idx);
597 
598 		/*
599 		 * Let the platform coordinate amongst the requested states at
600 		 * this power level and return the target local power state.
601 		 */
602 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
603 		target_state = plat_get_target_pwr_state(lvl,
604 							 req_states,
605 							 ncpus);
606 
607 		state_info->pwr_domain_state[lvl] = target_state;
608 
609 		/* Break early if the negotiated target power state is RUN */
610 		if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0) {
611 			break;
612 		}
613 
614 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
615 	}
616 
617 	/*
618 	 * This is for cases when we break out of the above loop early because
619 	 * the target power state is RUN at a power level < end_pwlvl.
620 	 * We update the requested power state from state_info and then
621 	 * set the target state as RUN.
622 	 */
623 	for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
624 		psci_set_req_local_pwr_state(lvl, cpu_idx,
625 					     state_info->pwr_domain_state[lvl]);
626 		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
627 
628 	}
629 }
630 
631 #if PSCI_OS_INIT_MODE
632 /******************************************************************************
633  * This function is used in OS-initiated mode.
634  *
635  * This function is passed the local power states requested for each power
636  * domain (state_info) between the current CPU domain and its ancestors until
637  * the target power level (end_pwrlvl), and ensures the requested power states
638  * are valid. It updates the array of requested power states with this
639  * information.
640  *
641  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
642  * retrieves the states requested by all the cpus of which the power domain at
643  * that level is an ancestor. It passes this information to the platform to
644  * coordinate and return the target power state. If the requested state does
645  * not match the target state, the request is denied.
646  *
647  * The 'state_info' is not modified.
648  *
649  * This function will only be invoked with data cache enabled and while
650  * powering down a core.
651  *****************************************************************************/
652 int psci_validate_state_coordination(unsigned int cpu_idx, unsigned int end_pwrlvl,
653 				     psci_power_state_t *state_info)
654 {
655 	int rc = PSCI_E_SUCCESS;
656 	unsigned int lvl, parent_idx;
657 	unsigned int start_idx;
658 	unsigned int ncpus;
659 	plat_local_state_t target_state, *req_states;
660 	plat_local_state_t prev[PLAT_MAX_PWR_LVL];
661 
662 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
663 	parent_idx = PER_CPU_BY_INDEX(psci_cpu_pd_nodes, cpu_idx)->parent_node;
664 
665 	/*
666 	 * Save a copy of the previous requested local power states and update
667 	 * the new requested local power states.
668 	 */
669 	psci_update_req_local_pwr_states(end_pwrlvl, cpu_idx, state_info, prev);
670 
671 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
672 		/* Get the requested power states for this power level */
673 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
674 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
675 
676 		/*
677 		 * Let the platform coordinate amongst the requested states at
678 		 * this power level and return the target local power state.
679 		 */
680 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
681 		target_state = plat_get_target_pwr_state(lvl,
682 							 req_states,
683 							 ncpus);
684 
685 		/*
686 		 * Verify that the requested power state matches the target
687 		 * local power state.
688 		 */
689 		if (state_info->pwr_domain_state[lvl] != target_state) {
690 			if (target_state == PSCI_LOCAL_STATE_RUN) {
691 				rc = PSCI_E_DENIED;
692 			} else {
693 				rc = PSCI_E_INVALID_PARAMS;
694 			}
695 			goto exit;
696 		}
697 
698 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
699 	}
700 
701 	/*
702 	 * Verify that the current core is the last running core at the
703 	 * specified power level.
704 	 */
705 	lvl = state_info->last_at_pwrlvl;
706 	if (!psci_is_last_cpu_to_idle_at_pwrlvl(cpu_idx, lvl)) {
707 		rc = PSCI_E_DENIED;
708 	}
709 
710 exit:
711 	if (rc != PSCI_E_SUCCESS) {
712 		/* Restore the previous requested local power states. */
713 		psci_restore_req_local_pwr_states(cpu_idx, prev);
714 		return rc;
715 	}
716 
717 	return rc;
718 }
719 #endif
720 
721 /******************************************************************************
722  * This function validates a suspend request by making sure that if a standby
723  * state is requested then no power level is turned off and the highest power
724  * level is placed in a standby/retention state.
725  *
726  * It also ensures that the state level X will enter is not shallower than the
727  * state level X + 1 will enter.
728  *
729  * This validation will be enabled only for DEBUG builds as the platform is
730  * expected to perform these validations as well.
731  *****************************************************************************/
732 int psci_validate_suspend_req(const psci_power_state_t *state_info,
733 			      unsigned int is_power_down_state)
734 {
735 	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
736 	plat_local_state_t state;
737 	plat_local_state_type_t req_state_type, deepest_state_type;
738 	int i;
739 
740 	/* Find the target suspend power level */
741 	target_lvl = psci_find_target_suspend_lvl(state_info);
742 	if (target_lvl == PSCI_INVALID_PWR_LVL) {
743 		return PSCI_E_INVALID_PARAMS;
744 	}
745 
746 	/* All power domain levels are in a RUN state to begin with */
747 	deepest_state_type = STATE_TYPE_RUN;
748 
749 	for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
750 		state = state_info->pwr_domain_state[i];
751 		req_state_type = find_local_state_type(state);
752 
753 		/*
754 		 * While traversing from the highest power level to the lowest,
755 		 * the state requested for lower levels has to be the same or
756 		 * deeper i.e. equal to or greater than the state at the higher
757 		 * levels. If this condition is true, then the requested state
758 		 * becomes the deepest state encountered so far.
759 		 */
760 		if (req_state_type < deepest_state_type) {
761 			return PSCI_E_INVALID_PARAMS;
762 		}
763 		deepest_state_type = req_state_type;
764 	}
765 
766 	/* Find the highest off power level */
767 	max_off_lvl = psci_find_max_off_lvl(state_info);
768 
769 	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
770 	max_retn_lvl = PSCI_INVALID_PWR_LVL;
771 	if (target_lvl != max_off_lvl) {
772 		max_retn_lvl = target_lvl;
773 	}
774 
775 	/*
776 	 * If this is not a request for a power down state then max off level
777 	 * has to be invalid and max retention level has to be a valid power
778 	 * level.
779 	 */
780 	if ((is_power_down_state == 0U) &&
781 			((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
782 			 (max_retn_lvl == PSCI_INVALID_PWR_LVL))) {
783 		return PSCI_E_INVALID_PARAMS;
784 	}
785 
786 	return PSCI_E_SUCCESS;
787 }
788 
789 /******************************************************************************
790  * This function finds the highest power level which will be powered down
791  * amongst all the power levels specified in the 'state_info' structure
792  *****************************************************************************/
793 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
794 {
795 	int i;
796 
797 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
798 		if (is_local_state_off(state_info->pwr_domain_state[i]) != 0) {
799 			return (unsigned int) i;
800 		}
801 	}
802 
803 	return PSCI_INVALID_PWR_LVL;
804 }
805 
806 /******************************************************************************
807  * This functions finds the level of the highest power domain which will be
808  * placed in a low power state during a suspend operation.
809  *****************************************************************************/
810 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
811 {
812 	int i;
813 
814 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
815 		if (is_local_state_run(state_info->pwr_domain_state[i]) == 0) {
816 			return (unsigned int) i;
817 		}
818 	}
819 
820 	return PSCI_INVALID_PWR_LVL;
821 }
822 
823 /*******************************************************************************
824  * This function is passed the highest level in the topology tree that the
825  * operation should be applied to and a list of node indexes. It picks up locks
826  * from the node index list in order of increasing power domain level in the
827  * range specified.
828  ******************************************************************************/
829 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
830 				   const unsigned int *parent_nodes)
831 {
832 	unsigned int parent_idx;
833 	unsigned int level;
834 
835 	/* No locking required for level 0. Hence start locking from level 1 */
836 	for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
837 		parent_idx = parent_nodes[level - 1U];
838 		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
839 	}
840 }
841 
842 /*******************************************************************************
843  * This function is passed the highest level in the topology tree that the
844  * operation should be applied to and a list of node indexes. It releases the
845  * locks in order of decreasing power domain level in the range specified.
846  ******************************************************************************/
847 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
848 				   const unsigned int *parent_nodes)
849 {
850 	unsigned int parent_idx;
851 	unsigned int level;
852 
853 	/* Unlock top down. No unlocking required for level 0. */
854 	for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) {
855 		parent_idx = parent_nodes[level - 1U];
856 		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
857 	}
858 }
859 
860 /*******************************************************************************
861  * This function determines the full entrypoint information for the requested
862  * PSCI entrypoint on power on/resume and returns it.
863  ******************************************************************************/
864 #ifdef __aarch64__
865 static int psci_get_ns_ep_info(entry_point_info_t *ep,
866 			       uintptr_t entrypoint,
867 			       u_register_t context_id)
868 {
869 	u_register_t ep_attr, sctlr;
870 	unsigned int daif, ee, mode;
871 	u_register_t ns_scr_el3 = read_scr_el3();
872 	u_register_t ns_sctlr_el1 = read_sctlr_el1();
873 
874 	sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
875 		read_sctlr_el2() : ns_sctlr_el1;
876 	ee = 0;
877 
878 	ep_attr = NON_SECURE | EP_ST_DISABLE;
879 	if ((sctlr & SCTLR_EE_BIT) != 0U) {
880 		ep_attr |= EP_EE_BIG;
881 		ee = 1;
882 	}
883 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
884 
885 	ep->pc = entrypoint;
886 	zeromem(&ep->args, sizeof(ep->args));
887 	ep->args.arg0 = context_id;
888 
889 	/*
890 	 * Figure out whether the cpu enters the non-secure address space
891 	 * in aarch32 or aarch64
892 	 */
893 	if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
894 
895 		/*
896 		 * Check whether a Thumb entry point has been provided for an
897 		 * aarch64 EL
898 		 */
899 		if ((entrypoint & 0x1UL) != 0UL) {
900 			return PSCI_E_INVALID_ADDRESS;
901 		}
902 
903 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
904 
905 		ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX,
906 				   DISABLE_ALL_EXCEPTIONS);
907 	} else {
908 
909 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
910 			MODE32_hyp : MODE32_svc;
911 
912 		/*
913 		 * TODO: Choose async. exception bits if HYP mode is not
914 		 * implemented according to the values of SCR.{AW, FW} bits
915 		 */
916 		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
917 
918 		ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee,
919 				       daif);
920 	}
921 
922 	return PSCI_E_SUCCESS;
923 }
924 #else /* !__aarch64__ */
925 static int psci_get_ns_ep_info(entry_point_info_t *ep,
926 			       uintptr_t entrypoint,
927 			       u_register_t context_id)
928 {
929 	u_register_t ep_attr;
930 	unsigned int aif, ee, mode;
931 	u_register_t scr = read_scr();
932 	u_register_t ns_sctlr, sctlr;
933 
934 	/* Switch to non secure state */
935 	write_scr(scr | SCR_NS_BIT);
936 	isb();
937 	ns_sctlr = read_sctlr();
938 
939 	sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
940 
941 	/* Return to original state */
942 	write_scr(scr);
943 	isb();
944 	ee = 0;
945 
946 	ep_attr = NON_SECURE | EP_ST_DISABLE;
947 	if (sctlr & SCTLR_EE_BIT) {
948 		ep_attr |= EP_EE_BIG;
949 		ee = 1;
950 	}
951 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
952 
953 	ep->pc = entrypoint;
954 	zeromem(&ep->args, sizeof(ep->args));
955 	ep->args.arg0 = context_id;
956 
957 	mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
958 
959 	/*
960 	 * TODO: Choose async. exception bits if HYP mode is not
961 	 * implemented according to the values of SCR.{AW, FW} bits
962 	 */
963 	aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
964 
965 	ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
966 
967 	return PSCI_E_SUCCESS;
968 }
969 
970 #endif /* __aarch64__ */
971 
972 /*******************************************************************************
973  * This function validates the entrypoint with the platform layer if the
974  * appropriate pm_ops hook is exported by the platform and returns the
975  * 'entry_point_info'.
976  ******************************************************************************/
977 int psci_validate_entry_point(entry_point_info_t *ep,
978 			      uintptr_t entrypoint,
979 			      u_register_t context_id)
980 {
981 	int rc;
982 
983 	/* Validate the entrypoint using platform psci_ops */
984 	if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
985 		rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
986 		if (rc != PSCI_E_SUCCESS) {
987 			return PSCI_E_INVALID_ADDRESS;
988 		}
989 	}
990 
991 	/*
992 	 * Verify and derive the re-entry information for
993 	 * the non-secure world from the non-secure state from
994 	 * where this call originated.
995 	 */
996 	rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
997 	return rc;
998 }
999 
1000 /*******************************************************************************
1001  * Generic handler which is called when a cpu is physically powered on. It
1002  * traverses the node information and finds the highest power level powered
1003  * off and performs generic, architectural, platform setup and state management
1004  * to power on that power level and power levels below it.
1005  * e.g. For a cpu that's been powered on, it will call the platform specific
1006  * code to enable the gic cpu interface and for a cluster it will enable
1007  * coherency at the interconnect level in addition to gic cpu interface.
1008  ******************************************************************************/
1009 void psci_warmboot_entrypoint(unsigned int cpu_idx)
1010 {
1011 	unsigned int end_pwrlvl;
1012 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1013 	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
1014 
1015 	/*
1016 	 * Verify that we have been explicitly turned ON or resumed from
1017 	 * suspend.
1018 	 */
1019 	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
1020 		ERROR("Unexpected affinity info state.\n");
1021 		panic();
1022 	}
1023 
1024 	/*
1025 	 * Get the maximum power domain level to traverse to after this cpu
1026 	 * has been physically powered up.
1027 	 */
1028 	end_pwrlvl = get_power_on_target_pwrlvl();
1029 
1030 	/* Get the parent nodes */
1031 	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
1032 
1033 	/*
1034 	 * This function acquires the lock corresponding to each power level so
1035 	 * that by the time all locks are taken, the system topology is snapshot
1036 	 * and state management can be done safely.
1037 	 */
1038 	psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes);
1039 
1040 	psci_get_target_local_pwr_states(cpu_idx, end_pwrlvl, &state_info);
1041 
1042 #if ENABLE_PSCI_STAT
1043 	plat_psci_stat_accounting_stop(&state_info);
1044 #endif
1045 
1046 	/*
1047 	 * This CPU could be resuming from suspend or it could have just been
1048 	 * turned on. To distinguish between these 2 cases, we examine the
1049 	 * affinity state of the CPU:
1050 	 *  - If the affinity state is ON_PENDING then it has just been
1051 	 *    turned on.
1052 	 *  - Else it is resuming from suspend.
1053 	 *
1054 	 * Depending on the type of warm reset identified, choose the right set
1055 	 * of power management handler and perform the generic, architecture
1056 	 * and platform specific handling.
1057 	 */
1058 	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING) {
1059 		psci_cpu_on_finish(cpu_idx, &state_info);
1060 	} else {
1061 		unsigned int max_off_lvl = psci_find_max_off_lvl(&state_info);
1062 
1063 		assert(max_off_lvl != PSCI_INVALID_PWR_LVL);
1064 		psci_cpu_suspend_to_powerdown_finish(cpu_idx, max_off_lvl, &state_info, false);
1065 	}
1066 
1067 	/*
1068 	 * Caches and (importantly) coherency are on so we can rely on seeing
1069 	 * whatever the primary gave us without explicit cache maintenance
1070 	 */
1071 	entry_point_info_t *ep = get_cpu_data(warmboot_ep_info);
1072 	cm_init_my_context(ep);
1073 
1074 	/*
1075 	 * Generic management: Now we just need to retrieve the
1076 	 * information that we had stashed away during the cpu_on
1077 	 * call to set this cpu on its way.
1078 	 */
1079 	cm_prepare_el3_exit_ns();
1080 
1081 	/*
1082 	 * Set the requested and target state of this CPU and all the higher
1083 	 * power domains which are ancestors of this CPU to run.
1084 	 */
1085 	psci_set_pwr_domains_to_run(cpu_idx, end_pwrlvl);
1086 
1087 #if ENABLE_PSCI_STAT
1088 	psci_stats_update_pwr_up(cpu_idx, end_pwrlvl, &state_info);
1089 #endif
1090 
1091 	/*
1092 	 * This loop releases the lock corresponding to each power level
1093 	 * in the reverse order to which they were acquired.
1094 	 */
1095 	psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes);
1096 }
1097 
1098 /*******************************************************************************
1099  * This function initializes the set of hooks that PSCI invokes as part of power
1100  * management operation. The power management hooks are expected to be provided
1101  * by the SPD, after it finishes all its initialization
1102  ******************************************************************************/
1103 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
1104 {
1105 	assert(pm != NULL);
1106 	psci_spd_pm = pm;
1107 
1108 	if (pm->svc_migrate != NULL) {
1109 		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
1110 	}
1111 
1112 	if (pm->svc_migrate_info != NULL) {
1113 		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
1114 				| define_psci_cap(PSCI_MIG_INFO_TYPE);
1115 	}
1116 }
1117 
1118 /*******************************************************************************
1119  * This function invokes the migrate info hook in the spd_pm_ops. It performs
1120  * the necessary return value validation. If the Secure Payload is UP and
1121  * migrate capable, it returns the mpidr of the CPU on which the Secure payload
1122  * is resident through the mpidr parameter. Else the value of the parameter on
1123  * return is undefined.
1124  ******************************************************************************/
1125 int psci_spd_migrate_info(u_register_t *mpidr)
1126 {
1127 	int rc;
1128 
1129 	if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL)) {
1130 		return PSCI_E_NOT_SUPPORTED;
1131 	}
1132 
1133 	rc = psci_spd_pm->svc_migrate_info(mpidr);
1134 
1135 	assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
1136 	       (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
1137 
1138 	return rc;
1139 }
1140 
1141 
1142 /*******************************************************************************
1143  * This function prints the state of all power domains present in the
1144  * system
1145  ******************************************************************************/
1146 void psci_print_power_domain_map(void)
1147 {
1148 #if LOG_LEVEL >= LOG_LEVEL_INFO
1149 	unsigned int idx;
1150 	plat_local_state_t state;
1151 	plat_local_state_type_t state_type;
1152 
1153 	/* This array maps to the PSCI_STATE_X definitions in psci.h */
1154 	static const char * const psci_state_type_str[] = {
1155 		"ON",
1156 		"RETENTION",
1157 		"OFF",
1158 	};
1159 
1160 	INFO("PSCI Power Domain Map:\n");
1161 	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count);
1162 							idx++) {
1163 		state_type = find_local_state_type(
1164 				psci_non_cpu_pd_nodes[idx].local_state);
1165 		INFO("  Domain Node : Level %u, parent_node %u,"
1166 				" State %s (0x%x)\n",
1167 				psci_non_cpu_pd_nodes[idx].level,
1168 				psci_non_cpu_pd_nodes[idx].parent_node,
1169 				psci_state_type_str[state_type],
1170 				psci_non_cpu_pd_nodes[idx].local_state);
1171 	}
1172 
1173 	for (idx = 0; idx < psci_plat_core_count; idx++) {
1174 		state = psci_get_cpu_local_state_by_idx(idx);
1175 		state_type = find_local_state_type(state);
1176 		INFO("  CPU Node : MPID 0x%llx, parent_node %u,"
1177 				" State %s (0x%x)\n",
1178 				(unsigned long long)PER_CPU_BY_INDEX(psci_cpu_pd_nodes, idx)->mpidr,
1179 				PER_CPU_BY_INDEX(psci_cpu_pd_nodes, idx)->parent_node,
1180 				psci_state_type_str[state_type],
1181 				psci_get_cpu_local_state_by_idx(idx));
1182 	}
1183 #endif
1184 }
1185 
1186 /******************************************************************************
1187  * Return whether any secondaries were powered up with CPU_ON call. A CPU that
1188  * have ever been powered up would have set its MPDIR value to something other
1189  * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
1190  * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
1191  * meaningful only when called on the primary CPU during early boot.
1192  *****************************************************************************/
1193 int psci_secondaries_brought_up(void)
1194 {
1195 	unsigned int idx, n_valid = 0U;
1196 
1197 	for (idx = 0U; idx < PLATFORM_CORE_COUNT; idx++) {
1198 		if (PER_CPU_BY_INDEX(psci_cpu_pd_nodes, idx)->mpidr != PSCI_INVALID_MPIDR) {
1199 			n_valid++;
1200 		}
1201 	}
1202 
1203 	assert(n_valid > 0U);
1204 
1205 	return (n_valid > 1U) ? 1 : 0;
1206 }
1207 
1208 static u_register_t call_cpu_pwr_dwn(unsigned int power_level)
1209 {
1210 	struct cpu_ops *ops = get_cpu_data(cpu_ops_ptr);
1211 
1212 	/* Call the last available power down handler */
1213 	if (power_level > CPU_MAX_PWR_DWN_OPS - 1) {
1214 		power_level = CPU_MAX_PWR_DWN_OPS - 1;
1215 	}
1216 
1217 	assert(ops != NULL);
1218 	assert(ops->pwr_dwn_ops[power_level] != NULL);
1219 
1220 	return ops->pwr_dwn_ops[power_level]();
1221 }
1222 
1223 static void prepare_cpu_pwr_dwn(unsigned int power_level)
1224 {
1225 	/* ignore the return, all cpus should behave the same */
1226 	(void)call_cpu_pwr_dwn(power_level);
1227 }
1228 
1229 static void prepare_cpu_pwr_up(unsigned int power_level)
1230 {
1231 	/*
1232 	 * Call the pwr_dwn cpu hook again, indicating that an abandon happened.
1233 	 * The cpu driver is expected to clean up. We ask it to return
1234 	 * PABANDON_ACK to indicate that it has handled this. This is a
1235 	 * heuristic: the value has been chosen such that an unported CPU is
1236 	 * extremely unlikely to return this value.
1237 	 */
1238 	u_register_t ret = call_cpu_pwr_dwn(power_level);
1239 
1240 	/* unreachable on AArch32 so cast down to calm the compiler */
1241 	if (ret != (u_register_t) PABANDON_ACK) {
1242 		panic();
1243 	}
1244 }
1245 
1246 /*******************************************************************************
1247  * Initiate power down sequence, by calling power down operations registered for
1248  * this CPU.
1249  ******************************************************************************/
1250 void psci_pwrdown_cpu_start(unsigned int power_level)
1251 {
1252 #if ENABLE_RUNTIME_INSTRUMENTATION
1253 
1254 	/*
1255 	 * Flush cache line so that even if CPU power down happens
1256 	 * the timestamp update is reflected in memory.
1257 	 */
1258 	PMF_CAPTURE_TIMESTAMP(rt_instr_svc,
1259 		RT_INSTR_ENTER_CFLUSH,
1260 		PMF_CACHE_MAINT);
1261 #endif
1262 
1263 #if !HW_ASSISTED_COHERENCY
1264 	/*
1265 	 * Disable data caching and handle the stack's cache maintenance.
1266 	 *
1267 	 * If the core can't automatically exit coherency, the cpu driver needs
1268 	 * to flush caches and exit coherency. We can't do this with data caches
1269 	 * enabled. The cpu driver will decide which caches to flush based on
1270 	 * the power level.
1271 	 *
1272 	 * If automatic coherency management is possible, we can keep data
1273 	 * caches on until the very end and let hardware do cache maintenance.
1274 	 */
1275 	psci_do_pwrdown_cache_maintenance();
1276 #endif
1277 
1278 	/* Initiate the power down sequence by calling into the cpu driver. */
1279 	prepare_cpu_pwr_dwn(power_level);
1280 
1281 #if ENABLE_RUNTIME_INSTRUMENTATION
1282 	PMF_CAPTURE_TIMESTAMP(rt_instr_svc,
1283 		RT_INSTR_EXIT_CFLUSH,
1284 		PMF_NO_CACHE_MAINT);
1285 #endif
1286 }
1287 
1288 /*******************************************************************************
1289  * Finish a terminal power down sequence, ending with a wfi. In case of wakeup
1290  * will retry the sleep and panic if it persists.
1291  ******************************************************************************/
1292 void __dead2 psci_pwrdown_cpu_end_terminal(void)
1293 {
1294 #if ERRATA_SME_POWER_DOWN
1295 	/*
1296 	 * force SME off to not get power down rejected. Getting here is
1297 	 * terminal so we don't care if we lose context because of another
1298 	 * wakeup
1299 	 */
1300 	if (is_feat_sme_supported()) {
1301 		write_svcr(0);
1302 		isb();
1303 	}
1304 #endif /* ERRATA_SME_POWER_DOWN */
1305 
1306 	/* ensure write buffer empty */
1307 	dsbsy();
1308 
1309 	/*
1310 	 * Execute a wfi which, in most cases, will allow the power controller
1311 	 * to physically power down this cpu. Under some circumstances that may
1312 	 * be denied. Hopefully this is transient, retrying a few times should
1313 	 * power down.
1314 	 */
1315 	for (int i = 0; i < 32; i++)
1316 		wfi();
1317 
1318 	/* Wake up wasn't transient. System is probably in a bad state. */
1319 	ERROR("Could not power off CPU.\n");
1320 	panic();
1321 }
1322 
1323 /*******************************************************************************
1324  * Finish a non-terminal power down sequence, ending with a wfi. In case of
1325  * wakeup will unwind any CPU specific actions and return.
1326  ******************************************************************************/
1327 
1328 void psci_pwrdown_cpu_end_wakeup(unsigned int power_level)
1329 {
1330 	/* ensure write buffer empty */
1331 	dsbsy();
1332 
1333 	/*
1334 	 * Turn the core off. Usually, will be terminal. In some circumstances
1335 	 * the powerdown will be denied and we'll need to unwind.
1336 	 */
1337 	wfi();
1338 
1339 	/*
1340 	 * Waking up does not require hardware-assisted coherency, but that is
1341 	 * the case for every core that can wake up. Can either happen because
1342 	 * of errata or pabandon.
1343 	 */
1344 #if !defined(__aarch64__) || !HW_ASSISTED_COHERENCY
1345 	ERROR("AArch32 systems shouldn't wake up.\n");
1346 	panic();
1347 #endif
1348 	/*
1349 	 * Begin unwinding. Everything can be shared with CPU_ON and co later,
1350 	 * except the CPU specific bit. Cores that have hardware-assisted
1351 	 * coherency should be able to handle this.
1352 	 */
1353 	prepare_cpu_pwr_up(power_level);
1354 }
1355 
1356 /*******************************************************************************
1357  * This function invokes the callback 'stop_func()' with the 'mpidr' of each
1358  * online PE. Caller can pass suitable method to stop a remote core.
1359  *
1360  * 'wait_ms' is the timeout value in milliseconds for the other cores to
1361  * transition to power down state. Passing '0' makes it non-blocking.
1362  *
1363  * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the
1364  * given timeout.
1365  ******************************************************************************/
1366 int psci_stop_other_cores(unsigned int this_cpu_idx, unsigned int wait_ms,
1367 				   void (*stop_func)(u_register_t mpidr))
1368 {
1369 	/* Invoke stop_func for each core */
1370 	for (unsigned int idx = 0U; idx < psci_plat_core_count; idx++) {
1371 		/* skip current CPU */
1372 		if (idx == this_cpu_idx) {
1373 			continue;
1374 		}
1375 
1376 		/* Check if the CPU is ON */
1377 		if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) {
1378 			(*stop_func)(PER_CPU_BY_INDEX(psci_cpu_pd_nodes, idx)->mpidr);
1379 		}
1380 	}
1381 
1382 	/* Need to wait for other cores to shutdown */
1383 	if (wait_ms != 0U) {
1384 		for (uint32_t delay_ms = wait_ms; ((delay_ms != 0U) &&
1385 					(!psci_is_last_on_cpu(this_cpu_idx))); delay_ms--) {
1386 			mdelay(1U);
1387 		}
1388 
1389 		if (!psci_is_last_on_cpu(this_cpu_idx)) {
1390 			WARN("Failed to stop all cores!\n");
1391 			psci_print_power_domain_map();
1392 			return PSCI_E_DENIED;
1393 		}
1394 	}
1395 
1396 	return PSCI_E_SUCCESS;
1397 }
1398 
1399 /*******************************************************************************
1400  * This function verifies that all the other cores in the system have been
1401  * turned OFF and the current CPU is the last running CPU in the system.
1402  * Returns true if the current CPU is the last ON CPU or false otherwise.
1403  *
1404  * This API has following differences with psci_is_last_on_cpu
1405  *  1. PSCI states are locked
1406  ******************************************************************************/
1407 bool psci_is_last_on_cpu_safe(unsigned int this_core)
1408 {
1409 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1410 
1411 	psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1412 
1413 	psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1414 
1415 	if (!psci_is_last_on_cpu(this_core)) {
1416 		psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1417 		return false;
1418 	}
1419 
1420 	psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1421 
1422 	return true;
1423 }
1424 
1425 /*******************************************************************************
1426  * This function verifies that all cores in the system have been turned ON.
1427  * Returns true, if all CPUs are ON or false otherwise.
1428  *
1429  * This API has following differences with psci_are_all_cpus_on
1430  *  1. PSCI states are locked
1431  ******************************************************************************/
1432 bool psci_are_all_cpus_on_safe(unsigned int this_core)
1433 {
1434 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1435 
1436 	psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1437 
1438 	psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1439 
1440 	if (!psci_are_all_cpus_on()) {
1441 		psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1442 		return false;
1443 	}
1444 
1445 	psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1446 
1447 	return true;
1448 }
1449 
1450 /*******************************************************************************
1451  * Safely counts the number of CPUs in the system that are currently in the ON
1452  * or ON_PENDING state.
1453  *
1454  * This function acquires and releases the necessary power domain locks to
1455  * ensure consistency of the CPU state information.
1456  *
1457  * @param this_core The index of the current core making the query.
1458  *
1459  * @return The number of CPUs currently in AFF_STATE_ON or AFF_STATE_ON_PENDING.
1460  ******************************************************************************/
1461 unsigned int psci_num_cpus_running_on_safe(unsigned int this_core)
1462 {
1463 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1464 	unsigned int no_of_cpus;
1465 
1466 	psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1467 
1468 	psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1469 
1470 	no_of_cpus = psci_num_cpus_running();
1471 
1472 	psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1473 
1474 	return no_of_cpus;
1475 }
1476