xref: /rk3399_ARM-atf/lib/psci/psci_common.c (revision 97373c33b70725daf58e4491831537392c0d5239)
1 /*
2  * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <bl_common.h>
11 #include <context.h>
12 #include <context_mgmt.h>
13 #include <debug.h>
14 #include <platform.h>
15 #include <string.h>
16 #include <utils.h>
17 #include "psci_private.h"
18 
19 /*
20  * SPD power management operations, expected to be supplied by the registered
21  * SPD on successful SP initialization
22  */
23 const spd_pm_ops_t *psci_spd_pm;
24 
25 /*
26  * PSCI requested local power state map. This array is used to store the local
27  * power states requested by a CPU for power levels from level 1 to
28  * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
29  * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
30  * CPU are the same.
31  *
32  * During state coordination, the platform is passed an array containing the
33  * local states requested for a particular non cpu power domain by each cpu
34  * within the domain.
35  *
36  * TODO: Dense packing of the requested states will cause cache thrashing
37  * when multiple power domains write to it. If we allocate the requested
38  * states at each power level in a cache-line aligned per-domain memory,
39  * the cache thrashing can be avoided.
40  */
41 static plat_local_state_t
42 	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
43 
44 
45 /*******************************************************************************
46  * Arrays that hold the platform's power domain tree information for state
47  * management of power domains.
48  * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
49  * which is an ancestor of a CPU power domain.
50  * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
51  ******************************************************************************/
52 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
53 #if USE_COHERENT_MEM
54 __section("tzfw_coherent_mem")
55 #endif
56 ;
57 
58 /* Lock for PSCI state coordination */
59 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
60 
61 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
62 
63 /*******************************************************************************
64  * Pointer to functions exported by the platform to complete power mgmt. ops
65  ******************************************************************************/
66 const plat_psci_ops_t *psci_plat_pm_ops;
67 
68 /******************************************************************************
69  * Check that the maximum power level supported by the platform makes sense
70  *****************************************************************************/
71 CASSERT(PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL && \
72 		PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL, \
73 		assert_platform_max_pwrlvl_check);
74 
75 /*
76  * The plat_local_state used by the platform is one of these types: RUN,
77  * RETENTION and OFF. The platform can define further sub-states for each type
78  * apart from RUN. This categorization is done to verify the sanity of the
79  * psci_power_state passed by the platform and to print debug information. The
80  * categorization is done on the basis of the following conditions:
81  *
82  * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
83  *
84  * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
85  *    STATE_TYPE_RETN.
86  *
87  * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
88  *    STATE_TYPE_OFF.
89  */
90 typedef enum plat_local_state_type {
91 	STATE_TYPE_RUN = 0,
92 	STATE_TYPE_RETN,
93 	STATE_TYPE_OFF
94 } plat_local_state_type_t;
95 
96 /* Function used to categorize plat_local_state. */
97 static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
98 {
99 	if (state != 0U) {
100 		if (state > PLAT_MAX_RET_STATE) {
101 			return STATE_TYPE_OFF;
102 		} else {
103 			return STATE_TYPE_RETN;
104 		}
105 	} else {
106 		return STATE_TYPE_RUN;
107 	}
108 }
109 
110 /******************************************************************************
111  * Check that the maximum retention level supported by the platform is less
112  * than the maximum off level.
113  *****************************************************************************/
114 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, \
115 		assert_platform_max_off_and_retn_state_check);
116 
117 /******************************************************************************
118  * This function ensures that the power state parameter in a CPU_SUSPEND request
119  * is valid. If so, it returns the requested states for each power level.
120  *****************************************************************************/
121 int psci_validate_power_state(unsigned int power_state,
122 			      psci_power_state_t *state_info)
123 {
124 	/* Check SBZ bits in power state are zero */
125 	if (psci_check_power_state(power_state))
126 		return PSCI_E_INVALID_PARAMS;
127 
128 	assert(psci_plat_pm_ops->validate_power_state);
129 
130 	/* Validate the power_state using platform pm_ops */
131 	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
132 }
133 
134 /******************************************************************************
135  * This function retrieves the `psci_power_state_t` for system suspend from
136  * the platform.
137  *****************************************************************************/
138 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
139 {
140 	/*
141 	 * Assert that the required pm_ops hook is implemented to ensure that
142 	 * the capability detected during psci_setup() is valid.
143 	 */
144 	assert(psci_plat_pm_ops->get_sys_suspend_power_state);
145 
146 	/*
147 	 * Query the platform for the power_state required for system suspend
148 	 */
149 	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
150 }
151 
152 /*******************************************************************************
153  * This function verifies that the all the other cores in the system have been
154  * turned OFF and the current CPU is the last running CPU in the system.
155  * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
156  * otherwise.
157  ******************************************************************************/
158 unsigned int psci_is_last_on_cpu(void)
159 {
160 	unsigned int cpu_idx, my_idx = plat_my_core_pos();
161 
162 	for (cpu_idx = 0; cpu_idx < PLATFORM_CORE_COUNT; cpu_idx++) {
163 		if (cpu_idx == my_idx) {
164 			assert(psci_get_aff_info_state() == AFF_STATE_ON);
165 			continue;
166 		}
167 
168 		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF)
169 			return 0;
170 	}
171 
172 	return 1;
173 }
174 
175 /*******************************************************************************
176  * Routine to return the maximum power level to traverse to after a cpu has
177  * been physically powered up. It is expected to be called immediately after
178  * reset from assembler code.
179  ******************************************************************************/
180 static unsigned int get_power_on_target_pwrlvl(void)
181 {
182 	unsigned int pwrlvl;
183 
184 	/*
185 	 * Assume that this cpu was suspended and retrieve its target power
186 	 * level. If it is invalid then it could only have been turned off
187 	 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
188 	 * cpu can be turned off to.
189 	 */
190 	pwrlvl = psci_get_suspend_pwrlvl();
191 	if (pwrlvl == PSCI_INVALID_PWR_LVL)
192 		pwrlvl = PLAT_MAX_PWR_LVL;
193 	return pwrlvl;
194 }
195 
196 /******************************************************************************
197  * Helper function to update the requested local power state array. This array
198  * does not store the requested state for the CPU power level. Hence an
199  * assertion is added to prevent us from accessing the wrong index.
200  *****************************************************************************/
201 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
202 					 unsigned int cpu_idx,
203 					 plat_local_state_t req_pwr_state)
204 {
205 	/*
206 	 * This should never happen, we have this here to avoid
207 	 * "array subscript is above array bounds" errors in GCC.
208 	 */
209 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
210 #pragma GCC diagnostic push
211 #pragma GCC diagnostic ignored "-Warray-bounds"
212 	psci_req_local_pwr_states[pwrlvl - 1][cpu_idx] = req_pwr_state;
213 #pragma GCC diagnostic pop
214 }
215 
216 /******************************************************************************
217  * This function initializes the psci_req_local_pwr_states.
218  *****************************************************************************/
219 void psci_init_req_local_pwr_states(void)
220 {
221 	/* Initialize the requested state of all non CPU power domains as OFF */
222 	memset(&psci_req_local_pwr_states, PLAT_MAX_OFF_STATE,
223 			sizeof(psci_req_local_pwr_states));
224 }
225 
226 /******************************************************************************
227  * Helper function to return a reference to an array containing the local power
228  * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
229  * array will be the number of cpu power domains of which this power domain is
230  * an ancestor. These requested states will be used to determine a suitable
231  * target state for this power domain during psci state coordination. An
232  * assertion is added to prevent us from accessing the CPU power level.
233  *****************************************************************************/
234 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
235 							 unsigned int cpu_idx)
236 {
237 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
238 
239 	return &psci_req_local_pwr_states[pwrlvl - 1][cpu_idx];
240 }
241 
242 /*
243  * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
244  * memory.
245  *
246  * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
247  * it's accessed by both cached and non-cached participants. To serve the common
248  * minimum, perform a cache flush before read and after write so that non-cached
249  * participants operate on latest data in main memory.
250  *
251  * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
252  * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
253  * In both cases, no cache operations are required.
254  */
255 
256 /*
257  * Retrieve local state of non-CPU power domain node from a non-cached CPU,
258  * after any required cache maintenance operation.
259  */
260 static plat_local_state_t get_non_cpu_pd_node_local_state(
261 		unsigned int parent_idx)
262 {
263 #if !USE_COHERENT_MEM || !HW_ASSISTED_COHERENCY
264 	flush_dcache_range(
265 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
266 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
267 #endif
268 	return psci_non_cpu_pd_nodes[parent_idx].local_state;
269 }
270 
271 /*
272  * Update local state of non-CPU power domain node from a cached CPU; perform
273  * any required cache maintenance operation afterwards.
274  */
275 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
276 		plat_local_state_t state)
277 {
278 	psci_non_cpu_pd_nodes[parent_idx].local_state = state;
279 #if !USE_COHERENT_MEM || !HW_ASSISTED_COHERENCY
280 	flush_dcache_range(
281 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
282 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
283 #endif
284 }
285 
286 /******************************************************************************
287  * Helper function to return the current local power state of each power domain
288  * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
289  * function will be called after a cpu is powered on to find the local state
290  * each power domain has emerged from.
291  *****************************************************************************/
292 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
293 				      psci_power_state_t *target_state)
294 {
295 	unsigned int parent_idx, lvl;
296 	plat_local_state_t *pd_state = target_state->pwr_domain_state;
297 
298 	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
299 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
300 
301 	/* Copy the local power state from node to state_info */
302 	for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
303 		pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
304 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
305 	}
306 
307 	/* Set the the higher levels to RUN */
308 	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
309 		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
310 }
311 
312 /******************************************************************************
313  * Helper function to set the target local power state that each power domain
314  * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
315  * enter. This function will be called after coordination of requested power
316  * states has been done for each power level.
317  *****************************************************************************/
318 static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
319 					const psci_power_state_t *target_state)
320 {
321 	unsigned int parent_idx, lvl;
322 	const plat_local_state_t *pd_state = target_state->pwr_domain_state;
323 
324 	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
325 
326 	/*
327 	 * Need to flush as local_state might be accessed with Data Cache
328 	 * disabled during power on
329 	 */
330 	psci_flush_cpu_data(psci_svc_cpu_data.local_state);
331 
332 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
333 
334 	/* Copy the local_state from state_info */
335 	for (lvl = 1; lvl <= end_pwrlvl; lvl++) {
336 		set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
337 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
338 	}
339 }
340 
341 
342 /*******************************************************************************
343  * PSCI helper function to get the parent nodes corresponding to a cpu_index.
344  ******************************************************************************/
345 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
346 				      unsigned int end_lvl,
347 				      unsigned int node_index[])
348 {
349 	unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
350 	unsigned int i;
351 
352 	for (i = PSCI_CPU_PWR_LVL + 1; i <= end_lvl; i++) {
353 		*node_index++ = parent_node;
354 		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
355 	}
356 }
357 
358 /******************************************************************************
359  * This function is invoked post CPU power up and initialization. It sets the
360  * affinity info state, target power state and requested power state for the
361  * current CPU and all its ancestor power domains to RUN.
362  *****************************************************************************/
363 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
364 {
365 	unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
366 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
367 
368 	/* Reset the local_state to RUN for the non cpu power domains. */
369 	for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
370 		set_non_cpu_pd_node_local_state(parent_idx,
371 				PSCI_LOCAL_STATE_RUN);
372 		psci_set_req_local_pwr_state(lvl,
373 					     cpu_idx,
374 					     PSCI_LOCAL_STATE_RUN);
375 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
376 	}
377 
378 	/* Set the affinity info state to ON */
379 	psci_set_aff_info_state(AFF_STATE_ON);
380 
381 	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
382 	psci_flush_cpu_data(psci_svc_cpu_data);
383 }
384 
385 /******************************************************************************
386  * This function is passed the local power states requested for each power
387  * domain (state_info) between the current CPU domain and its ancestors until
388  * the target power level (end_pwrlvl). It updates the array of requested power
389  * states with this information.
390  *
391  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
392  * retrieves the states requested by all the cpus of which the power domain at
393  * that level is an ancestor. It passes this information to the platform to
394  * coordinate and return the target power state. If the target state for a level
395  * is RUN then subsequent levels are not considered. At the CPU level, state
396  * coordination is not required. Hence, the requested and the target states are
397  * the same.
398  *
399  * The 'state_info' is updated with the target state for each level between the
400  * CPU and the 'end_pwrlvl' and returned to the caller.
401  *
402  * This function will only be invoked with data cache enabled and while
403  * powering down a core.
404  *****************************************************************************/
405 void psci_do_state_coordination(unsigned int end_pwrlvl,
406 				psci_power_state_t *state_info)
407 {
408 	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
409 	unsigned int start_idx, ncpus;
410 	plat_local_state_t target_state, *req_states;
411 
412 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
413 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
414 
415 	/* For level 0, the requested state will be equivalent
416 	   to target state */
417 	for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
418 
419 		/* First update the requested power state */
420 		psci_set_req_local_pwr_state(lvl, cpu_idx,
421 					     state_info->pwr_domain_state[lvl]);
422 
423 		/* Get the requested power states for this power level */
424 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
425 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
426 
427 		/*
428 		 * Let the platform coordinate amongst the requested states at
429 		 * this power level and return the target local power state.
430 		 */
431 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
432 		target_state = plat_get_target_pwr_state(lvl,
433 							 req_states,
434 							 ncpus);
435 
436 		state_info->pwr_domain_state[lvl] = target_state;
437 
438 		/* Break early if the negotiated target power state is RUN */
439 		if (is_local_state_run(state_info->pwr_domain_state[lvl]))
440 			break;
441 
442 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
443 	}
444 
445 	/*
446 	 * This is for cases when we break out of the above loop early because
447 	 * the target power state is RUN at a power level < end_pwlvl.
448 	 * We update the requested power state from state_info and then
449 	 * set the target state as RUN.
450 	 */
451 	for (lvl = lvl + 1; lvl <= end_pwrlvl; lvl++) {
452 		psci_set_req_local_pwr_state(lvl, cpu_idx,
453 					     state_info->pwr_domain_state[lvl]);
454 		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
455 
456 	}
457 
458 	/* Update the target state in the power domain nodes */
459 	psci_set_target_local_pwr_states(end_pwrlvl, state_info);
460 }
461 
462 /******************************************************************************
463  * This function validates a suspend request by making sure that if a standby
464  * state is requested then no power level is turned off and the highest power
465  * level is placed in a standby/retention state.
466  *
467  * It also ensures that the state level X will enter is not shallower than the
468  * state level X + 1 will enter.
469  *
470  * This validation will be enabled only for DEBUG builds as the platform is
471  * expected to perform these validations as well.
472  *****************************************************************************/
473 int psci_validate_suspend_req(const psci_power_state_t *state_info,
474 			      unsigned int is_power_down_state)
475 {
476 	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
477 	plat_local_state_t state;
478 	plat_local_state_type_t req_state_type, deepest_state_type;
479 	int i;
480 
481 	/* Find the target suspend power level */
482 	target_lvl = psci_find_target_suspend_lvl(state_info);
483 	if (target_lvl == PSCI_INVALID_PWR_LVL)
484 		return PSCI_E_INVALID_PARAMS;
485 
486 	/* All power domain levels are in a RUN state to begin with */
487 	deepest_state_type = STATE_TYPE_RUN;
488 
489 	for (i = target_lvl; i >= PSCI_CPU_PWR_LVL; i--) {
490 		state = state_info->pwr_domain_state[i];
491 		req_state_type = find_local_state_type(state);
492 
493 		/*
494 		 * While traversing from the highest power level to the lowest,
495 		 * the state requested for lower levels has to be the same or
496 		 * deeper i.e. equal to or greater than the state at the higher
497 		 * levels. If this condition is true, then the requested state
498 		 * becomes the deepest state encountered so far.
499 		 */
500 		if (req_state_type < deepest_state_type)
501 			return PSCI_E_INVALID_PARAMS;
502 		deepest_state_type = req_state_type;
503 	}
504 
505 	/* Find the highest off power level */
506 	max_off_lvl = psci_find_max_off_lvl(state_info);
507 
508 	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
509 	max_retn_lvl = PSCI_INVALID_PWR_LVL;
510 	if (target_lvl != max_off_lvl)
511 		max_retn_lvl = target_lvl;
512 
513 	/*
514 	 * If this is not a request for a power down state then max off level
515 	 * has to be invalid and max retention level has to be a valid power
516 	 * level.
517 	 */
518 	if (!is_power_down_state && (max_off_lvl != PSCI_INVALID_PWR_LVL ||
519 				    max_retn_lvl == PSCI_INVALID_PWR_LVL))
520 		return PSCI_E_INVALID_PARAMS;
521 
522 	return PSCI_E_SUCCESS;
523 }
524 
525 /******************************************************************************
526  * This function finds the highest power level which will be powered down
527  * amongst all the power levels specified in the 'state_info' structure
528  *****************************************************************************/
529 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
530 {
531 	int i;
532 
533 	for (i = PLAT_MAX_PWR_LVL; i >= PSCI_CPU_PWR_LVL; i--) {
534 		if (is_local_state_off(state_info->pwr_domain_state[i]))
535 			return i;
536 	}
537 
538 	return PSCI_INVALID_PWR_LVL;
539 }
540 
541 /******************************************************************************
542  * This functions finds the level of the highest power domain which will be
543  * placed in a low power state during a suspend operation.
544  *****************************************************************************/
545 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
546 {
547 	int i;
548 
549 	for (i = PLAT_MAX_PWR_LVL; i >= PSCI_CPU_PWR_LVL; i--) {
550 		if (!is_local_state_run(state_info->pwr_domain_state[i]))
551 			return i;
552 	}
553 
554 	return PSCI_INVALID_PWR_LVL;
555 }
556 
557 /*******************************************************************************
558  * This function is passed a cpu_index and the highest level in the topology
559  * tree that the operation should be applied to. It picks up locks in order of
560  * increasing power domain level in the range specified.
561  ******************************************************************************/
562 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
563 				   unsigned int cpu_idx)
564 {
565 	unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
566 	unsigned int level;
567 
568 	/* No locking required for level 0. Hence start locking from level 1 */
569 	for (level = PSCI_CPU_PWR_LVL + 1; level <= end_pwrlvl; level++) {
570 		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
571 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
572 	}
573 }
574 
575 /*******************************************************************************
576  * This function is passed a cpu_index and the highest level in the topology
577  * tree that the operation should be applied to. It releases the locks in order
578  * of decreasing power domain level in the range specified.
579  ******************************************************************************/
580 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
581 				   unsigned int cpu_idx)
582 {
583 	unsigned int parent_idx, parent_nodes[PLAT_MAX_PWR_LVL] = {0};
584 	int level;
585 
586 	/* Get the parent nodes */
587 	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
588 
589 	/* Unlock top down. No unlocking required for level 0. */
590 	for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1; level--) {
591 		parent_idx = parent_nodes[level - 1];
592 		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
593 	}
594 }
595 
596 /*******************************************************************************
597  * Simple routine to determine whether a mpidr is valid or not.
598  ******************************************************************************/
599 int psci_validate_mpidr(u_register_t mpidr)
600 {
601 	if (plat_core_pos_by_mpidr(mpidr) < 0)
602 		return PSCI_E_INVALID_PARAMS;
603 
604 	return PSCI_E_SUCCESS;
605 }
606 
607 /*******************************************************************************
608  * This function determines the full entrypoint information for the requested
609  * PSCI entrypoint on power on/resume and returns it.
610  ******************************************************************************/
611 #ifdef AARCH32
612 static int psci_get_ns_ep_info(entry_point_info_t *ep,
613 			       uintptr_t entrypoint,
614 			       u_register_t context_id)
615 {
616 	u_register_t ep_attr;
617 	unsigned int aif, ee, mode;
618 	u_register_t scr = read_scr();
619 	u_register_t ns_sctlr, sctlr;
620 
621 	/* Switch to non secure state */
622 	write_scr(scr | SCR_NS_BIT);
623 	isb();
624 	ns_sctlr = read_sctlr();
625 
626 	sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
627 
628 	/* Return to original state */
629 	write_scr(scr);
630 	isb();
631 	ee = 0;
632 
633 	ep_attr = NON_SECURE | EP_ST_DISABLE;
634 	if (sctlr & SCTLR_EE_BIT) {
635 		ep_attr |= EP_EE_BIG;
636 		ee = 1;
637 	}
638 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
639 
640 	ep->pc = entrypoint;
641 	zeromem(&ep->args, sizeof(ep->args));
642 	ep->args.arg0 = context_id;
643 
644 	mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
645 
646 	/*
647 	 * TODO: Choose async. exception bits if HYP mode is not
648 	 * implemented according to the values of SCR.{AW, FW} bits
649 	 */
650 	aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
651 
652 	ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
653 
654 	return PSCI_E_SUCCESS;
655 }
656 
657 #else
658 static int psci_get_ns_ep_info(entry_point_info_t *ep,
659 			       uintptr_t entrypoint,
660 			       u_register_t context_id)
661 {
662 	u_register_t ep_attr, sctlr;
663 	unsigned int daif, ee, mode;
664 	u_register_t ns_scr_el3 = read_scr_el3();
665 	u_register_t ns_sctlr_el1 = read_sctlr_el1();
666 
667 	sctlr = ns_scr_el3 & SCR_HCE_BIT ? read_sctlr_el2() : ns_sctlr_el1;
668 	ee = 0;
669 
670 	ep_attr = NON_SECURE | EP_ST_DISABLE;
671 	if (sctlr & SCTLR_EE_BIT) {
672 		ep_attr |= EP_EE_BIG;
673 		ee = 1;
674 	}
675 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
676 
677 	ep->pc = entrypoint;
678 	zeromem(&ep->args, sizeof(ep->args));
679 	ep->args.arg0 = context_id;
680 
681 	/*
682 	 * Figure out whether the cpu enters the non-secure address space
683 	 * in aarch32 or aarch64
684 	 */
685 	if (ns_scr_el3 & SCR_RW_BIT) {
686 
687 		/*
688 		 * Check whether a Thumb entry point has been provided for an
689 		 * aarch64 EL
690 		 */
691 		if (entrypoint & 0x1)
692 			return PSCI_E_INVALID_ADDRESS;
693 
694 		mode = ns_scr_el3 & SCR_HCE_BIT ? MODE_EL2 : MODE_EL1;
695 
696 		ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
697 	} else {
698 
699 		mode = ns_scr_el3 & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
700 
701 		/*
702 		 * TODO: Choose async. exception bits if HYP mode is not
703 		 * implemented according to the values of SCR.{AW, FW} bits
704 		 */
705 		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
706 
707 		ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
708 	}
709 
710 	return PSCI_E_SUCCESS;
711 }
712 #endif
713 
714 /*******************************************************************************
715  * This function validates the entrypoint with the platform layer if the
716  * appropriate pm_ops hook is exported by the platform and returns the
717  * 'entry_point_info'.
718  ******************************************************************************/
719 int psci_validate_entry_point(entry_point_info_t *ep,
720 			      uintptr_t entrypoint,
721 			      u_register_t context_id)
722 {
723 	int rc;
724 
725 	/* Validate the entrypoint using platform psci_ops */
726 	if (psci_plat_pm_ops->validate_ns_entrypoint) {
727 		rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
728 		if (rc != PSCI_E_SUCCESS)
729 			return PSCI_E_INVALID_ADDRESS;
730 	}
731 
732 	/*
733 	 * Verify and derive the re-entry information for
734 	 * the non-secure world from the non-secure state from
735 	 * where this call originated.
736 	 */
737 	rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
738 	return rc;
739 }
740 
741 /*******************************************************************************
742  * Generic handler which is called when a cpu is physically powered on. It
743  * traverses the node information and finds the highest power level powered
744  * off and performs generic, architectural, platform setup and state management
745  * to power on that power level and power levels below it.
746  * e.g. For a cpu that's been powered on, it will call the platform specific
747  * code to enable the gic cpu interface and for a cluster it will enable
748  * coherency at the interconnect level in addition to gic cpu interface.
749  ******************************************************************************/
750 void psci_warmboot_entrypoint(void)
751 {
752 	unsigned int end_pwrlvl, cpu_idx = plat_my_core_pos();
753 	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
754 
755 	/*
756 	 * Verify that we have been explicitly turned ON or resumed from
757 	 * suspend.
758 	 */
759 	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
760 		ERROR("Unexpected affinity info state");
761 		panic();
762 	}
763 
764 	/*
765 	 * Get the maximum power domain level to traverse to after this cpu
766 	 * has been physically powered up.
767 	 */
768 	end_pwrlvl = get_power_on_target_pwrlvl();
769 
770 	/*
771 	 * This function acquires the lock corresponding to each power level so
772 	 * that by the time all locks are taken, the system topology is snapshot
773 	 * and state management can be done safely.
774 	 */
775 	psci_acquire_pwr_domain_locks(end_pwrlvl,
776 				      cpu_idx);
777 
778 	psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
779 
780 #if ENABLE_PSCI_STAT
781 	plat_psci_stat_accounting_stop(&state_info);
782 #endif
783 
784 	/*
785 	 * This CPU could be resuming from suspend or it could have just been
786 	 * turned on. To distinguish between these 2 cases, we examine the
787 	 * affinity state of the CPU:
788 	 *  - If the affinity state is ON_PENDING then it has just been
789 	 *    turned on.
790 	 *  - Else it is resuming from suspend.
791 	 *
792 	 * Depending on the type of warm reset identified, choose the right set
793 	 * of power management handler and perform the generic, architecture
794 	 * and platform specific handling.
795 	 */
796 	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
797 		psci_cpu_on_finish(cpu_idx, &state_info);
798 	else
799 		psci_cpu_suspend_finish(cpu_idx, &state_info);
800 
801 	/*
802 	 * Set the requested and target state of this CPU and all the higher
803 	 * power domains which are ancestors of this CPU to run.
804 	 */
805 	psci_set_pwr_domains_to_run(end_pwrlvl);
806 
807 #if ENABLE_PSCI_STAT
808 	/*
809 	 * Update PSCI stats.
810 	 * Caches are off when writing stats data on the power down path.
811 	 * Since caches are now enabled, it's necessary to do cache
812 	 * maintenance before reading that same data.
813 	 */
814 	psci_stats_update_pwr_up(end_pwrlvl, &state_info);
815 #endif
816 
817 	/*
818 	 * This loop releases the lock corresponding to each power level
819 	 * in the reverse order to which they were acquired.
820 	 */
821 	psci_release_pwr_domain_locks(end_pwrlvl,
822 				      cpu_idx);
823 }
824 
825 /*******************************************************************************
826  * This function initializes the set of hooks that PSCI invokes as part of power
827  * management operation. The power management hooks are expected to be provided
828  * by the SPD, after it finishes all its initialization
829  ******************************************************************************/
830 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
831 {
832 	assert(pm);
833 	psci_spd_pm = pm;
834 
835 	if (pm->svc_migrate)
836 		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
837 
838 	if (pm->svc_migrate_info)
839 		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
840 				| define_psci_cap(PSCI_MIG_INFO_TYPE);
841 }
842 
843 /*******************************************************************************
844  * This function invokes the migrate info hook in the spd_pm_ops. It performs
845  * the necessary return value validation. If the Secure Payload is UP and
846  * migrate capable, it returns the mpidr of the CPU on which the Secure payload
847  * is resident through the mpidr parameter. Else the value of the parameter on
848  * return is undefined.
849  ******************************************************************************/
850 int psci_spd_migrate_info(u_register_t *mpidr)
851 {
852 	int rc;
853 
854 	if (!psci_spd_pm || !psci_spd_pm->svc_migrate_info)
855 		return PSCI_E_NOT_SUPPORTED;
856 
857 	rc = psci_spd_pm->svc_migrate_info(mpidr);
858 
859 	assert(rc == PSCI_TOS_UP_MIG_CAP || rc == PSCI_TOS_NOT_UP_MIG_CAP \
860 		|| rc == PSCI_TOS_NOT_PRESENT_MP || rc == PSCI_E_NOT_SUPPORTED);
861 
862 	return rc;
863 }
864 
865 
866 /*******************************************************************************
867  * This function prints the state of all power domains present in the
868  * system
869  ******************************************************************************/
870 void psci_print_power_domain_map(void)
871 {
872 #if LOG_LEVEL >= LOG_LEVEL_INFO
873 	unsigned int idx;
874 	plat_local_state_t state;
875 	plat_local_state_type_t state_type;
876 
877 	/* This array maps to the PSCI_STATE_X definitions in psci.h */
878 	static const char * const psci_state_type_str[] = {
879 		"ON",
880 		"RETENTION",
881 		"OFF",
882 	};
883 
884 	INFO("PSCI Power Domain Map:\n");
885 	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - PLATFORM_CORE_COUNT);
886 							idx++) {
887 		state_type = find_local_state_type(
888 				psci_non_cpu_pd_nodes[idx].local_state);
889 		INFO("  Domain Node : Level %u, parent_node %d,"
890 				" State %s (0x%x)\n",
891 				psci_non_cpu_pd_nodes[idx].level,
892 				psci_non_cpu_pd_nodes[idx].parent_node,
893 				psci_state_type_str[state_type],
894 				psci_non_cpu_pd_nodes[idx].local_state);
895 	}
896 
897 	for (idx = 0; idx < PLATFORM_CORE_COUNT; idx++) {
898 		state = psci_get_cpu_local_state_by_idx(idx);
899 		state_type = find_local_state_type(state);
900 		INFO("  CPU Node : MPID 0x%llx, parent_node %d,"
901 				" State %s (0x%x)\n",
902 				(unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
903 				psci_cpu_pd_nodes[idx].parent_node,
904 				psci_state_type_str[state_type],
905 				psci_get_cpu_local_state_by_idx(idx));
906 	}
907 #endif
908 }
909 
910 /******************************************************************************
911  * Return whether any secondaries were powered up with CPU_ON call. A CPU that
912  * have ever been powered up would have set its MPDIR value to something other
913  * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
914  * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
915  * meaningful only when called on the primary CPU during early boot.
916  *****************************************************************************/
917 int psci_secondaries_brought_up(void)
918 {
919 	unsigned int idx, n_valid = 0;
920 
921 	for (idx = 0; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
922 		if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
923 			n_valid++;
924 	}
925 
926 	assert(n_valid);
927 
928 	return (n_valid > 1);
929 }
930 
931 #if ENABLE_PLAT_COMPAT
932 /*******************************************************************************
933  * PSCI Compatibility helper function to return the 'power_state' parameter of
934  * the PSCI CPU SUSPEND request for the current CPU. Returns PSCI_INVALID_DATA
935  * if not invoked within CPU_SUSPEND for the current CPU.
936  ******************************************************************************/
937 int psci_get_suspend_powerstate(void)
938 {
939 	/* Sanity check to verify that CPU is within CPU_SUSPEND */
940 	if (psci_get_aff_info_state() == AFF_STATE_ON &&
941 		!is_local_state_run(psci_get_cpu_local_state()))
942 		return psci_power_state_compat[plat_my_core_pos()];
943 
944 	return PSCI_INVALID_DATA;
945 }
946 
947 /*******************************************************************************
948  * PSCI Compatibility helper function to return the state id of the current
949  * cpu encoded in the 'power_state' parameter. Returns PSCI_INVALID_DATA
950  * if not invoked within CPU_SUSPEND for the current CPU.
951  ******************************************************************************/
952 int psci_get_suspend_stateid(void)
953 {
954 	unsigned int power_state;
955 	power_state = psci_get_suspend_powerstate();
956 	if (power_state != PSCI_INVALID_DATA)
957 		return psci_get_pstate_id(power_state);
958 
959 	return PSCI_INVALID_DATA;
960 }
961 
962 /*******************************************************************************
963  * PSCI Compatibility helper function to return the state id encoded in the
964  * 'power_state' parameter of the CPU specified by 'mpidr'. Returns
965  * PSCI_INVALID_DATA if the CPU is not in CPU_SUSPEND.
966  ******************************************************************************/
967 int psci_get_suspend_stateid_by_mpidr(unsigned long mpidr)
968 {
969 	int cpu_idx = plat_core_pos_by_mpidr(mpidr);
970 
971 	if (cpu_idx == -1)
972 		return PSCI_INVALID_DATA;
973 
974 	/* Sanity check to verify that the CPU is in CPU_SUSPEND */
975 	if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_ON &&
976 		!is_local_state_run(psci_get_cpu_local_state_by_idx(cpu_idx)))
977 		return psci_get_pstate_id(psci_power_state_compat[cpu_idx]);
978 
979 	return PSCI_INVALID_DATA;
980 }
981 
982 /*******************************************************************************
983  * This function returns highest affinity level which is in OFF
984  * state. The affinity instance with which the level is associated is
985  * determined by the caller.
986  ******************************************************************************/
987 unsigned int psci_get_max_phys_off_afflvl(void)
988 {
989 	psci_power_state_t state_info;
990 
991 	zeromem(&state_info, sizeof(state_info));
992 	psci_get_target_local_pwr_states(PLAT_MAX_PWR_LVL, &state_info);
993 
994 	return psci_find_target_suspend_lvl(&state_info);
995 }
996 
997 /*******************************************************************************
998  * PSCI Compatibility helper function to return target affinity level requested
999  * for the CPU_SUSPEND. This function assumes affinity levels correspond to
1000  * power domain levels on the platform.
1001  ******************************************************************************/
1002 int psci_get_suspend_afflvl(void)
1003 {
1004 	return psci_get_suspend_pwrlvl();
1005 }
1006 
1007 #endif
1008 
1009 /*******************************************************************************
1010  * Initiate power down sequence, by calling power down operations registered for
1011  * this CPU.
1012  ******************************************************************************/
1013 void psci_do_pwrdown_sequence(unsigned int power_level)
1014 {
1015 #if HW_ASSISTED_COHERENCY
1016 	/*
1017 	 * With hardware-assisted coherency, the CPU drivers only initiate the
1018 	 * power down sequence, without performing cache-maintenance operations
1019 	 * in software. Data caches and MMU remain enabled both before and after
1020 	 * this call.
1021 	 */
1022 	prepare_cpu_pwr_dwn(power_level);
1023 #else
1024 	/*
1025 	 * Without hardware-assisted coherency, the CPU drivers disable data
1026 	 * caches and MMU, then perform cache-maintenance operations in
1027 	 * software.
1028 	 *
1029 	 * We ought to call prepare_cpu_pwr_dwn() to initiate power down
1030 	 * sequence. We currently have data caches and MMU enabled, but the
1031 	 * function will return with data caches and MMU disabled. We must
1032 	 * ensure that the stack memory is flushed out to memory before we start
1033 	 * popping from it again.
1034 	 */
1035 	psci_do_pwrdown_cache_maintenance(power_level);
1036 #endif
1037 }
1038