1 /* 2 * Copyright (c) 2013-2022, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 #include <string.h> 9 10 #include <arch.h> 11 #include <arch_helpers.h> 12 #include <common/bl_common.h> 13 #include <common/debug.h> 14 #include <context.h> 15 #include <drivers/delay_timer.h> 16 #include <lib/el3_runtime/context_mgmt.h> 17 #include <lib/utils.h> 18 #include <plat/common/platform.h> 19 20 #include "psci_private.h" 21 22 /* 23 * SPD power management operations, expected to be supplied by the registered 24 * SPD on successful SP initialization 25 */ 26 const spd_pm_ops_t *psci_spd_pm; 27 28 /* 29 * PSCI requested local power state map. This array is used to store the local 30 * power states requested by a CPU for power levels from level 1 to 31 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power 32 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a 33 * CPU are the same. 34 * 35 * During state coordination, the platform is passed an array containing the 36 * local states requested for a particular non cpu power domain by each cpu 37 * within the domain. 38 * 39 * TODO: Dense packing of the requested states will cause cache thrashing 40 * when multiple power domains write to it. If we allocate the requested 41 * states at each power level in a cache-line aligned per-domain memory, 42 * the cache thrashing can be avoided. 43 */ 44 static plat_local_state_t 45 psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT]; 46 47 unsigned int psci_plat_core_count; 48 49 /******************************************************************************* 50 * Arrays that hold the platform's power domain tree information for state 51 * management of power domains. 52 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain 53 * which is an ancestor of a CPU power domain. 54 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain 55 ******************************************************************************/ 56 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS] 57 #if USE_COHERENT_MEM 58 __section(".tzfw_coherent_mem") 59 #endif 60 ; 61 62 /* Lock for PSCI state coordination */ 63 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]); 64 65 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT]; 66 67 /******************************************************************************* 68 * Pointer to functions exported by the platform to complete power mgmt. ops 69 ******************************************************************************/ 70 const plat_psci_ops_t *psci_plat_pm_ops; 71 72 /****************************************************************************** 73 * Check that the maximum power level supported by the platform makes sense 74 *****************************************************************************/ 75 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) && 76 (PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL), 77 assert_platform_max_pwrlvl_check); 78 79 #if PSCI_OS_INIT_MODE 80 /******************************************************************************* 81 * The power state coordination mode used in CPU_SUSPEND. 82 * Defaults to platform-coordinated mode. 83 ******************************************************************************/ 84 suspend_mode_t psci_suspend_mode = PLAT_COORD; 85 #endif 86 87 /* 88 * The plat_local_state used by the platform is one of these types: RUN, 89 * RETENTION and OFF. The platform can define further sub-states for each type 90 * apart from RUN. This categorization is done to verify the sanity of the 91 * psci_power_state passed by the platform and to print debug information. The 92 * categorization is done on the basis of the following conditions: 93 * 94 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN. 95 * 96 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is 97 * STATE_TYPE_RETN. 98 * 99 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is 100 * STATE_TYPE_OFF. 101 */ 102 typedef enum plat_local_state_type { 103 STATE_TYPE_RUN = 0, 104 STATE_TYPE_RETN, 105 STATE_TYPE_OFF 106 } plat_local_state_type_t; 107 108 /* Function used to categorize plat_local_state. */ 109 static plat_local_state_type_t find_local_state_type(plat_local_state_t state) 110 { 111 if (state != 0U) { 112 if (state > PLAT_MAX_RET_STATE) { 113 return STATE_TYPE_OFF; 114 } else { 115 return STATE_TYPE_RETN; 116 } 117 } else { 118 return STATE_TYPE_RUN; 119 } 120 } 121 122 /****************************************************************************** 123 * Check that the maximum retention level supported by the platform is less 124 * than the maximum off level. 125 *****************************************************************************/ 126 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, 127 assert_platform_max_off_and_retn_state_check); 128 129 /****************************************************************************** 130 * This function ensures that the power state parameter in a CPU_SUSPEND request 131 * is valid. If so, it returns the requested states for each power level. 132 *****************************************************************************/ 133 int psci_validate_power_state(unsigned int power_state, 134 psci_power_state_t *state_info) 135 { 136 /* Check SBZ bits in power state are zero */ 137 if (psci_check_power_state(power_state) != 0U) 138 return PSCI_E_INVALID_PARAMS; 139 140 assert(psci_plat_pm_ops->validate_power_state != NULL); 141 142 /* Validate the power_state using platform pm_ops */ 143 return psci_plat_pm_ops->validate_power_state(power_state, state_info); 144 } 145 146 /****************************************************************************** 147 * This function retrieves the `psci_power_state_t` for system suspend from 148 * the platform. 149 *****************************************************************************/ 150 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info) 151 { 152 /* 153 * Assert that the required pm_ops hook is implemented to ensure that 154 * the capability detected during psci_setup() is valid. 155 */ 156 assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL); 157 158 /* 159 * Query the platform for the power_state required for system suspend 160 */ 161 psci_plat_pm_ops->get_sys_suspend_power_state(state_info); 162 } 163 164 #if PSCI_OS_INIT_MODE 165 /******************************************************************************* 166 * This function verifies that all the other cores at the 'end_pwrlvl' have been 167 * idled and the current CPU is the last running CPU at the 'end_pwrlvl'. 168 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false) 169 * otherwise. 170 ******************************************************************************/ 171 static bool psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int end_pwrlvl) 172 { 173 unsigned int my_idx, lvl, parent_idx; 174 unsigned int cpu_start_idx, ncpus, cpu_idx; 175 plat_local_state_t local_state; 176 177 if (end_pwrlvl == PSCI_CPU_PWR_LVL) { 178 return true; 179 } 180 181 my_idx = plat_my_core_pos(); 182 183 for (lvl = PSCI_CPU_PWR_LVL; lvl <= end_pwrlvl; lvl++) { 184 parent_idx = psci_cpu_pd_nodes[my_idx].parent_node; 185 } 186 187 cpu_start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 188 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 189 190 for (cpu_idx = cpu_start_idx; cpu_idx < cpu_start_idx + ncpus; 191 cpu_idx++) { 192 local_state = psci_get_cpu_local_state_by_idx(cpu_idx); 193 if (cpu_idx == my_idx) { 194 assert(is_local_state_run(local_state) != 0); 195 continue; 196 } 197 198 if (is_local_state_run(local_state) != 0) { 199 return false; 200 } 201 } 202 203 return true; 204 } 205 #endif 206 207 /******************************************************************************* 208 * This function verifies that all the other cores in the system have been 209 * turned OFF and the current CPU is the last running CPU in the system. 210 * Returns true, if the current CPU is the last ON CPU or false otherwise. 211 ******************************************************************************/ 212 bool psci_is_last_on_cpu(void) 213 { 214 unsigned int cpu_idx, my_idx = plat_my_core_pos(); 215 216 for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) { 217 if (cpu_idx == my_idx) { 218 assert(psci_get_aff_info_state() == AFF_STATE_ON); 219 continue; 220 } 221 222 if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) { 223 VERBOSE("core=%u other than current core=%u %s\n", 224 cpu_idx, my_idx, "running in the system"); 225 return false; 226 } 227 } 228 229 return true; 230 } 231 232 /******************************************************************************* 233 * This function verifies that all cores in the system have been turned ON. 234 * Returns true, if all CPUs are ON or false otherwise. 235 ******************************************************************************/ 236 static bool psci_are_all_cpus_on(void) 237 { 238 unsigned int cpu_idx; 239 240 for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) { 241 if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_OFF) { 242 return false; 243 } 244 } 245 246 return true; 247 } 248 249 /******************************************************************************* 250 * Routine to return the maximum power level to traverse to after a cpu has 251 * been physically powered up. It is expected to be called immediately after 252 * reset from assembler code. 253 ******************************************************************************/ 254 static unsigned int get_power_on_target_pwrlvl(void) 255 { 256 unsigned int pwrlvl; 257 258 /* 259 * Assume that this cpu was suspended and retrieve its target power 260 * level. If it is invalid then it could only have been turned off 261 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a 262 * cpu can be turned off to. 263 */ 264 pwrlvl = psci_get_suspend_pwrlvl(); 265 if (pwrlvl == PSCI_INVALID_PWR_LVL) 266 pwrlvl = PLAT_MAX_PWR_LVL; 267 assert(pwrlvl < PSCI_INVALID_PWR_LVL); 268 return pwrlvl; 269 } 270 271 /****************************************************************************** 272 * Helper function to update the requested local power state array. This array 273 * does not store the requested state for the CPU power level. Hence an 274 * assertion is added to prevent us from accessing the CPU power level. 275 *****************************************************************************/ 276 static void psci_set_req_local_pwr_state(unsigned int pwrlvl, 277 unsigned int cpu_idx, 278 plat_local_state_t req_pwr_state) 279 { 280 assert(pwrlvl > PSCI_CPU_PWR_LVL); 281 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && 282 (cpu_idx < psci_plat_core_count)) { 283 psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state; 284 } 285 } 286 287 /****************************************************************************** 288 * This function initializes the psci_req_local_pwr_states. 289 *****************************************************************************/ 290 void __init psci_init_req_local_pwr_states(void) 291 { 292 /* Initialize the requested state of all non CPU power domains as OFF */ 293 unsigned int pwrlvl; 294 unsigned int core; 295 296 for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) { 297 for (core = 0; core < psci_plat_core_count; core++) { 298 psci_req_local_pwr_states[pwrlvl][core] = 299 PLAT_MAX_OFF_STATE; 300 } 301 } 302 } 303 304 /****************************************************************************** 305 * Helper function to return a reference to an array containing the local power 306 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the 307 * array will be the number of cpu power domains of which this power domain is 308 * an ancestor. These requested states will be used to determine a suitable 309 * target state for this power domain during psci state coordination. An 310 * assertion is added to prevent us from accessing the CPU power level. 311 *****************************************************************************/ 312 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl, 313 unsigned int cpu_idx) 314 { 315 assert(pwrlvl > PSCI_CPU_PWR_LVL); 316 317 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && 318 (cpu_idx < psci_plat_core_count)) { 319 return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx]; 320 } else 321 return NULL; 322 } 323 324 #if PSCI_OS_INIT_MODE 325 /****************************************************************************** 326 * Helper function to save a copy of the psci_req_local_pwr_states (prev) for a 327 * CPU (cpu_idx), and update psci_req_local_pwr_states with the new requested 328 * local power states (state_info). 329 *****************************************************************************/ 330 void psci_update_req_local_pwr_states(unsigned int end_pwrlvl, 331 unsigned int cpu_idx, 332 psci_power_state_t *state_info, 333 plat_local_state_t *prev) 334 { 335 unsigned int lvl; 336 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL 337 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL; 338 #else 339 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL; 340 #endif 341 plat_local_state_t req_state; 342 343 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) { 344 /* Save the previous requested local power state */ 345 prev[lvl - 1U] = *psci_get_req_local_pwr_states(lvl, cpu_idx); 346 347 /* Update the new requested local power state */ 348 if (lvl <= end_pwrlvl) { 349 req_state = state_info->pwr_domain_state[lvl]; 350 } else { 351 req_state = state_info->pwr_domain_state[end_pwrlvl]; 352 } 353 psci_set_req_local_pwr_state(lvl, cpu_idx, req_state); 354 } 355 } 356 357 /****************************************************************************** 358 * Helper function to restore the previously saved requested local power states 359 * (prev) for a CPU (cpu_idx) to psci_req_local_pwr_states. 360 *****************************************************************************/ 361 void psci_restore_req_local_pwr_states(unsigned int cpu_idx, 362 plat_local_state_t *prev) 363 { 364 unsigned int lvl; 365 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL 366 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL; 367 #else 368 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL; 369 #endif 370 371 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) { 372 /* Restore the previous requested local power state */ 373 psci_set_req_local_pwr_state(lvl, cpu_idx, prev[lvl - 1U]); 374 } 375 } 376 #endif 377 378 /* 379 * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent 380 * memory. 381 * 382 * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory, 383 * it's accessed by both cached and non-cached participants. To serve the common 384 * minimum, perform a cache flush before read and after write so that non-cached 385 * participants operate on latest data in main memory. 386 * 387 * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent 388 * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent. 389 * In both cases, no cache operations are required. 390 */ 391 392 /* 393 * Retrieve local state of non-CPU power domain node from a non-cached CPU, 394 * after any required cache maintenance operation. 395 */ 396 static plat_local_state_t get_non_cpu_pd_node_local_state( 397 unsigned int parent_idx) 398 { 399 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 400 flush_dcache_range( 401 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 402 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 403 #endif 404 return psci_non_cpu_pd_nodes[parent_idx].local_state; 405 } 406 407 /* 408 * Update local state of non-CPU power domain node from a cached CPU; perform 409 * any required cache maintenance operation afterwards. 410 */ 411 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx, 412 plat_local_state_t state) 413 { 414 psci_non_cpu_pd_nodes[parent_idx].local_state = state; 415 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 416 flush_dcache_range( 417 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 418 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 419 #endif 420 } 421 422 /****************************************************************************** 423 * Helper function to return the current local power state of each power domain 424 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This 425 * function will be called after a cpu is powered on to find the local state 426 * each power domain has emerged from. 427 *****************************************************************************/ 428 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl, 429 psci_power_state_t *target_state) 430 { 431 unsigned int parent_idx, lvl; 432 plat_local_state_t *pd_state = target_state->pwr_domain_state; 433 434 pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state(); 435 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; 436 437 /* Copy the local power state from node to state_info */ 438 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 439 pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx); 440 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 441 } 442 443 /* Set the the higher levels to RUN */ 444 for (; lvl <= PLAT_MAX_PWR_LVL; lvl++) 445 target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 446 } 447 448 /****************************************************************************** 449 * Helper function to set the target local power state that each power domain 450 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will 451 * enter. This function will be called after coordination of requested power 452 * states has been done for each power level. 453 *****************************************************************************/ 454 static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl, 455 const psci_power_state_t *target_state) 456 { 457 unsigned int parent_idx, lvl; 458 const plat_local_state_t *pd_state = target_state->pwr_domain_state; 459 460 psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]); 461 462 /* 463 * Need to flush as local_state might be accessed with Data Cache 464 * disabled during power on 465 */ 466 psci_flush_cpu_data(psci_svc_cpu_data.local_state); 467 468 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; 469 470 /* Copy the local_state from state_info */ 471 for (lvl = 1U; lvl <= end_pwrlvl; lvl++) { 472 set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]); 473 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 474 } 475 } 476 477 478 /******************************************************************************* 479 * PSCI helper function to get the parent nodes corresponding to a cpu_index. 480 ******************************************************************************/ 481 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx, 482 unsigned int end_lvl, 483 unsigned int *node_index) 484 { 485 unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node; 486 unsigned int i; 487 unsigned int *node = node_index; 488 489 for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) { 490 *node = parent_node; 491 node++; 492 parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node; 493 } 494 } 495 496 /****************************************************************************** 497 * This function is invoked post CPU power up and initialization. It sets the 498 * affinity info state, target power state and requested power state for the 499 * current CPU and all its ancestor power domains to RUN. 500 *****************************************************************************/ 501 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl) 502 { 503 unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl; 504 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 505 506 /* Reset the local_state to RUN for the non cpu power domains. */ 507 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 508 set_non_cpu_pd_node_local_state(parent_idx, 509 PSCI_LOCAL_STATE_RUN); 510 psci_set_req_local_pwr_state(lvl, 511 cpu_idx, 512 PSCI_LOCAL_STATE_RUN); 513 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 514 } 515 516 /* Set the affinity info state to ON */ 517 psci_set_aff_info_state(AFF_STATE_ON); 518 519 psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN); 520 psci_flush_cpu_data(psci_svc_cpu_data); 521 } 522 523 /****************************************************************************** 524 * This function is used in platform-coordinated mode. 525 * 526 * This function is passed the local power states requested for each power 527 * domain (state_info) between the current CPU domain and its ancestors until 528 * the target power level (end_pwrlvl). It updates the array of requested power 529 * states with this information. 530 * 531 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it 532 * retrieves the states requested by all the cpus of which the power domain at 533 * that level is an ancestor. It passes this information to the platform to 534 * coordinate and return the target power state. If the target state for a level 535 * is RUN then subsequent levels are not considered. At the CPU level, state 536 * coordination is not required. Hence, the requested and the target states are 537 * the same. 538 * 539 * The 'state_info' is updated with the target state for each level between the 540 * CPU and the 'end_pwrlvl' and returned to the caller. 541 * 542 * This function will only be invoked with data cache enabled and while 543 * powering down a core. 544 *****************************************************************************/ 545 void psci_do_state_coordination(unsigned int end_pwrlvl, 546 psci_power_state_t *state_info) 547 { 548 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos(); 549 unsigned int start_idx; 550 unsigned int ncpus; 551 plat_local_state_t target_state, *req_states; 552 553 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); 554 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 555 556 /* For level 0, the requested state will be equivalent 557 to target state */ 558 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 559 560 /* First update the requested power state */ 561 psci_set_req_local_pwr_state(lvl, cpu_idx, 562 state_info->pwr_domain_state[lvl]); 563 564 /* Get the requested power states for this power level */ 565 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 566 req_states = psci_get_req_local_pwr_states(lvl, start_idx); 567 568 /* 569 * Let the platform coordinate amongst the requested states at 570 * this power level and return the target local power state. 571 */ 572 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 573 target_state = plat_get_target_pwr_state(lvl, 574 req_states, 575 ncpus); 576 577 state_info->pwr_domain_state[lvl] = target_state; 578 579 /* Break early if the negotiated target power state is RUN */ 580 if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0) 581 break; 582 583 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 584 } 585 586 /* 587 * This is for cases when we break out of the above loop early because 588 * the target power state is RUN at a power level < end_pwlvl. 589 * We update the requested power state from state_info and then 590 * set the target state as RUN. 591 */ 592 for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) { 593 psci_set_req_local_pwr_state(lvl, cpu_idx, 594 state_info->pwr_domain_state[lvl]); 595 state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 596 597 } 598 599 /* Update the target state in the power domain nodes */ 600 psci_set_target_local_pwr_states(end_pwrlvl, state_info); 601 } 602 603 #if PSCI_OS_INIT_MODE 604 /****************************************************************************** 605 * This function is used in OS-initiated mode. 606 * 607 * This function is passed the local power states requested for each power 608 * domain (state_info) between the current CPU domain and its ancestors until 609 * the target power level (end_pwrlvl), and ensures the requested power states 610 * are valid. It updates the array of requested power states with this 611 * information. 612 * 613 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it 614 * retrieves the states requested by all the cpus of which the power domain at 615 * that level is an ancestor. It passes this information to the platform to 616 * coordinate and return the target power state. If the requested state does 617 * not match the target state, the request is denied. 618 * 619 * The 'state_info' is not modified. 620 * 621 * This function will only be invoked with data cache enabled and while 622 * powering down a core. 623 *****************************************************************************/ 624 int psci_validate_state_coordination(unsigned int end_pwrlvl, 625 psci_power_state_t *state_info) 626 { 627 int rc = PSCI_E_SUCCESS; 628 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos(); 629 unsigned int start_idx; 630 unsigned int ncpus; 631 plat_local_state_t target_state, *req_states; 632 plat_local_state_t prev[PLAT_MAX_PWR_LVL]; 633 634 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); 635 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 636 637 /* 638 * Save a copy of the previous requested local power states and update 639 * the new requested local power states. 640 */ 641 psci_update_req_local_pwr_states(end_pwrlvl, cpu_idx, state_info, prev); 642 643 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 644 /* Get the requested power states for this power level */ 645 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 646 req_states = psci_get_req_local_pwr_states(lvl, start_idx); 647 648 /* 649 * Let the platform coordinate amongst the requested states at 650 * this power level and return the target local power state. 651 */ 652 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 653 target_state = plat_get_target_pwr_state(lvl, 654 req_states, 655 ncpus); 656 657 /* 658 * Verify that the requested power state matches the target 659 * local power state. 660 */ 661 if (state_info->pwr_domain_state[lvl] != target_state) { 662 if (target_state == PSCI_LOCAL_STATE_RUN) { 663 rc = PSCI_E_DENIED; 664 } else { 665 rc = PSCI_E_INVALID_PARAMS; 666 } 667 goto exit; 668 } 669 } 670 671 /* 672 * Verify that the current core is the last running core at the 673 * specified power level. 674 */ 675 lvl = state_info->last_at_pwrlvl; 676 if (!psci_is_last_cpu_to_idle_at_pwrlvl(lvl)) { 677 rc = PSCI_E_DENIED; 678 } 679 680 exit: 681 if (rc != PSCI_E_SUCCESS) { 682 /* Restore the previous requested local power states. */ 683 psci_restore_req_local_pwr_states(cpu_idx, prev); 684 return rc; 685 } 686 687 /* Update the target state in the power domain nodes */ 688 psci_set_target_local_pwr_states(end_pwrlvl, state_info); 689 690 return rc; 691 } 692 #endif 693 694 /****************************************************************************** 695 * This function validates a suspend request by making sure that if a standby 696 * state is requested then no power level is turned off and the highest power 697 * level is placed in a standby/retention state. 698 * 699 * It also ensures that the state level X will enter is not shallower than the 700 * state level X + 1 will enter. 701 * 702 * This validation will be enabled only for DEBUG builds as the platform is 703 * expected to perform these validations as well. 704 *****************************************************************************/ 705 int psci_validate_suspend_req(const psci_power_state_t *state_info, 706 unsigned int is_power_down_state) 707 { 708 unsigned int max_off_lvl, target_lvl, max_retn_lvl; 709 plat_local_state_t state; 710 plat_local_state_type_t req_state_type, deepest_state_type; 711 int i; 712 713 /* Find the target suspend power level */ 714 target_lvl = psci_find_target_suspend_lvl(state_info); 715 if (target_lvl == PSCI_INVALID_PWR_LVL) 716 return PSCI_E_INVALID_PARAMS; 717 718 /* All power domain levels are in a RUN state to begin with */ 719 deepest_state_type = STATE_TYPE_RUN; 720 721 for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) { 722 state = state_info->pwr_domain_state[i]; 723 req_state_type = find_local_state_type(state); 724 725 /* 726 * While traversing from the highest power level to the lowest, 727 * the state requested for lower levels has to be the same or 728 * deeper i.e. equal to or greater than the state at the higher 729 * levels. If this condition is true, then the requested state 730 * becomes the deepest state encountered so far. 731 */ 732 if (req_state_type < deepest_state_type) 733 return PSCI_E_INVALID_PARAMS; 734 deepest_state_type = req_state_type; 735 } 736 737 /* Find the highest off power level */ 738 max_off_lvl = psci_find_max_off_lvl(state_info); 739 740 /* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */ 741 max_retn_lvl = PSCI_INVALID_PWR_LVL; 742 if (target_lvl != max_off_lvl) 743 max_retn_lvl = target_lvl; 744 745 /* 746 * If this is not a request for a power down state then max off level 747 * has to be invalid and max retention level has to be a valid power 748 * level. 749 */ 750 if ((is_power_down_state == 0U) && 751 ((max_off_lvl != PSCI_INVALID_PWR_LVL) || 752 (max_retn_lvl == PSCI_INVALID_PWR_LVL))) 753 return PSCI_E_INVALID_PARAMS; 754 755 return PSCI_E_SUCCESS; 756 } 757 758 /****************************************************************************** 759 * This function finds the highest power level which will be powered down 760 * amongst all the power levels specified in the 'state_info' structure 761 *****************************************************************************/ 762 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info) 763 { 764 int i; 765 766 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 767 if (is_local_state_off(state_info->pwr_domain_state[i]) != 0) 768 return (unsigned int) i; 769 } 770 771 return PSCI_INVALID_PWR_LVL; 772 } 773 774 /****************************************************************************** 775 * This functions finds the level of the highest power domain which will be 776 * placed in a low power state during a suspend operation. 777 *****************************************************************************/ 778 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info) 779 { 780 int i; 781 782 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 783 if (is_local_state_run(state_info->pwr_domain_state[i]) == 0) 784 return (unsigned int) i; 785 } 786 787 return PSCI_INVALID_PWR_LVL; 788 } 789 790 /******************************************************************************* 791 * This function is passed the highest level in the topology tree that the 792 * operation should be applied to and a list of node indexes. It picks up locks 793 * from the node index list in order of increasing power domain level in the 794 * range specified. 795 ******************************************************************************/ 796 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl, 797 const unsigned int *parent_nodes) 798 { 799 unsigned int parent_idx; 800 unsigned int level; 801 802 /* No locking required for level 0. Hence start locking from level 1 */ 803 for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) { 804 parent_idx = parent_nodes[level - 1U]; 805 psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]); 806 } 807 } 808 809 /******************************************************************************* 810 * This function is passed the highest level in the topology tree that the 811 * operation should be applied to and a list of node indexes. It releases the 812 * locks in order of decreasing power domain level in the range specified. 813 ******************************************************************************/ 814 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl, 815 const unsigned int *parent_nodes) 816 { 817 unsigned int parent_idx; 818 unsigned int level; 819 820 /* Unlock top down. No unlocking required for level 0. */ 821 for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) { 822 parent_idx = parent_nodes[level - 1U]; 823 psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]); 824 } 825 } 826 827 /******************************************************************************* 828 * Simple routine to determine whether a mpidr is valid or not. 829 ******************************************************************************/ 830 int psci_validate_mpidr(u_register_t mpidr) 831 { 832 int pos = plat_core_pos_by_mpidr(mpidr); 833 834 if ((pos < 0) || ((unsigned int)pos >= PLATFORM_CORE_COUNT)) { 835 return PSCI_E_INVALID_PARAMS; 836 } 837 838 return PSCI_E_SUCCESS; 839 } 840 841 /******************************************************************************* 842 * This function determines the full entrypoint information for the requested 843 * PSCI entrypoint on power on/resume and returns it. 844 ******************************************************************************/ 845 #ifdef __aarch64__ 846 static int psci_get_ns_ep_info(entry_point_info_t *ep, 847 uintptr_t entrypoint, 848 u_register_t context_id) 849 { 850 u_register_t ep_attr, sctlr; 851 unsigned int daif, ee, mode; 852 u_register_t ns_scr_el3 = read_scr_el3(); 853 u_register_t ns_sctlr_el1 = read_sctlr_el1(); 854 855 sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 856 read_sctlr_el2() : ns_sctlr_el1; 857 ee = 0; 858 859 ep_attr = NON_SECURE | EP_ST_DISABLE; 860 if ((sctlr & SCTLR_EE_BIT) != 0U) { 861 ep_attr |= EP_EE_BIG; 862 ee = 1; 863 } 864 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 865 866 ep->pc = entrypoint; 867 zeromem(&ep->args, sizeof(ep->args)); 868 ep->args.arg0 = context_id; 869 870 /* 871 * Figure out whether the cpu enters the non-secure address space 872 * in aarch32 or aarch64 873 */ 874 if ((ns_scr_el3 & SCR_RW_BIT) != 0U) { 875 876 /* 877 * Check whether a Thumb entry point has been provided for an 878 * aarch64 EL 879 */ 880 if ((entrypoint & 0x1UL) != 0UL) 881 return PSCI_E_INVALID_ADDRESS; 882 883 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1; 884 885 ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX, 886 DISABLE_ALL_EXCEPTIONS); 887 } else { 888 889 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 890 MODE32_hyp : MODE32_svc; 891 892 /* 893 * TODO: Choose async. exception bits if HYP mode is not 894 * implemented according to the values of SCR.{AW, FW} bits 895 */ 896 daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT; 897 898 ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee, 899 daif); 900 } 901 902 return PSCI_E_SUCCESS; 903 } 904 #else /* !__aarch64__ */ 905 static int psci_get_ns_ep_info(entry_point_info_t *ep, 906 uintptr_t entrypoint, 907 u_register_t context_id) 908 { 909 u_register_t ep_attr; 910 unsigned int aif, ee, mode; 911 u_register_t scr = read_scr(); 912 u_register_t ns_sctlr, sctlr; 913 914 /* Switch to non secure state */ 915 write_scr(scr | SCR_NS_BIT); 916 isb(); 917 ns_sctlr = read_sctlr(); 918 919 sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr; 920 921 /* Return to original state */ 922 write_scr(scr); 923 isb(); 924 ee = 0; 925 926 ep_attr = NON_SECURE | EP_ST_DISABLE; 927 if (sctlr & SCTLR_EE_BIT) { 928 ep_attr |= EP_EE_BIG; 929 ee = 1; 930 } 931 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 932 933 ep->pc = entrypoint; 934 zeromem(&ep->args, sizeof(ep->args)); 935 ep->args.arg0 = context_id; 936 937 mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc; 938 939 /* 940 * TODO: Choose async. exception bits if HYP mode is not 941 * implemented according to the values of SCR.{AW, FW} bits 942 */ 943 aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT; 944 945 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif); 946 947 return PSCI_E_SUCCESS; 948 } 949 950 #endif /* __aarch64__ */ 951 952 /******************************************************************************* 953 * This function validates the entrypoint with the platform layer if the 954 * appropriate pm_ops hook is exported by the platform and returns the 955 * 'entry_point_info'. 956 ******************************************************************************/ 957 int psci_validate_entry_point(entry_point_info_t *ep, 958 uintptr_t entrypoint, 959 u_register_t context_id) 960 { 961 int rc; 962 963 /* Validate the entrypoint using platform psci_ops */ 964 if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) { 965 rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint); 966 if (rc != PSCI_E_SUCCESS) 967 return PSCI_E_INVALID_ADDRESS; 968 } 969 970 /* 971 * Verify and derive the re-entry information for 972 * the non-secure world from the non-secure state from 973 * where this call originated. 974 */ 975 rc = psci_get_ns_ep_info(ep, entrypoint, context_id); 976 return rc; 977 } 978 979 /******************************************************************************* 980 * Generic handler which is called when a cpu is physically powered on. It 981 * traverses the node information and finds the highest power level powered 982 * off and performs generic, architectural, platform setup and state management 983 * to power on that power level and power levels below it. 984 * e.g. For a cpu that's been powered on, it will call the platform specific 985 * code to enable the gic cpu interface and for a cluster it will enable 986 * coherency at the interconnect level in addition to gic cpu interface. 987 ******************************************************************************/ 988 void psci_warmboot_entrypoint(void) 989 { 990 unsigned int end_pwrlvl; 991 unsigned int cpu_idx = plat_my_core_pos(); 992 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 993 psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} }; 994 995 /* 996 * Verify that we have been explicitly turned ON or resumed from 997 * suspend. 998 */ 999 if (psci_get_aff_info_state() == AFF_STATE_OFF) { 1000 ERROR("Unexpected affinity info state.\n"); 1001 panic(); 1002 } 1003 1004 /* 1005 * Get the maximum power domain level to traverse to after this cpu 1006 * has been physically powered up. 1007 */ 1008 end_pwrlvl = get_power_on_target_pwrlvl(); 1009 1010 /* Get the parent nodes */ 1011 psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes); 1012 1013 /* 1014 * This function acquires the lock corresponding to each power level so 1015 * that by the time all locks are taken, the system topology is snapshot 1016 * and state management can be done safely. 1017 */ 1018 psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes); 1019 1020 psci_get_target_local_pwr_states(end_pwrlvl, &state_info); 1021 1022 #if ENABLE_PSCI_STAT 1023 plat_psci_stat_accounting_stop(&state_info); 1024 #endif 1025 1026 /* 1027 * This CPU could be resuming from suspend or it could have just been 1028 * turned on. To distinguish between these 2 cases, we examine the 1029 * affinity state of the CPU: 1030 * - If the affinity state is ON_PENDING then it has just been 1031 * turned on. 1032 * - Else it is resuming from suspend. 1033 * 1034 * Depending on the type of warm reset identified, choose the right set 1035 * of power management handler and perform the generic, architecture 1036 * and platform specific handling. 1037 */ 1038 if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING) 1039 psci_cpu_on_finish(cpu_idx, &state_info); 1040 else 1041 psci_cpu_suspend_finish(cpu_idx, &state_info); 1042 1043 /* 1044 * Set the requested and target state of this CPU and all the higher 1045 * power domains which are ancestors of this CPU to run. 1046 */ 1047 psci_set_pwr_domains_to_run(end_pwrlvl); 1048 1049 #if ENABLE_PSCI_STAT 1050 /* 1051 * Update PSCI stats. 1052 * Caches are off when writing stats data on the power down path. 1053 * Since caches are now enabled, it's necessary to do cache 1054 * maintenance before reading that same data. 1055 */ 1056 psci_stats_update_pwr_up(end_pwrlvl, &state_info); 1057 #endif 1058 1059 /* 1060 * This loop releases the lock corresponding to each power level 1061 * in the reverse order to which they were acquired. 1062 */ 1063 psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes); 1064 } 1065 1066 /******************************************************************************* 1067 * This function initializes the set of hooks that PSCI invokes as part of power 1068 * management operation. The power management hooks are expected to be provided 1069 * by the SPD, after it finishes all its initialization 1070 ******************************************************************************/ 1071 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm) 1072 { 1073 assert(pm != NULL); 1074 psci_spd_pm = pm; 1075 1076 if (pm->svc_migrate != NULL) 1077 psci_caps |= define_psci_cap(PSCI_MIG_AARCH64); 1078 1079 if (pm->svc_migrate_info != NULL) 1080 psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64) 1081 | define_psci_cap(PSCI_MIG_INFO_TYPE); 1082 } 1083 1084 /******************************************************************************* 1085 * This function invokes the migrate info hook in the spd_pm_ops. It performs 1086 * the necessary return value validation. If the Secure Payload is UP and 1087 * migrate capable, it returns the mpidr of the CPU on which the Secure payload 1088 * is resident through the mpidr parameter. Else the value of the parameter on 1089 * return is undefined. 1090 ******************************************************************************/ 1091 int psci_spd_migrate_info(u_register_t *mpidr) 1092 { 1093 int rc; 1094 1095 if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL)) 1096 return PSCI_E_NOT_SUPPORTED; 1097 1098 rc = psci_spd_pm->svc_migrate_info(mpidr); 1099 1100 assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) || 1101 (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED)); 1102 1103 return rc; 1104 } 1105 1106 1107 /******************************************************************************* 1108 * This function prints the state of all power domains present in the 1109 * system 1110 ******************************************************************************/ 1111 void psci_print_power_domain_map(void) 1112 { 1113 #if LOG_LEVEL >= LOG_LEVEL_INFO 1114 unsigned int idx; 1115 plat_local_state_t state; 1116 plat_local_state_type_t state_type; 1117 1118 /* This array maps to the PSCI_STATE_X definitions in psci.h */ 1119 static const char * const psci_state_type_str[] = { 1120 "ON", 1121 "RETENTION", 1122 "OFF", 1123 }; 1124 1125 INFO("PSCI Power Domain Map:\n"); 1126 for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count); 1127 idx++) { 1128 state_type = find_local_state_type( 1129 psci_non_cpu_pd_nodes[idx].local_state); 1130 INFO(" Domain Node : Level %u, parent_node %u," 1131 " State %s (0x%x)\n", 1132 psci_non_cpu_pd_nodes[idx].level, 1133 psci_non_cpu_pd_nodes[idx].parent_node, 1134 psci_state_type_str[state_type], 1135 psci_non_cpu_pd_nodes[idx].local_state); 1136 } 1137 1138 for (idx = 0; idx < psci_plat_core_count; idx++) { 1139 state = psci_get_cpu_local_state_by_idx(idx); 1140 state_type = find_local_state_type(state); 1141 INFO(" CPU Node : MPID 0x%llx, parent_node %u," 1142 " State %s (0x%x)\n", 1143 (unsigned long long)psci_cpu_pd_nodes[idx].mpidr, 1144 psci_cpu_pd_nodes[idx].parent_node, 1145 psci_state_type_str[state_type], 1146 psci_get_cpu_local_state_by_idx(idx)); 1147 } 1148 #endif 1149 } 1150 1151 /****************************************************************************** 1152 * Return whether any secondaries were powered up with CPU_ON call. A CPU that 1153 * have ever been powered up would have set its MPDIR value to something other 1154 * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to 1155 * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is 1156 * meaningful only when called on the primary CPU during early boot. 1157 *****************************************************************************/ 1158 int psci_secondaries_brought_up(void) 1159 { 1160 unsigned int idx, n_valid = 0U; 1161 1162 for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) { 1163 if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR) 1164 n_valid++; 1165 } 1166 1167 assert(n_valid > 0U); 1168 1169 return (n_valid > 1U) ? 1 : 0; 1170 } 1171 1172 /******************************************************************************* 1173 * Initiate power down sequence, by calling power down operations registered for 1174 * this CPU. 1175 ******************************************************************************/ 1176 void psci_pwrdown_cpu(unsigned int power_level) 1177 { 1178 #if HW_ASSISTED_COHERENCY 1179 /* 1180 * With hardware-assisted coherency, the CPU drivers only initiate the 1181 * power down sequence, without performing cache-maintenance operations 1182 * in software. Data caches enabled both before and after this call. 1183 */ 1184 prepare_cpu_pwr_dwn(power_level); 1185 #else 1186 /* 1187 * Without hardware-assisted coherency, the CPU drivers disable data 1188 * caches, then perform cache-maintenance operations in software. 1189 * 1190 * This also calls prepare_cpu_pwr_dwn() to initiate power down 1191 * sequence, but that function will return with data caches disabled. 1192 * We must ensure that the stack memory is flushed out to memory before 1193 * we start popping from it again. 1194 */ 1195 psci_do_pwrdown_cache_maintenance(power_level); 1196 #endif 1197 } 1198 1199 /******************************************************************************* 1200 * This function invokes the callback 'stop_func()' with the 'mpidr' of each 1201 * online PE. Caller can pass suitable method to stop a remote core. 1202 * 1203 * 'wait_ms' is the timeout value in milliseconds for the other cores to 1204 * transition to power down state. Passing '0' makes it non-blocking. 1205 * 1206 * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the 1207 * given timeout. 1208 ******************************************************************************/ 1209 int psci_stop_other_cores(unsigned int wait_ms, 1210 void (*stop_func)(u_register_t mpidr)) 1211 { 1212 unsigned int idx, this_cpu_idx; 1213 1214 this_cpu_idx = plat_my_core_pos(); 1215 1216 /* Invoke stop_func for each core */ 1217 for (idx = 0U; idx < psci_plat_core_count; idx++) { 1218 /* skip current CPU */ 1219 if (idx == this_cpu_idx) { 1220 continue; 1221 } 1222 1223 /* Check if the CPU is ON */ 1224 if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) { 1225 (*stop_func)(psci_cpu_pd_nodes[idx].mpidr); 1226 } 1227 } 1228 1229 /* Need to wait for other cores to shutdown */ 1230 if (wait_ms != 0U) { 1231 while ((wait_ms-- != 0U) && (!psci_is_last_on_cpu())) { 1232 mdelay(1U); 1233 } 1234 1235 if (!psci_is_last_on_cpu()) { 1236 WARN("Failed to stop all cores!\n"); 1237 psci_print_power_domain_map(); 1238 return PSCI_E_DENIED; 1239 } 1240 } 1241 1242 return PSCI_E_SUCCESS; 1243 } 1244 1245 /******************************************************************************* 1246 * This function verifies that all the other cores in the system have been 1247 * turned OFF and the current CPU is the last running CPU in the system. 1248 * Returns true if the current CPU is the last ON CPU or false otherwise. 1249 * 1250 * This API has following differences with psci_is_last_on_cpu 1251 * 1. PSCI states are locked 1252 ******************************************************************************/ 1253 bool psci_is_last_on_cpu_safe(void) 1254 { 1255 unsigned int this_core = plat_my_core_pos(); 1256 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 1257 1258 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes); 1259 1260 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1261 1262 if (!psci_is_last_on_cpu()) { 1263 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1264 return false; 1265 } 1266 1267 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1268 1269 return true; 1270 } 1271 1272 /******************************************************************************* 1273 * This function verifies that all cores in the system have been turned ON. 1274 * Returns true, if all CPUs are ON or false otherwise. 1275 * 1276 * This API has following differences with psci_are_all_cpus_on 1277 * 1. PSCI states are locked 1278 ******************************************************************************/ 1279 bool psci_are_all_cpus_on_safe(void) 1280 { 1281 unsigned int this_core = plat_my_core_pos(); 1282 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 1283 1284 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes); 1285 1286 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1287 1288 if (!psci_are_all_cpus_on()) { 1289 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1290 return false; 1291 } 1292 1293 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1294 1295 return true; 1296 } 1297