1 /* 2 * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 #include <string.h> 9 10 #include <arch.h> 11 #include <arch_features.h> 12 #include <arch_helpers.h> 13 #include <common/bl_common.h> 14 #include <common/debug.h> 15 #include <context.h> 16 #include <drivers/delay_timer.h> 17 #include <lib/cpus/cpu_ops.h> 18 #include <lib/el3_runtime/context_mgmt.h> 19 #include <lib/extensions/spe.h> 20 #include <lib/pmf/pmf.h> 21 #include <lib/runtime_instr.h> 22 #include <lib/utils.h> 23 #include <plat/common/platform.h> 24 25 #include "psci_private.h" 26 27 /* 28 * SPD power management operations, expected to be supplied by the registered 29 * SPD on successful SP initialization 30 */ 31 const spd_pm_ops_t *psci_spd_pm; 32 33 /* 34 * PSCI requested local power state map. This array is used to store the local 35 * power states requested by a CPU for power levels from level 1 to 36 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power 37 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a 38 * CPU are the same. 39 * 40 * During state coordination, the platform is passed an array containing the 41 * local states requested for a particular non cpu power domain by each cpu 42 * within the domain. 43 * 44 * TODO: Dense packing of the requested states will cause cache thrashing 45 * when multiple power domains write to it. If we allocate the requested 46 * states at each power level in a cache-line aligned per-domain memory, 47 * the cache thrashing can be avoided. 48 */ 49 static plat_local_state_t 50 psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT]; 51 52 unsigned int psci_plat_core_count; 53 54 /******************************************************************************* 55 * Arrays that hold the platform's power domain tree information for state 56 * management of power domains. 57 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain 58 * which is an ancestor of a CPU power domain. 59 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain 60 ******************************************************************************/ 61 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS] 62 #if USE_COHERENT_MEM 63 __section(".tzfw_coherent_mem") 64 #endif 65 ; 66 67 /* Lock for PSCI state coordination */ 68 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]); 69 70 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT]; 71 72 /******************************************************************************* 73 * Pointer to functions exported by the platform to complete power mgmt. ops 74 ******************************************************************************/ 75 const plat_psci_ops_t *psci_plat_pm_ops; 76 77 /****************************************************************************** 78 * Check that the maximum power level supported by the platform makes sense 79 *****************************************************************************/ 80 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) && 81 (PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL), 82 assert_platform_max_pwrlvl_check); 83 84 #if PSCI_OS_INIT_MODE 85 /******************************************************************************* 86 * The power state coordination mode used in CPU_SUSPEND. 87 * Defaults to platform-coordinated mode. 88 ******************************************************************************/ 89 suspend_mode_t psci_suspend_mode = PLAT_COORD; 90 #endif 91 92 /* 93 * The plat_local_state used by the platform is one of these types: RUN, 94 * RETENTION and OFF. The platform can define further sub-states for each type 95 * apart from RUN. This categorization is done to verify the sanity of the 96 * psci_power_state passed by the platform and to print debug information. The 97 * categorization is done on the basis of the following conditions: 98 * 99 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN. 100 * 101 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is 102 * STATE_TYPE_RETN. 103 * 104 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is 105 * STATE_TYPE_OFF. 106 */ 107 typedef enum plat_local_state_type { 108 STATE_TYPE_RUN = 0, 109 STATE_TYPE_RETN, 110 STATE_TYPE_OFF 111 } plat_local_state_type_t; 112 113 /* Function used to categorize plat_local_state. */ 114 static plat_local_state_type_t find_local_state_type(plat_local_state_t state) 115 { 116 if (state != 0U) { 117 if (state > PLAT_MAX_RET_STATE) { 118 return STATE_TYPE_OFF; 119 } else { 120 return STATE_TYPE_RETN; 121 } 122 } else { 123 return STATE_TYPE_RUN; 124 } 125 } 126 127 /****************************************************************************** 128 * Check that the maximum retention level supported by the platform is less 129 * than the maximum off level. 130 *****************************************************************************/ 131 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, 132 assert_platform_max_off_and_retn_state_check); 133 134 /****************************************************************************** 135 * This function ensures that the power state parameter in a CPU_SUSPEND request 136 * is valid. If so, it returns the requested states for each power level. 137 *****************************************************************************/ 138 int psci_validate_power_state(unsigned int power_state, 139 psci_power_state_t *state_info) 140 { 141 /* Check SBZ bits in power state are zero */ 142 if (psci_check_power_state(power_state) != 0U) { 143 return PSCI_E_INVALID_PARAMS; 144 } 145 assert(psci_plat_pm_ops->validate_power_state != NULL); 146 147 /* Validate the power_state using platform pm_ops */ 148 return psci_plat_pm_ops->validate_power_state(power_state, state_info); 149 } 150 151 /****************************************************************************** 152 * This function retrieves the `psci_power_state_t` for system suspend from 153 * the platform. 154 *****************************************************************************/ 155 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info) 156 { 157 /* 158 * Assert that the required pm_ops hook is implemented to ensure that 159 * the capability detected during psci_setup() is valid. 160 */ 161 assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL); 162 163 /* 164 * Query the platform for the power_state required for system suspend 165 */ 166 psci_plat_pm_ops->get_sys_suspend_power_state(state_info); 167 } 168 169 #if PSCI_OS_INIT_MODE 170 /******************************************************************************* 171 * This function verifies that all the other cores at the 'end_pwrlvl' have been 172 * idled and the current CPU is the last running CPU at the 'end_pwrlvl'. 173 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false) 174 * otherwise. 175 ******************************************************************************/ 176 static bool psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int my_idx, unsigned int end_pwrlvl) 177 { 178 unsigned int lvl; 179 unsigned int parent_idx = 0; 180 unsigned int cpu_start_idx, ncpus, cpu_idx; 181 plat_local_state_t local_state; 182 183 if (end_pwrlvl == PSCI_CPU_PWR_LVL) { 184 return true; 185 } 186 187 parent_idx = psci_cpu_pd_nodes[my_idx].parent_node; 188 for (lvl = PSCI_CPU_PWR_LVL + U(1); lvl < end_pwrlvl; lvl++) { 189 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 190 } 191 192 cpu_start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 193 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 194 195 for (cpu_idx = cpu_start_idx; cpu_idx < cpu_start_idx + ncpus; 196 cpu_idx++) { 197 local_state = psci_get_cpu_local_state_by_idx(cpu_idx); 198 if (cpu_idx == my_idx) { 199 assert(is_local_state_run(local_state) != 0); 200 continue; 201 } 202 203 if (is_local_state_run(local_state) != 0) { 204 return false; 205 } 206 } 207 208 return true; 209 } 210 #endif 211 212 /******************************************************************************* 213 * This function verifies that all the other cores in the system have been 214 * turned OFF and the current CPU is the last running CPU in the system. 215 * Returns true, if the current CPU is the last ON CPU or false otherwise. 216 ******************************************************************************/ 217 bool psci_is_last_on_cpu(unsigned int my_idx) 218 { 219 for (unsigned int cpu_idx = 0U; cpu_idx < psci_plat_core_count; cpu_idx++) { 220 if (cpu_idx == my_idx) { 221 assert(psci_get_aff_info_state() == AFF_STATE_ON); 222 continue; 223 } 224 225 if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) { 226 VERBOSE("core=%u other than current core=%u %s\n", 227 cpu_idx, my_idx, "running in the system"); 228 return false; 229 } 230 } 231 232 return true; 233 } 234 235 /******************************************************************************* 236 * This function verifies that all cores in the system have been turned ON. 237 * Returns true, if all CPUs are ON or false otherwise. 238 ******************************************************************************/ 239 static bool psci_are_all_cpus_on(void) 240 { 241 unsigned int cpu_idx; 242 243 for (cpu_idx = 0U; cpu_idx < psci_plat_core_count; cpu_idx++) { 244 if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_OFF) { 245 return false; 246 } 247 } 248 249 return true; 250 } 251 252 /******************************************************************************* 253 * Counts the number of CPUs in the system that are currently in the ON or 254 * ON_PENDING state. 255 * 256 * @note This function does not acquire any power domain locks. It must only be 257 * called in contexts where it is guaranteed that PSCI state transitions 258 * are not concurrently happening, or where locks are already held. 259 * 260 * @return The number of CPUs currently in AFF_STATE_ON or AFF_STATE_ON_PENDING. 261 ******************************************************************************/ 262 static unsigned int psci_num_cpus_running(void) 263 { 264 unsigned int cpu_idx; 265 unsigned int no_of_cpus = 0U; 266 aff_info_state_t aff_state; 267 268 for (cpu_idx = 0U; cpu_idx < psci_plat_core_count; cpu_idx++) { 269 aff_state = psci_get_aff_info_state_by_idx(cpu_idx); 270 if (aff_state == AFF_STATE_ON || 271 aff_state == AFF_STATE_ON_PENDING) { 272 no_of_cpus++; 273 } 274 } 275 276 return no_of_cpus; 277 } 278 279 /******************************************************************************* 280 * Routine to return the maximum power level to traverse to after a cpu has 281 * been physically powered up. It is expected to be called immediately after 282 * reset from assembler code. 283 ******************************************************************************/ 284 static unsigned int get_power_on_target_pwrlvl(void) 285 { 286 unsigned int pwrlvl; 287 288 /* 289 * Assume that this cpu was suspended and retrieve its target power 290 * level. If it wasn't, the cpu is off so this will be PLAT_MAX_PWR_LVL. 291 */ 292 pwrlvl = psci_get_suspend_pwrlvl(); 293 assert(pwrlvl < PSCI_INVALID_PWR_LVL); 294 return pwrlvl; 295 } 296 297 /****************************************************************************** 298 * Helper function to update the requested local power state array. This array 299 * does not store the requested state for the CPU power level. Hence an 300 * assertion is added to prevent us from accessing the CPU power level. 301 *****************************************************************************/ 302 static void psci_set_req_local_pwr_state(unsigned int pwrlvl, 303 unsigned int cpu_idx, 304 plat_local_state_t req_pwr_state) 305 { 306 assert(pwrlvl > PSCI_CPU_PWR_LVL); 307 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && 308 (cpu_idx < psci_plat_core_count)) { 309 psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state; 310 } 311 } 312 313 /****************************************************************************** 314 * This function initializes the psci_req_local_pwr_states. 315 *****************************************************************************/ 316 void __init psci_init_req_local_pwr_states(void) 317 { 318 /* Initialize the requested state of all non CPU power domains as OFF */ 319 unsigned int pwrlvl; 320 unsigned int core; 321 322 for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) { 323 for (core = 0; core < psci_plat_core_count; core++) { 324 psci_req_local_pwr_states[pwrlvl][core] = 325 PLAT_MAX_OFF_STATE; 326 } 327 } 328 } 329 330 /****************************************************************************** 331 * Helper function to return a reference to an array containing the local power 332 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the 333 * array will be the number of cpu power domains of which this power domain is 334 * an ancestor. These requested states will be used to determine a suitable 335 * target state for this power domain during psci state coordination. An 336 * assertion is added to prevent us from accessing the CPU power level. 337 *****************************************************************************/ 338 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl, 339 unsigned int cpu_idx) 340 { 341 assert(pwrlvl > PSCI_CPU_PWR_LVL); 342 343 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && 344 (cpu_idx < psci_plat_core_count)) { 345 return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx]; 346 } else { 347 return NULL; 348 } 349 } 350 351 #if PSCI_OS_INIT_MODE 352 /****************************************************************************** 353 * Helper function to save a copy of the psci_req_local_pwr_states (prev) for a 354 * CPU (cpu_idx), and update psci_req_local_pwr_states with the new requested 355 * local power states (state_info). 356 *****************************************************************************/ 357 void psci_update_req_local_pwr_states(unsigned int end_pwrlvl, 358 unsigned int cpu_idx, 359 psci_power_state_t *state_info, 360 plat_local_state_t *prev) 361 { 362 unsigned int lvl; 363 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL 364 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL; 365 #else 366 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL; 367 #endif 368 plat_local_state_t req_state; 369 370 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) { 371 /* Save the previous requested local power state */ 372 prev[lvl - 1U] = *psci_get_req_local_pwr_states(lvl, cpu_idx); 373 374 /* Update the new requested local power state */ 375 if (lvl <= end_pwrlvl) { 376 req_state = state_info->pwr_domain_state[lvl]; 377 } else { 378 req_state = state_info->pwr_domain_state[end_pwrlvl]; 379 } 380 psci_set_req_local_pwr_state(lvl, cpu_idx, req_state); 381 } 382 } 383 384 /****************************************************************************** 385 * Helper function to restore the previously saved requested local power states 386 * (prev) for a CPU (cpu_idx) to psci_req_local_pwr_states. 387 *****************************************************************************/ 388 void psci_restore_req_local_pwr_states(unsigned int cpu_idx, 389 plat_local_state_t *prev) 390 { 391 unsigned int lvl; 392 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL 393 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL; 394 #else 395 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL; 396 #endif 397 398 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) { 399 /* Restore the previous requested local power state */ 400 psci_set_req_local_pwr_state(lvl, cpu_idx, prev[lvl - 1U]); 401 } 402 } 403 #endif 404 405 /* 406 * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent 407 * memory. 408 * 409 * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory, 410 * it's accessed by both cached and non-cached participants. To serve the common 411 * minimum, perform a cache flush before read and after write so that non-cached 412 * participants operate on latest data in main memory. 413 * 414 * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent 415 * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent. 416 * In both cases, no cache operations are required. 417 */ 418 419 /* 420 * Retrieve local state of non-CPU power domain node from a non-cached CPU, 421 * after any required cache maintenance operation. 422 */ 423 static plat_local_state_t get_non_cpu_pd_node_local_state( 424 unsigned int parent_idx) 425 { 426 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 427 flush_dcache_range( 428 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 429 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 430 #endif 431 return psci_non_cpu_pd_nodes[parent_idx].local_state; 432 } 433 434 /* 435 * Update local state of non-CPU power domain node from a cached CPU; perform 436 * any required cache maintenance operation afterwards. 437 */ 438 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx, 439 plat_local_state_t state) 440 { 441 psci_non_cpu_pd_nodes[parent_idx].local_state = state; 442 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 443 flush_dcache_range( 444 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 445 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 446 #endif 447 } 448 449 /****************************************************************************** 450 * Helper function to return the current local power state of each power domain 451 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This 452 * function will be called after a cpu is powered on to find the local state 453 * each power domain has emerged from. 454 *****************************************************************************/ 455 void psci_get_target_local_pwr_states(unsigned int cpu_idx, unsigned int end_pwrlvl, 456 psci_power_state_t *target_state) 457 { 458 unsigned int parent_idx, lvl; 459 plat_local_state_t *pd_state = target_state->pwr_domain_state; 460 461 pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state(); 462 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 463 464 /* Copy the local power state from node to state_info */ 465 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 466 pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx); 467 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 468 } 469 470 /* Set the the higher levels to RUN */ 471 for (; lvl <= PLAT_MAX_PWR_LVL; lvl++) { 472 target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 473 } 474 } 475 476 /****************************************************************************** 477 * Helper function to set the target local power state that each power domain 478 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will 479 * enter. This function will be called after coordination of requested power 480 * states has been done for each power level. 481 *****************************************************************************/ 482 void psci_set_target_local_pwr_states(unsigned int cpu_idx, unsigned int end_pwrlvl, 483 const psci_power_state_t *target_state) 484 { 485 unsigned int parent_idx, lvl; 486 const plat_local_state_t *pd_state = target_state->pwr_domain_state; 487 488 psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]); 489 490 /* 491 * Need to flush as local_state might be accessed with Data Cache 492 * disabled during power on 493 */ 494 psci_flush_cpu_data(psci_svc_cpu_data.local_state); 495 496 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 497 498 /* Copy the local_state from state_info */ 499 for (lvl = 1U; lvl <= end_pwrlvl; lvl++) { 500 set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]); 501 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 502 } 503 } 504 505 /******************************************************************************* 506 * PSCI helper function to get the parent nodes corresponding to a cpu_index. 507 ******************************************************************************/ 508 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx, 509 unsigned int end_lvl, 510 unsigned int *node_index) 511 { 512 unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node; 513 unsigned int i; 514 unsigned int *node = node_index; 515 516 for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) { 517 *node = parent_node; 518 node++; 519 parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node; 520 } 521 } 522 523 /****************************************************************************** 524 * This function is invoked post CPU power up and initialization. It sets the 525 * affinity info state, target power state and requested power state for the 526 * current CPU and all its ancestor power domains to RUN. 527 *****************************************************************************/ 528 void psci_set_pwr_domains_to_run(unsigned int cpu_idx, unsigned int end_pwrlvl) 529 { 530 unsigned int parent_idx, lvl; 531 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 532 533 /* Reset the local_state to RUN for the non cpu power domains. */ 534 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 535 set_non_cpu_pd_node_local_state(parent_idx, 536 PSCI_LOCAL_STATE_RUN); 537 psci_set_req_local_pwr_state(lvl, 538 cpu_idx, 539 PSCI_LOCAL_STATE_RUN); 540 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 541 } 542 543 /* Set the affinity info state to ON */ 544 psci_set_aff_info_state(AFF_STATE_ON); 545 546 psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN); 547 psci_flush_cpu_data(psci_svc_cpu_data); 548 } 549 550 /****************************************************************************** 551 * This function is used in platform-coordinated mode. 552 * 553 * This function is passed the local power states requested for each power 554 * domain (state_info) between the current CPU domain and its ancestors until 555 * the target power level (end_pwrlvl). It updates the array of requested power 556 * states with this information. 557 * 558 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it 559 * retrieves the states requested by all the cpus of which the power domain at 560 * that level is an ancestor. It passes this information to the platform to 561 * coordinate and return the target power state. If the target state for a level 562 * is RUN then subsequent levels are not considered. At the CPU level, state 563 * coordination is not required. Hence, the requested and the target states are 564 * the same. 565 * 566 * The 'state_info' is updated with the target state for each level between the 567 * CPU and the 'end_pwrlvl' and returned to the caller. 568 * 569 * This function will only be invoked with data cache enabled and while 570 * powering down a core. 571 *****************************************************************************/ 572 void psci_do_state_coordination(unsigned int cpu_idx, unsigned int end_pwrlvl, 573 psci_power_state_t *state_info) 574 { 575 unsigned int lvl, parent_idx; 576 unsigned int start_idx; 577 unsigned int ncpus; 578 plat_local_state_t target_state; 579 580 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); 581 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 582 583 /* For level 0, the requested state will be equivalent 584 to target state */ 585 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 586 587 /* First update the requested power state */ 588 psci_set_req_local_pwr_state(lvl, cpu_idx, 589 state_info->pwr_domain_state[lvl]); 590 591 /* Get the requested power states for this power level */ 592 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 593 plat_local_state_t const *req_states = psci_get_req_local_pwr_states(lvl, 594 start_idx); 595 596 /* 597 * Let the platform coordinate amongst the requested states at 598 * this power level and return the target local power state. 599 */ 600 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 601 target_state = plat_get_target_pwr_state(lvl, 602 req_states, 603 ncpus); 604 605 state_info->pwr_domain_state[lvl] = target_state; 606 607 /* Break early if the negotiated target power state is RUN */ 608 if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0) { 609 break; 610 } 611 612 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 613 } 614 615 /* 616 * This is for cases when we break out of the above loop early because 617 * the target power state is RUN at a power level < end_pwlvl. 618 * We update the requested power state from state_info and then 619 * set the target state as RUN. 620 */ 621 for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) { 622 psci_set_req_local_pwr_state(lvl, cpu_idx, 623 state_info->pwr_domain_state[lvl]); 624 state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 625 626 } 627 } 628 629 #if PSCI_OS_INIT_MODE 630 /****************************************************************************** 631 * This function is used in OS-initiated mode. 632 * 633 * This function is passed the local power states requested for each power 634 * domain (state_info) between the current CPU domain and its ancestors until 635 * the target power level (end_pwrlvl), and ensures the requested power states 636 * are valid. It updates the array of requested power states with this 637 * information. 638 * 639 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it 640 * retrieves the states requested by all the cpus of which the power domain at 641 * that level is an ancestor. It passes this information to the platform to 642 * coordinate and return the target power state. If the requested state does 643 * not match the target state, the request is denied. 644 * 645 * The 'state_info' is not modified. 646 * 647 * This function will only be invoked with data cache enabled and while 648 * powering down a core. 649 *****************************************************************************/ 650 int psci_validate_state_coordination(unsigned int cpu_idx, unsigned int end_pwrlvl, 651 psci_power_state_t *state_info) 652 { 653 int rc = PSCI_E_SUCCESS; 654 unsigned int lvl, parent_idx; 655 unsigned int start_idx; 656 unsigned int ncpus; 657 plat_local_state_t target_state, *req_states; 658 plat_local_state_t prev[PLAT_MAX_PWR_LVL]; 659 660 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); 661 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 662 663 /* 664 * Save a copy of the previous requested local power states and update 665 * the new requested local power states. 666 */ 667 psci_update_req_local_pwr_states(end_pwrlvl, cpu_idx, state_info, prev); 668 669 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 670 /* Get the requested power states for this power level */ 671 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 672 req_states = psci_get_req_local_pwr_states(lvl, start_idx); 673 674 /* 675 * Let the platform coordinate amongst the requested states at 676 * this power level and return the target local power state. 677 */ 678 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 679 target_state = plat_get_target_pwr_state(lvl, 680 req_states, 681 ncpus); 682 683 /* 684 * Verify that the requested power state matches the target 685 * local power state. 686 */ 687 if (state_info->pwr_domain_state[lvl] != target_state) { 688 if (target_state == PSCI_LOCAL_STATE_RUN) { 689 rc = PSCI_E_DENIED; 690 } else { 691 rc = PSCI_E_INVALID_PARAMS; 692 } 693 goto exit; 694 } 695 696 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 697 } 698 699 /* 700 * Verify that the current core is the last running core at the 701 * specified power level. 702 */ 703 lvl = state_info->last_at_pwrlvl; 704 if (!psci_is_last_cpu_to_idle_at_pwrlvl(cpu_idx, lvl)) { 705 rc = PSCI_E_DENIED; 706 } 707 708 exit: 709 if (rc != PSCI_E_SUCCESS) { 710 /* Restore the previous requested local power states. */ 711 psci_restore_req_local_pwr_states(cpu_idx, prev); 712 return rc; 713 } 714 715 return rc; 716 } 717 #endif 718 719 /****************************************************************************** 720 * This function validates a suspend request by making sure that if a standby 721 * state is requested then no power level is turned off and the highest power 722 * level is placed in a standby/retention state. 723 * 724 * It also ensures that the state level X will enter is not shallower than the 725 * state level X + 1 will enter. 726 * 727 * This validation will be enabled only for DEBUG builds as the platform is 728 * expected to perform these validations as well. 729 *****************************************************************************/ 730 int psci_validate_suspend_req(const psci_power_state_t *state_info, 731 unsigned int is_power_down_state) 732 { 733 unsigned int max_off_lvl, target_lvl, max_retn_lvl; 734 plat_local_state_t state; 735 plat_local_state_type_t req_state_type, deepest_state_type; 736 int i; 737 738 /* Find the target suspend power level */ 739 target_lvl = psci_find_target_suspend_lvl(state_info); 740 if (target_lvl == PSCI_INVALID_PWR_LVL) { 741 return PSCI_E_INVALID_PARAMS; 742 } 743 744 /* All power domain levels are in a RUN state to begin with */ 745 deepest_state_type = STATE_TYPE_RUN; 746 747 for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) { 748 state = state_info->pwr_domain_state[i]; 749 req_state_type = find_local_state_type(state); 750 751 /* 752 * While traversing from the highest power level to the lowest, 753 * the state requested for lower levels has to be the same or 754 * deeper i.e. equal to or greater than the state at the higher 755 * levels. If this condition is true, then the requested state 756 * becomes the deepest state encountered so far. 757 */ 758 if (req_state_type < deepest_state_type) { 759 return PSCI_E_INVALID_PARAMS; 760 } 761 deepest_state_type = req_state_type; 762 } 763 764 /* Find the highest off power level */ 765 max_off_lvl = psci_find_max_off_lvl(state_info); 766 767 /* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */ 768 max_retn_lvl = PSCI_INVALID_PWR_LVL; 769 if (target_lvl != max_off_lvl) { 770 max_retn_lvl = target_lvl; 771 } 772 773 /* 774 * If this is not a request for a power down state then max off level 775 * has to be invalid and max retention level has to be a valid power 776 * level. 777 */ 778 if ((is_power_down_state == 0U) && 779 ((max_off_lvl != PSCI_INVALID_PWR_LVL) || 780 (max_retn_lvl == PSCI_INVALID_PWR_LVL))) { 781 return PSCI_E_INVALID_PARAMS; 782 } 783 784 return PSCI_E_SUCCESS; 785 } 786 787 /****************************************************************************** 788 * This function finds the highest power level which will be powered down 789 * amongst all the power levels specified in the 'state_info' structure 790 *****************************************************************************/ 791 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info) 792 { 793 int i; 794 795 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 796 if (is_local_state_off(state_info->pwr_domain_state[i]) != 0) { 797 return (unsigned int) i; 798 } 799 } 800 801 return PSCI_INVALID_PWR_LVL; 802 } 803 804 /****************************************************************************** 805 * This functions finds the level of the highest power domain which will be 806 * placed in a low power state during a suspend operation. 807 *****************************************************************************/ 808 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info) 809 { 810 int i; 811 812 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 813 if (is_local_state_run(state_info->pwr_domain_state[i]) == 0) { 814 return (unsigned int) i; 815 } 816 } 817 818 return PSCI_INVALID_PWR_LVL; 819 } 820 821 /******************************************************************************* 822 * This function is passed the highest level in the topology tree that the 823 * operation should be applied to and a list of node indexes. It picks up locks 824 * from the node index list in order of increasing power domain level in the 825 * range specified. 826 ******************************************************************************/ 827 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl, 828 const unsigned int *parent_nodes) 829 { 830 unsigned int parent_idx; 831 unsigned int level; 832 833 /* No locking required for level 0. Hence start locking from level 1 */ 834 for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) { 835 parent_idx = parent_nodes[level - 1U]; 836 psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]); 837 } 838 } 839 840 /******************************************************************************* 841 * This function is passed the highest level in the topology tree that the 842 * operation should be applied to and a list of node indexes. It releases the 843 * locks in order of decreasing power domain level in the range specified. 844 ******************************************************************************/ 845 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl, 846 const unsigned int *parent_nodes) 847 { 848 unsigned int parent_idx; 849 unsigned int level; 850 851 /* Unlock top down. No unlocking required for level 0. */ 852 for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) { 853 parent_idx = parent_nodes[level - 1U]; 854 psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]); 855 } 856 } 857 858 /******************************************************************************* 859 * This function determines the full entrypoint information for the requested 860 * PSCI entrypoint on power on/resume and returns it. 861 ******************************************************************************/ 862 #ifdef __aarch64__ 863 static int psci_get_ns_ep_info(entry_point_info_t *ep, 864 uintptr_t entrypoint, 865 u_register_t context_id) 866 { 867 u_register_t ep_attr, sctlr; 868 unsigned int daif, ee, mode; 869 u_register_t ns_scr_el3 = read_scr_el3(); 870 u_register_t ns_sctlr_el1 = read_sctlr_el1(); 871 872 sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 873 read_sctlr_el2() : ns_sctlr_el1; 874 ee = 0; 875 876 ep_attr = NON_SECURE | EP_ST_DISABLE; 877 if ((sctlr & SCTLR_EE_BIT) != 0U) { 878 ep_attr |= EP_EE_BIG; 879 ee = 1; 880 } 881 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 882 883 ep->pc = entrypoint; 884 zeromem(&ep->args, sizeof(ep->args)); 885 ep->args.arg0 = context_id; 886 887 /* 888 * Figure out whether the cpu enters the non-secure address space 889 * in aarch32 or aarch64 890 */ 891 if ((ns_scr_el3 & SCR_RW_BIT) != 0U) { 892 893 /* 894 * Check whether a Thumb entry point has been provided for an 895 * aarch64 EL 896 */ 897 if ((entrypoint & 0x1UL) != 0UL) { 898 return PSCI_E_INVALID_ADDRESS; 899 } 900 901 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1; 902 903 ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX, 904 DISABLE_ALL_EXCEPTIONS); 905 } else { 906 907 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 908 MODE32_hyp : MODE32_svc; 909 910 /* 911 * TODO: Choose async. exception bits if HYP mode is not 912 * implemented according to the values of SCR.{AW, FW} bits 913 */ 914 daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT; 915 916 ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee, 917 daif); 918 } 919 920 return PSCI_E_SUCCESS; 921 } 922 #else /* !__aarch64__ */ 923 static int psci_get_ns_ep_info(entry_point_info_t *ep, 924 uintptr_t entrypoint, 925 u_register_t context_id) 926 { 927 u_register_t ep_attr; 928 unsigned int aif, ee, mode; 929 u_register_t scr = read_scr(); 930 u_register_t ns_sctlr, sctlr; 931 932 /* Switch to non secure state */ 933 write_scr(scr | SCR_NS_BIT); 934 isb(); 935 ns_sctlr = read_sctlr(); 936 937 sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr; 938 939 /* Return to original state */ 940 write_scr(scr); 941 isb(); 942 ee = 0; 943 944 ep_attr = NON_SECURE | EP_ST_DISABLE; 945 if (sctlr & SCTLR_EE_BIT) { 946 ep_attr |= EP_EE_BIG; 947 ee = 1; 948 } 949 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 950 951 ep->pc = entrypoint; 952 zeromem(&ep->args, sizeof(ep->args)); 953 ep->args.arg0 = context_id; 954 955 mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc; 956 957 /* 958 * TODO: Choose async. exception bits if HYP mode is not 959 * implemented according to the values of SCR.{AW, FW} bits 960 */ 961 aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT; 962 963 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif); 964 965 return PSCI_E_SUCCESS; 966 } 967 968 #endif /* __aarch64__ */ 969 970 /******************************************************************************* 971 * This function validates the entrypoint with the platform layer if the 972 * appropriate pm_ops hook is exported by the platform and returns the 973 * 'entry_point_info'. 974 ******************************************************************************/ 975 int psci_validate_entry_point(entry_point_info_t *ep, 976 uintptr_t entrypoint, 977 u_register_t context_id) 978 { 979 int rc; 980 981 /* Validate the entrypoint using platform psci_ops */ 982 if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) { 983 rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint); 984 if (rc != PSCI_E_SUCCESS) { 985 return PSCI_E_INVALID_ADDRESS; 986 } 987 } 988 989 /* 990 * Verify and derive the re-entry information for 991 * the non-secure world from the non-secure state from 992 * where this call originated. 993 */ 994 rc = psci_get_ns_ep_info(ep, entrypoint, context_id); 995 return rc; 996 } 997 998 /******************************************************************************* 999 * Generic handler which is called when a cpu is physically powered on. It 1000 * traverses the node information and finds the highest power level powered 1001 * off and performs generic, architectural, platform setup and state management 1002 * to power on that power level and power levels below it. 1003 * e.g. For a cpu that's been powered on, it will call the platform specific 1004 * code to enable the gic cpu interface and for a cluster it will enable 1005 * coherency at the interconnect level in addition to gic cpu interface. 1006 ******************************************************************************/ 1007 void psci_warmboot_entrypoint(unsigned int cpu_idx) 1008 { 1009 unsigned int end_pwrlvl; 1010 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 1011 psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} }; 1012 1013 /* 1014 * Verify that we have been explicitly turned ON or resumed from 1015 * suspend. 1016 */ 1017 if (psci_get_aff_info_state() == AFF_STATE_OFF) { 1018 ERROR("Unexpected affinity info state.\n"); 1019 panic(); 1020 } 1021 1022 /* 1023 * Get the maximum power domain level to traverse to after this cpu 1024 * has been physically powered up. 1025 */ 1026 end_pwrlvl = get_power_on_target_pwrlvl(); 1027 1028 /* Get the parent nodes */ 1029 psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes); 1030 1031 /* 1032 * This function acquires the lock corresponding to each power level so 1033 * that by the time all locks are taken, the system topology is snapshot 1034 * and state management can be done safely. 1035 */ 1036 psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes); 1037 1038 psci_get_target_local_pwr_states(cpu_idx, end_pwrlvl, &state_info); 1039 1040 #if ENABLE_PSCI_STAT 1041 plat_psci_stat_accounting_stop(&state_info); 1042 #endif 1043 1044 /* 1045 * This CPU could be resuming from suspend or it could have just been 1046 * turned on. To distinguish between these 2 cases, we examine the 1047 * affinity state of the CPU: 1048 * - If the affinity state is ON_PENDING then it has just been 1049 * turned on. 1050 * - Else it is resuming from suspend. 1051 * 1052 * Depending on the type of warm reset identified, choose the right set 1053 * of power management handler and perform the generic, architecture 1054 * and platform specific handling. 1055 */ 1056 if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING) { 1057 psci_cpu_on_finish(cpu_idx, &state_info); 1058 } else { 1059 unsigned int max_off_lvl = psci_find_max_off_lvl(&state_info); 1060 1061 assert(max_off_lvl != PSCI_INVALID_PWR_LVL); 1062 psci_cpu_suspend_to_powerdown_finish(cpu_idx, max_off_lvl, &state_info, false); 1063 } 1064 1065 /* 1066 * Caches and (importantly) coherency are on so we can rely on seeing 1067 * whatever the primary gave us without explicit cache maintenance 1068 */ 1069 entry_point_info_t *ep = get_cpu_data(warmboot_ep_info); 1070 cm_init_my_context(ep); 1071 1072 /* 1073 * Generic management: Now we just need to retrieve the 1074 * information that we had stashed away during the cpu_on 1075 * call to set this cpu on its way. 1076 */ 1077 cm_prepare_el3_exit_ns(); 1078 1079 /* 1080 * Set the requested and target state of this CPU and all the higher 1081 * power domains which are ancestors of this CPU to run. 1082 */ 1083 psci_set_pwr_domains_to_run(cpu_idx, end_pwrlvl); 1084 1085 #if ENABLE_PSCI_STAT 1086 psci_stats_update_pwr_up(cpu_idx, end_pwrlvl, &state_info); 1087 #endif 1088 1089 /* 1090 * This loop releases the lock corresponding to each power level 1091 * in the reverse order to which they were acquired. 1092 */ 1093 psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes); 1094 } 1095 1096 /******************************************************************************* 1097 * This function initializes the set of hooks that PSCI invokes as part of power 1098 * management operation. The power management hooks are expected to be provided 1099 * by the SPD, after it finishes all its initialization 1100 ******************************************************************************/ 1101 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm) 1102 { 1103 assert(pm != NULL); 1104 psci_spd_pm = pm; 1105 1106 if (pm->svc_migrate != NULL) { 1107 psci_caps |= define_psci_cap(PSCI_MIG_AARCH64); 1108 } 1109 1110 if (pm->svc_migrate_info != NULL) { 1111 psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64) 1112 | define_psci_cap(PSCI_MIG_INFO_TYPE); 1113 } 1114 } 1115 1116 /******************************************************************************* 1117 * This function invokes the migrate info hook in the spd_pm_ops. It performs 1118 * the necessary return value validation. If the Secure Payload is UP and 1119 * migrate capable, it returns the mpidr of the CPU on which the Secure payload 1120 * is resident through the mpidr parameter. Else the value of the parameter on 1121 * return is undefined. 1122 ******************************************************************************/ 1123 int psci_spd_migrate_info(u_register_t *mpidr) 1124 { 1125 int rc; 1126 1127 if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL)) { 1128 return PSCI_E_NOT_SUPPORTED; 1129 } 1130 1131 rc = psci_spd_pm->svc_migrate_info(mpidr); 1132 1133 assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) || 1134 (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED)); 1135 1136 return rc; 1137 } 1138 1139 1140 /******************************************************************************* 1141 * This function prints the state of all power domains present in the 1142 * system 1143 ******************************************************************************/ 1144 void psci_print_power_domain_map(void) 1145 { 1146 #if LOG_LEVEL >= LOG_LEVEL_INFO 1147 unsigned int idx; 1148 plat_local_state_t state; 1149 plat_local_state_type_t state_type; 1150 1151 /* This array maps to the PSCI_STATE_X definitions in psci.h */ 1152 static const char * const psci_state_type_str[] = { 1153 "ON", 1154 "RETENTION", 1155 "OFF", 1156 }; 1157 1158 INFO("PSCI Power Domain Map:\n"); 1159 for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count); 1160 idx++) { 1161 state_type = find_local_state_type( 1162 psci_non_cpu_pd_nodes[idx].local_state); 1163 INFO(" Domain Node : Level %u, parent_node %u," 1164 " State %s (0x%x)\n", 1165 psci_non_cpu_pd_nodes[idx].level, 1166 psci_non_cpu_pd_nodes[idx].parent_node, 1167 psci_state_type_str[state_type], 1168 psci_non_cpu_pd_nodes[idx].local_state); 1169 } 1170 1171 for (idx = 0; idx < psci_plat_core_count; idx++) { 1172 state = psci_get_cpu_local_state_by_idx(idx); 1173 state_type = find_local_state_type(state); 1174 INFO(" CPU Node : MPID 0x%llx, parent_node %u," 1175 " State %s (0x%x)\n", 1176 (unsigned long long)psci_cpu_pd_nodes[idx].mpidr, 1177 psci_cpu_pd_nodes[idx].parent_node, 1178 psci_state_type_str[state_type], 1179 psci_get_cpu_local_state_by_idx(idx)); 1180 } 1181 #endif 1182 } 1183 1184 /****************************************************************************** 1185 * Return whether any secondaries were powered up with CPU_ON call. A CPU that 1186 * have ever been powered up would have set its MPDIR value to something other 1187 * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to 1188 * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is 1189 * meaningful only when called on the primary CPU during early boot. 1190 *****************************************************************************/ 1191 int psci_secondaries_brought_up(void) 1192 { 1193 unsigned int idx, n_valid = 0U; 1194 1195 for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) { 1196 if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR) { 1197 n_valid++; 1198 } 1199 } 1200 1201 assert(n_valid > 0U); 1202 1203 return (n_valid > 1U) ? 1 : 0; 1204 } 1205 1206 static u_register_t call_cpu_pwr_dwn(unsigned int power_level) 1207 { 1208 struct cpu_ops *ops = get_cpu_data(cpu_ops_ptr); 1209 1210 /* Call the last available power down handler */ 1211 if (power_level > CPU_MAX_PWR_DWN_OPS - 1) { 1212 power_level = CPU_MAX_PWR_DWN_OPS - 1; 1213 } 1214 1215 assert(ops != NULL); 1216 assert(ops->pwr_dwn_ops[power_level] != NULL); 1217 1218 return ops->pwr_dwn_ops[power_level](); 1219 } 1220 1221 static void prepare_cpu_pwr_dwn(unsigned int power_level) 1222 { 1223 /* ignore the return, all cpus should behave the same */ 1224 (void)call_cpu_pwr_dwn(power_level); 1225 } 1226 1227 static void prepare_cpu_pwr_up(unsigned int power_level) 1228 { 1229 /* 1230 * Call the pwr_dwn cpu hook again, indicating that an abandon happened. 1231 * The cpu driver is expected to clean up. We ask it to return 1232 * PABANDON_ACK to indicate that it has handled this. This is a 1233 * heuristic: the value has been chosen such that an unported CPU is 1234 * extremely unlikely to return this value. 1235 */ 1236 u_register_t ret = call_cpu_pwr_dwn(power_level); 1237 1238 /* unreachable on AArch32 so cast down to calm the compiler */ 1239 if (ret != (u_register_t) PABANDON_ACK) { 1240 panic(); 1241 } 1242 } 1243 1244 /******************************************************************************* 1245 * Initiate power down sequence, by calling power down operations registered for 1246 * this CPU. 1247 ******************************************************************************/ 1248 void psci_pwrdown_cpu_start(unsigned int power_level) 1249 { 1250 #if ENABLE_RUNTIME_INSTRUMENTATION 1251 1252 /* 1253 * Flush cache line so that even if CPU power down happens 1254 * the timestamp update is reflected in memory. 1255 */ 1256 PMF_CAPTURE_TIMESTAMP(rt_instr_svc, 1257 RT_INSTR_ENTER_CFLUSH, 1258 PMF_CACHE_MAINT); 1259 #endif 1260 1261 #if !HW_ASSISTED_COHERENCY 1262 /* 1263 * Disable data caching and handle the stack's cache maintenance. 1264 * 1265 * If the core can't automatically exit coherency, the cpu driver needs 1266 * to flush caches and exit coherency. We can't do this with data caches 1267 * enabled. The cpu driver will decide which caches to flush based on 1268 * the power level. 1269 * 1270 * If automatic coherency management is possible, we can keep data 1271 * caches on until the very end and let hardware do cache maintenance. 1272 */ 1273 psci_do_pwrdown_cache_maintenance(); 1274 #endif 1275 1276 /* Initiate the power down sequence by calling into the cpu driver. */ 1277 prepare_cpu_pwr_dwn(power_level); 1278 1279 #if ENABLE_RUNTIME_INSTRUMENTATION 1280 PMF_CAPTURE_TIMESTAMP(rt_instr_svc, 1281 RT_INSTR_EXIT_CFLUSH, 1282 PMF_NO_CACHE_MAINT); 1283 #endif 1284 } 1285 1286 /******************************************************************************* 1287 * Finish a terminal power down sequence, ending with a wfi. In case of wakeup 1288 * will retry the sleep and panic if it persists. 1289 ******************************************************************************/ 1290 void __dead2 psci_pwrdown_cpu_end_terminal(void) 1291 { 1292 #if ERRATA_SME_POWER_DOWN 1293 /* 1294 * force SME off to not get power down rejected. Getting here is 1295 * terminal so we don't care if we lose context because of another 1296 * wakeup 1297 */ 1298 if (is_feat_sme_supported()) { 1299 write_svcr(0); 1300 isb(); 1301 } 1302 #endif /* ERRATA_SME_POWER_DOWN */ 1303 1304 /* ensure write buffer empty */ 1305 dsbsy(); 1306 1307 /* 1308 * Execute a wfi which, in most cases, will allow the power controller 1309 * to physically power down this cpu. Under some circumstances that may 1310 * be denied. Hopefully this is transient, retrying a few times should 1311 * power down. 1312 */ 1313 for (int i = 0; i < 32; i++) 1314 wfi(); 1315 1316 /* Wake up wasn't transient. System is probably in a bad state. */ 1317 ERROR("Could not power off CPU.\n"); 1318 panic(); 1319 } 1320 1321 /******************************************************************************* 1322 * Finish a non-terminal power down sequence, ending with a wfi. In case of 1323 * wakeup will unwind any CPU specific actions and return. 1324 ******************************************************************************/ 1325 1326 void psci_pwrdown_cpu_end_wakeup(unsigned int power_level) 1327 { 1328 /* ensure write buffer empty */ 1329 dsbsy(); 1330 1331 /* 1332 * Turn the core off. Usually, will be terminal. In some circumstances 1333 * the powerdown will be denied and we'll need to unwind. 1334 */ 1335 wfi(); 1336 1337 /* 1338 * Waking up does not require hardware-assisted coherency, but that is 1339 * the case for every core that can wake up. Can either happen because 1340 * of errata or pabandon. 1341 */ 1342 #if !defined(__aarch64__) || !HW_ASSISTED_COHERENCY 1343 ERROR("AArch32 systems shouldn't wake up.\n"); 1344 panic(); 1345 #endif 1346 /* 1347 * Begin unwinding. Everything can be shared with CPU_ON and co later, 1348 * except the CPU specific bit. Cores that have hardware-assisted 1349 * coherency should be able to handle this. 1350 */ 1351 prepare_cpu_pwr_up(power_level); 1352 } 1353 1354 /******************************************************************************* 1355 * This function invokes the callback 'stop_func()' with the 'mpidr' of each 1356 * online PE. Caller can pass suitable method to stop a remote core. 1357 * 1358 * 'wait_ms' is the timeout value in milliseconds for the other cores to 1359 * transition to power down state. Passing '0' makes it non-blocking. 1360 * 1361 * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the 1362 * given timeout. 1363 ******************************************************************************/ 1364 int psci_stop_other_cores(unsigned int this_cpu_idx, unsigned int wait_ms, 1365 void (*stop_func)(u_register_t mpidr)) 1366 { 1367 /* Invoke stop_func for each core */ 1368 for (unsigned int idx = 0U; idx < psci_plat_core_count; idx++) { 1369 /* skip current CPU */ 1370 if (idx == this_cpu_idx) { 1371 continue; 1372 } 1373 1374 /* Check if the CPU is ON */ 1375 if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) { 1376 (*stop_func)(psci_cpu_pd_nodes[idx].mpidr); 1377 } 1378 } 1379 1380 /* Need to wait for other cores to shutdown */ 1381 if (wait_ms != 0U) { 1382 for (uint32_t delay_ms = wait_ms; ((delay_ms != 0U) && 1383 (!psci_is_last_on_cpu(this_cpu_idx))); delay_ms--) { 1384 mdelay(1U); 1385 } 1386 1387 if (!psci_is_last_on_cpu(this_cpu_idx)) { 1388 WARN("Failed to stop all cores!\n"); 1389 psci_print_power_domain_map(); 1390 return PSCI_E_DENIED; 1391 } 1392 } 1393 1394 return PSCI_E_SUCCESS; 1395 } 1396 1397 /******************************************************************************* 1398 * This function verifies that all the other cores in the system have been 1399 * turned OFF and the current CPU is the last running CPU in the system. 1400 * Returns true if the current CPU is the last ON CPU or false otherwise. 1401 * 1402 * This API has following differences with psci_is_last_on_cpu 1403 * 1. PSCI states are locked 1404 ******************************************************************************/ 1405 bool psci_is_last_on_cpu_safe(unsigned int this_core) 1406 { 1407 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 1408 1409 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes); 1410 1411 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1412 1413 if (!psci_is_last_on_cpu(this_core)) { 1414 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1415 return false; 1416 } 1417 1418 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1419 1420 return true; 1421 } 1422 1423 /******************************************************************************* 1424 * This function verifies that all cores in the system have been turned ON. 1425 * Returns true, if all CPUs are ON or false otherwise. 1426 * 1427 * This API has following differences with psci_are_all_cpus_on 1428 * 1. PSCI states are locked 1429 ******************************************************************************/ 1430 bool psci_are_all_cpus_on_safe(unsigned int this_core) 1431 { 1432 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 1433 1434 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes); 1435 1436 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1437 1438 if (!psci_are_all_cpus_on()) { 1439 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1440 return false; 1441 } 1442 1443 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1444 1445 return true; 1446 } 1447 1448 /******************************************************************************* 1449 * Safely counts the number of CPUs in the system that are currently in the ON 1450 * or ON_PENDING state. 1451 * 1452 * This function acquires and releases the necessary power domain locks to 1453 * ensure consistency of the CPU state information. 1454 * 1455 * @param this_core The index of the current core making the query. 1456 * 1457 * @return The number of CPUs currently in AFF_STATE_ON or AFF_STATE_ON_PENDING. 1458 ******************************************************************************/ 1459 unsigned int psci_num_cpus_running_on_safe(unsigned int this_core) 1460 { 1461 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 1462 unsigned int no_of_cpus; 1463 1464 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes); 1465 1466 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1467 1468 no_of_cpus = psci_num_cpus_running(); 1469 1470 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1471 1472 return no_of_cpus; 1473 } 1474