1 /* 2 * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 #include <string.h> 9 10 #include <arch.h> 11 #include <arch_features.h> 12 #include <arch_helpers.h> 13 #include <common/bl_common.h> 14 #include <common/debug.h> 15 #include <context.h> 16 #include <drivers/delay_timer.h> 17 #include <lib/el3_runtime/context_mgmt.h> 18 #include <lib/extensions/spe.h> 19 #include <lib/utils.h> 20 #include <plat/common/platform.h> 21 22 #include "psci_private.h" 23 24 /* 25 * SPD power management operations, expected to be supplied by the registered 26 * SPD on successful SP initialization 27 */ 28 const spd_pm_ops_t *psci_spd_pm; 29 30 /* 31 * PSCI requested local power state map. This array is used to store the local 32 * power states requested by a CPU for power levels from level 1 to 33 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power 34 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a 35 * CPU are the same. 36 * 37 * During state coordination, the platform is passed an array containing the 38 * local states requested for a particular non cpu power domain by each cpu 39 * within the domain. 40 * 41 * TODO: Dense packing of the requested states will cause cache thrashing 42 * when multiple power domains write to it. If we allocate the requested 43 * states at each power level in a cache-line aligned per-domain memory, 44 * the cache thrashing can be avoided. 45 */ 46 static plat_local_state_t 47 psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT]; 48 49 unsigned int psci_plat_core_count; 50 51 /******************************************************************************* 52 * Arrays that hold the platform's power domain tree information for state 53 * management of power domains. 54 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain 55 * which is an ancestor of a CPU power domain. 56 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain 57 ******************************************************************************/ 58 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS] 59 #if USE_COHERENT_MEM 60 __section(".tzfw_coherent_mem") 61 #endif 62 ; 63 64 /* Lock for PSCI state coordination */ 65 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]); 66 67 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT]; 68 69 /******************************************************************************* 70 * Pointer to functions exported by the platform to complete power mgmt. ops 71 ******************************************************************************/ 72 const plat_psci_ops_t *psci_plat_pm_ops; 73 74 /****************************************************************************** 75 * Check that the maximum power level supported by the platform makes sense 76 *****************************************************************************/ 77 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) && 78 (PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL), 79 assert_platform_max_pwrlvl_check); 80 81 #if PSCI_OS_INIT_MODE 82 /******************************************************************************* 83 * The power state coordination mode used in CPU_SUSPEND. 84 * Defaults to platform-coordinated mode. 85 ******************************************************************************/ 86 suspend_mode_t psci_suspend_mode = PLAT_COORD; 87 #endif 88 89 /* 90 * The plat_local_state used by the platform is one of these types: RUN, 91 * RETENTION and OFF. The platform can define further sub-states for each type 92 * apart from RUN. This categorization is done to verify the sanity of the 93 * psci_power_state passed by the platform and to print debug information. The 94 * categorization is done on the basis of the following conditions: 95 * 96 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN. 97 * 98 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is 99 * STATE_TYPE_RETN. 100 * 101 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is 102 * STATE_TYPE_OFF. 103 */ 104 typedef enum plat_local_state_type { 105 STATE_TYPE_RUN = 0, 106 STATE_TYPE_RETN, 107 STATE_TYPE_OFF 108 } plat_local_state_type_t; 109 110 /* Function used to categorize plat_local_state. */ 111 static plat_local_state_type_t find_local_state_type(plat_local_state_t state) 112 { 113 if (state != 0U) { 114 if (state > PLAT_MAX_RET_STATE) { 115 return STATE_TYPE_OFF; 116 } else { 117 return STATE_TYPE_RETN; 118 } 119 } else { 120 return STATE_TYPE_RUN; 121 } 122 } 123 124 /****************************************************************************** 125 * Check that the maximum retention level supported by the platform is less 126 * than the maximum off level. 127 *****************************************************************************/ 128 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, 129 assert_platform_max_off_and_retn_state_check); 130 131 /****************************************************************************** 132 * This function ensures that the power state parameter in a CPU_SUSPEND request 133 * is valid. If so, it returns the requested states for each power level. 134 *****************************************************************************/ 135 int psci_validate_power_state(unsigned int power_state, 136 psci_power_state_t *state_info) 137 { 138 /* Check SBZ bits in power state are zero */ 139 if (psci_check_power_state(power_state) != 0U) 140 return PSCI_E_INVALID_PARAMS; 141 142 assert(psci_plat_pm_ops->validate_power_state != NULL); 143 144 /* Validate the power_state using platform pm_ops */ 145 return psci_plat_pm_ops->validate_power_state(power_state, state_info); 146 } 147 148 /****************************************************************************** 149 * This function retrieves the `psci_power_state_t` for system suspend from 150 * the platform. 151 *****************************************************************************/ 152 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info) 153 { 154 /* 155 * Assert that the required pm_ops hook is implemented to ensure that 156 * the capability detected during psci_setup() is valid. 157 */ 158 assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL); 159 160 /* 161 * Query the platform for the power_state required for system suspend 162 */ 163 psci_plat_pm_ops->get_sys_suspend_power_state(state_info); 164 } 165 166 #if PSCI_OS_INIT_MODE 167 /******************************************************************************* 168 * This function verifies that all the other cores at the 'end_pwrlvl' have been 169 * idled and the current CPU is the last running CPU at the 'end_pwrlvl'. 170 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false) 171 * otherwise. 172 ******************************************************************************/ 173 static bool psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int end_pwrlvl) 174 { 175 unsigned int my_idx, lvl, parent_idx; 176 unsigned int cpu_start_idx, ncpus, cpu_idx; 177 plat_local_state_t local_state; 178 179 if (end_pwrlvl == PSCI_CPU_PWR_LVL) { 180 return true; 181 } 182 183 my_idx = plat_my_core_pos(); 184 185 for (lvl = PSCI_CPU_PWR_LVL; lvl <= end_pwrlvl; lvl++) { 186 parent_idx = psci_cpu_pd_nodes[my_idx].parent_node; 187 } 188 189 cpu_start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 190 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 191 192 for (cpu_idx = cpu_start_idx; cpu_idx < cpu_start_idx + ncpus; 193 cpu_idx++) { 194 local_state = psci_get_cpu_local_state_by_idx(cpu_idx); 195 if (cpu_idx == my_idx) { 196 assert(is_local_state_run(local_state) != 0); 197 continue; 198 } 199 200 if (is_local_state_run(local_state) != 0) { 201 return false; 202 } 203 } 204 205 return true; 206 } 207 #endif 208 209 /******************************************************************************* 210 * This function verifies that all the other cores in the system have been 211 * turned OFF and the current CPU is the last running CPU in the system. 212 * Returns true, if the current CPU is the last ON CPU or false otherwise. 213 ******************************************************************************/ 214 bool psci_is_last_on_cpu(void) 215 { 216 unsigned int cpu_idx, my_idx = plat_my_core_pos(); 217 218 for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) { 219 if (cpu_idx == my_idx) { 220 assert(psci_get_aff_info_state() == AFF_STATE_ON); 221 continue; 222 } 223 224 if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) { 225 VERBOSE("core=%u other than current core=%u %s\n", 226 cpu_idx, my_idx, "running in the system"); 227 return false; 228 } 229 } 230 231 return true; 232 } 233 234 /******************************************************************************* 235 * This function verifies that all cores in the system have been turned ON. 236 * Returns true, if all CPUs are ON or false otherwise. 237 ******************************************************************************/ 238 static bool psci_are_all_cpus_on(void) 239 { 240 unsigned int cpu_idx; 241 242 for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) { 243 if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_OFF) { 244 return false; 245 } 246 } 247 248 return true; 249 } 250 251 /******************************************************************************* 252 * Routine to return the maximum power level to traverse to after a cpu has 253 * been physically powered up. It is expected to be called immediately after 254 * reset from assembler code. 255 ******************************************************************************/ 256 static unsigned int get_power_on_target_pwrlvl(void) 257 { 258 unsigned int pwrlvl; 259 260 /* 261 * Assume that this cpu was suspended and retrieve its target power 262 * level. If it is invalid then it could only have been turned off 263 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a 264 * cpu can be turned off to. 265 */ 266 pwrlvl = psci_get_suspend_pwrlvl(); 267 if (pwrlvl == PSCI_INVALID_PWR_LVL) 268 pwrlvl = PLAT_MAX_PWR_LVL; 269 assert(pwrlvl < PSCI_INVALID_PWR_LVL); 270 return pwrlvl; 271 } 272 273 /****************************************************************************** 274 * Helper function to update the requested local power state array. This array 275 * does not store the requested state for the CPU power level. Hence an 276 * assertion is added to prevent us from accessing the CPU power level. 277 *****************************************************************************/ 278 static void psci_set_req_local_pwr_state(unsigned int pwrlvl, 279 unsigned int cpu_idx, 280 plat_local_state_t req_pwr_state) 281 { 282 assert(pwrlvl > PSCI_CPU_PWR_LVL); 283 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && 284 (cpu_idx < psci_plat_core_count)) { 285 psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state; 286 } 287 } 288 289 /****************************************************************************** 290 * This function initializes the psci_req_local_pwr_states. 291 *****************************************************************************/ 292 void __init psci_init_req_local_pwr_states(void) 293 { 294 /* Initialize the requested state of all non CPU power domains as OFF */ 295 unsigned int pwrlvl; 296 unsigned int core; 297 298 for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) { 299 for (core = 0; core < psci_plat_core_count; core++) { 300 psci_req_local_pwr_states[pwrlvl][core] = 301 PLAT_MAX_OFF_STATE; 302 } 303 } 304 } 305 306 /****************************************************************************** 307 * Helper function to return a reference to an array containing the local power 308 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the 309 * array will be the number of cpu power domains of which this power domain is 310 * an ancestor. These requested states will be used to determine a suitable 311 * target state for this power domain during psci state coordination. An 312 * assertion is added to prevent us from accessing the CPU power level. 313 *****************************************************************************/ 314 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl, 315 unsigned int cpu_idx) 316 { 317 assert(pwrlvl > PSCI_CPU_PWR_LVL); 318 319 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && 320 (cpu_idx < psci_plat_core_count)) { 321 return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx]; 322 } else 323 return NULL; 324 } 325 326 #if PSCI_OS_INIT_MODE 327 /****************************************************************************** 328 * Helper function to save a copy of the psci_req_local_pwr_states (prev) for a 329 * CPU (cpu_idx), and update psci_req_local_pwr_states with the new requested 330 * local power states (state_info). 331 *****************************************************************************/ 332 void psci_update_req_local_pwr_states(unsigned int end_pwrlvl, 333 unsigned int cpu_idx, 334 psci_power_state_t *state_info, 335 plat_local_state_t *prev) 336 { 337 unsigned int lvl; 338 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL 339 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL; 340 #else 341 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL; 342 #endif 343 plat_local_state_t req_state; 344 345 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) { 346 /* Save the previous requested local power state */ 347 prev[lvl - 1U] = *psci_get_req_local_pwr_states(lvl, cpu_idx); 348 349 /* Update the new requested local power state */ 350 if (lvl <= end_pwrlvl) { 351 req_state = state_info->pwr_domain_state[lvl]; 352 } else { 353 req_state = state_info->pwr_domain_state[end_pwrlvl]; 354 } 355 psci_set_req_local_pwr_state(lvl, cpu_idx, req_state); 356 } 357 } 358 359 /****************************************************************************** 360 * Helper function to restore the previously saved requested local power states 361 * (prev) for a CPU (cpu_idx) to psci_req_local_pwr_states. 362 *****************************************************************************/ 363 void psci_restore_req_local_pwr_states(unsigned int cpu_idx, 364 plat_local_state_t *prev) 365 { 366 unsigned int lvl; 367 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL 368 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL; 369 #else 370 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL; 371 #endif 372 373 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) { 374 /* Restore the previous requested local power state */ 375 psci_set_req_local_pwr_state(lvl, cpu_idx, prev[lvl - 1U]); 376 } 377 } 378 #endif 379 380 /* 381 * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent 382 * memory. 383 * 384 * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory, 385 * it's accessed by both cached and non-cached participants. To serve the common 386 * minimum, perform a cache flush before read and after write so that non-cached 387 * participants operate on latest data in main memory. 388 * 389 * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent 390 * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent. 391 * In both cases, no cache operations are required. 392 */ 393 394 /* 395 * Retrieve local state of non-CPU power domain node from a non-cached CPU, 396 * after any required cache maintenance operation. 397 */ 398 static plat_local_state_t get_non_cpu_pd_node_local_state( 399 unsigned int parent_idx) 400 { 401 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 402 flush_dcache_range( 403 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 404 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 405 #endif 406 return psci_non_cpu_pd_nodes[parent_idx].local_state; 407 } 408 409 /* 410 * Update local state of non-CPU power domain node from a cached CPU; perform 411 * any required cache maintenance operation afterwards. 412 */ 413 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx, 414 plat_local_state_t state) 415 { 416 psci_non_cpu_pd_nodes[parent_idx].local_state = state; 417 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 418 flush_dcache_range( 419 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 420 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 421 #endif 422 } 423 424 /****************************************************************************** 425 * Helper function to return the current local power state of each power domain 426 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This 427 * function will be called after a cpu is powered on to find the local state 428 * each power domain has emerged from. 429 *****************************************************************************/ 430 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl, 431 psci_power_state_t *target_state) 432 { 433 unsigned int parent_idx, lvl; 434 plat_local_state_t *pd_state = target_state->pwr_domain_state; 435 436 pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state(); 437 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; 438 439 /* Copy the local power state from node to state_info */ 440 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 441 pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx); 442 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 443 } 444 445 /* Set the the higher levels to RUN */ 446 for (; lvl <= PLAT_MAX_PWR_LVL; lvl++) 447 target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 448 } 449 450 /****************************************************************************** 451 * Helper function to set the target local power state that each power domain 452 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will 453 * enter. This function will be called after coordination of requested power 454 * states has been done for each power level. 455 *****************************************************************************/ 456 void psci_set_target_local_pwr_states(unsigned int end_pwrlvl, 457 const psci_power_state_t *target_state) 458 { 459 unsigned int parent_idx, lvl; 460 const plat_local_state_t *pd_state = target_state->pwr_domain_state; 461 462 psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]); 463 464 /* 465 * Need to flush as local_state might be accessed with Data Cache 466 * disabled during power on 467 */ 468 psci_flush_cpu_data(psci_svc_cpu_data.local_state); 469 470 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; 471 472 /* Copy the local_state from state_info */ 473 for (lvl = 1U; lvl <= end_pwrlvl; lvl++) { 474 set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]); 475 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 476 } 477 } 478 479 /******************************************************************************* 480 * PSCI helper function to get the parent nodes corresponding to a cpu_index. 481 ******************************************************************************/ 482 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx, 483 unsigned int end_lvl, 484 unsigned int *node_index) 485 { 486 unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node; 487 unsigned int i; 488 unsigned int *node = node_index; 489 490 for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) { 491 *node = parent_node; 492 node++; 493 parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node; 494 } 495 } 496 497 /****************************************************************************** 498 * This function is invoked post CPU power up and initialization. It sets the 499 * affinity info state, target power state and requested power state for the 500 * current CPU and all its ancestor power domains to RUN. 501 *****************************************************************************/ 502 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl) 503 { 504 unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl; 505 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 506 507 /* Reset the local_state to RUN for the non cpu power domains. */ 508 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 509 set_non_cpu_pd_node_local_state(parent_idx, 510 PSCI_LOCAL_STATE_RUN); 511 psci_set_req_local_pwr_state(lvl, 512 cpu_idx, 513 PSCI_LOCAL_STATE_RUN); 514 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 515 } 516 517 /* Set the affinity info state to ON */ 518 psci_set_aff_info_state(AFF_STATE_ON); 519 520 psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN); 521 psci_flush_cpu_data(psci_svc_cpu_data); 522 } 523 524 /****************************************************************************** 525 * This function is used in platform-coordinated mode. 526 * 527 * This function is passed the local power states requested for each power 528 * domain (state_info) between the current CPU domain and its ancestors until 529 * the target power level (end_pwrlvl). It updates the array of requested power 530 * states with this information. 531 * 532 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it 533 * retrieves the states requested by all the cpus of which the power domain at 534 * that level is an ancestor. It passes this information to the platform to 535 * coordinate and return the target power state. If the target state for a level 536 * is RUN then subsequent levels are not considered. At the CPU level, state 537 * coordination is not required. Hence, the requested and the target states are 538 * the same. 539 * 540 * The 'state_info' is updated with the target state for each level between the 541 * CPU and the 'end_pwrlvl' and returned to the caller. 542 * 543 * This function will only be invoked with data cache enabled and while 544 * powering down a core. 545 *****************************************************************************/ 546 void psci_do_state_coordination(unsigned int end_pwrlvl, 547 psci_power_state_t *state_info) 548 { 549 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos(); 550 unsigned int start_idx; 551 unsigned int ncpus; 552 plat_local_state_t target_state, *req_states; 553 554 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); 555 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 556 557 /* For level 0, the requested state will be equivalent 558 to target state */ 559 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 560 561 /* First update the requested power state */ 562 psci_set_req_local_pwr_state(lvl, cpu_idx, 563 state_info->pwr_domain_state[lvl]); 564 565 /* Get the requested power states for this power level */ 566 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 567 req_states = psci_get_req_local_pwr_states(lvl, start_idx); 568 569 /* 570 * Let the platform coordinate amongst the requested states at 571 * this power level and return the target local power state. 572 */ 573 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 574 target_state = plat_get_target_pwr_state(lvl, 575 req_states, 576 ncpus); 577 578 state_info->pwr_domain_state[lvl] = target_state; 579 580 /* Break early if the negotiated target power state is RUN */ 581 if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0) 582 break; 583 584 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 585 } 586 587 /* 588 * This is for cases when we break out of the above loop early because 589 * the target power state is RUN at a power level < end_pwlvl. 590 * We update the requested power state from state_info and then 591 * set the target state as RUN. 592 */ 593 for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) { 594 psci_set_req_local_pwr_state(lvl, cpu_idx, 595 state_info->pwr_domain_state[lvl]); 596 state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 597 598 } 599 } 600 601 #if PSCI_OS_INIT_MODE 602 /****************************************************************************** 603 * This function is used in OS-initiated mode. 604 * 605 * This function is passed the local power states requested for each power 606 * domain (state_info) between the current CPU domain and its ancestors until 607 * the target power level (end_pwrlvl), and ensures the requested power states 608 * are valid. It updates the array of requested power states with this 609 * information. 610 * 611 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it 612 * retrieves the states requested by all the cpus of which the power domain at 613 * that level is an ancestor. It passes this information to the platform to 614 * coordinate and return the target power state. If the requested state does 615 * not match the target state, the request is denied. 616 * 617 * The 'state_info' is not modified. 618 * 619 * This function will only be invoked with data cache enabled and while 620 * powering down a core. 621 *****************************************************************************/ 622 int psci_validate_state_coordination(unsigned int end_pwrlvl, 623 psci_power_state_t *state_info) 624 { 625 int rc = PSCI_E_SUCCESS; 626 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos(); 627 unsigned int start_idx; 628 unsigned int ncpus; 629 plat_local_state_t target_state, *req_states; 630 plat_local_state_t prev[PLAT_MAX_PWR_LVL]; 631 632 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); 633 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 634 635 /* 636 * Save a copy of the previous requested local power states and update 637 * the new requested local power states. 638 */ 639 psci_update_req_local_pwr_states(end_pwrlvl, cpu_idx, state_info, prev); 640 641 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 642 /* Get the requested power states for this power level */ 643 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 644 req_states = psci_get_req_local_pwr_states(lvl, start_idx); 645 646 /* 647 * Let the platform coordinate amongst the requested states at 648 * this power level and return the target local power state. 649 */ 650 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 651 target_state = plat_get_target_pwr_state(lvl, 652 req_states, 653 ncpus); 654 655 /* 656 * Verify that the requested power state matches the target 657 * local power state. 658 */ 659 if (state_info->pwr_domain_state[lvl] != target_state) { 660 if (target_state == PSCI_LOCAL_STATE_RUN) { 661 rc = PSCI_E_DENIED; 662 } else { 663 rc = PSCI_E_INVALID_PARAMS; 664 } 665 goto exit; 666 } 667 } 668 669 /* 670 * Verify that the current core is the last running core at the 671 * specified power level. 672 */ 673 lvl = state_info->last_at_pwrlvl; 674 if (!psci_is_last_cpu_to_idle_at_pwrlvl(lvl)) { 675 rc = PSCI_E_DENIED; 676 } 677 678 exit: 679 if (rc != PSCI_E_SUCCESS) { 680 /* Restore the previous requested local power states. */ 681 psci_restore_req_local_pwr_states(cpu_idx, prev); 682 return rc; 683 } 684 685 return rc; 686 } 687 #endif 688 689 /****************************************************************************** 690 * This function validates a suspend request by making sure that if a standby 691 * state is requested then no power level is turned off and the highest power 692 * level is placed in a standby/retention state. 693 * 694 * It also ensures that the state level X will enter is not shallower than the 695 * state level X + 1 will enter. 696 * 697 * This validation will be enabled only for DEBUG builds as the platform is 698 * expected to perform these validations as well. 699 *****************************************************************************/ 700 int psci_validate_suspend_req(const psci_power_state_t *state_info, 701 unsigned int is_power_down_state) 702 { 703 unsigned int max_off_lvl, target_lvl, max_retn_lvl; 704 plat_local_state_t state; 705 plat_local_state_type_t req_state_type, deepest_state_type; 706 int i; 707 708 /* Find the target suspend power level */ 709 target_lvl = psci_find_target_suspend_lvl(state_info); 710 if (target_lvl == PSCI_INVALID_PWR_LVL) 711 return PSCI_E_INVALID_PARAMS; 712 713 /* All power domain levels are in a RUN state to begin with */ 714 deepest_state_type = STATE_TYPE_RUN; 715 716 for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) { 717 state = state_info->pwr_domain_state[i]; 718 req_state_type = find_local_state_type(state); 719 720 /* 721 * While traversing from the highest power level to the lowest, 722 * the state requested for lower levels has to be the same or 723 * deeper i.e. equal to or greater than the state at the higher 724 * levels. If this condition is true, then the requested state 725 * becomes the deepest state encountered so far. 726 */ 727 if (req_state_type < deepest_state_type) 728 return PSCI_E_INVALID_PARAMS; 729 deepest_state_type = req_state_type; 730 } 731 732 /* Find the highest off power level */ 733 max_off_lvl = psci_find_max_off_lvl(state_info); 734 735 /* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */ 736 max_retn_lvl = PSCI_INVALID_PWR_LVL; 737 if (target_lvl != max_off_lvl) 738 max_retn_lvl = target_lvl; 739 740 /* 741 * If this is not a request for a power down state then max off level 742 * has to be invalid and max retention level has to be a valid power 743 * level. 744 */ 745 if ((is_power_down_state == 0U) && 746 ((max_off_lvl != PSCI_INVALID_PWR_LVL) || 747 (max_retn_lvl == PSCI_INVALID_PWR_LVL))) 748 return PSCI_E_INVALID_PARAMS; 749 750 return PSCI_E_SUCCESS; 751 } 752 753 /****************************************************************************** 754 * This function finds the highest power level which will be powered down 755 * amongst all the power levels specified in the 'state_info' structure 756 *****************************************************************************/ 757 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info) 758 { 759 int i; 760 761 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 762 if (is_local_state_off(state_info->pwr_domain_state[i]) != 0) 763 return (unsigned int) i; 764 } 765 766 return PSCI_INVALID_PWR_LVL; 767 } 768 769 /****************************************************************************** 770 * This functions finds the level of the highest power domain which will be 771 * placed in a low power state during a suspend operation. 772 *****************************************************************************/ 773 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info) 774 { 775 int i; 776 777 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 778 if (is_local_state_run(state_info->pwr_domain_state[i]) == 0) 779 return (unsigned int) i; 780 } 781 782 return PSCI_INVALID_PWR_LVL; 783 } 784 785 /******************************************************************************* 786 * This function is passed the highest level in the topology tree that the 787 * operation should be applied to and a list of node indexes. It picks up locks 788 * from the node index list in order of increasing power domain level in the 789 * range specified. 790 ******************************************************************************/ 791 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl, 792 const unsigned int *parent_nodes) 793 { 794 unsigned int parent_idx; 795 unsigned int level; 796 797 /* No locking required for level 0. Hence start locking from level 1 */ 798 for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) { 799 parent_idx = parent_nodes[level - 1U]; 800 psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]); 801 } 802 } 803 804 /******************************************************************************* 805 * This function is passed the highest level in the topology tree that the 806 * operation should be applied to and a list of node indexes. It releases the 807 * locks in order of decreasing power domain level in the range specified. 808 ******************************************************************************/ 809 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl, 810 const unsigned int *parent_nodes) 811 { 812 unsigned int parent_idx; 813 unsigned int level; 814 815 /* Unlock top down. No unlocking required for level 0. */ 816 for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) { 817 parent_idx = parent_nodes[level - 1U]; 818 psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]); 819 } 820 } 821 822 /******************************************************************************* 823 * This function determines the full entrypoint information for the requested 824 * PSCI entrypoint on power on/resume and returns it. 825 ******************************************************************************/ 826 #ifdef __aarch64__ 827 static int psci_get_ns_ep_info(entry_point_info_t *ep, 828 uintptr_t entrypoint, 829 u_register_t context_id) 830 { 831 u_register_t ep_attr, sctlr; 832 unsigned int daif, ee, mode; 833 u_register_t ns_scr_el3 = read_scr_el3(); 834 u_register_t ns_sctlr_el1 = read_sctlr_el1(); 835 836 sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 837 read_sctlr_el2() : ns_sctlr_el1; 838 ee = 0; 839 840 ep_attr = NON_SECURE | EP_ST_DISABLE; 841 if ((sctlr & SCTLR_EE_BIT) != 0U) { 842 ep_attr |= EP_EE_BIG; 843 ee = 1; 844 } 845 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 846 847 ep->pc = entrypoint; 848 zeromem(&ep->args, sizeof(ep->args)); 849 ep->args.arg0 = context_id; 850 851 /* 852 * Figure out whether the cpu enters the non-secure address space 853 * in aarch32 or aarch64 854 */ 855 if ((ns_scr_el3 & SCR_RW_BIT) != 0U) { 856 857 /* 858 * Check whether a Thumb entry point has been provided for an 859 * aarch64 EL 860 */ 861 if ((entrypoint & 0x1UL) != 0UL) 862 return PSCI_E_INVALID_ADDRESS; 863 864 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1; 865 866 ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX, 867 DISABLE_ALL_EXCEPTIONS); 868 } else { 869 870 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 871 MODE32_hyp : MODE32_svc; 872 873 /* 874 * TODO: Choose async. exception bits if HYP mode is not 875 * implemented according to the values of SCR.{AW, FW} bits 876 */ 877 daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT; 878 879 ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee, 880 daif); 881 } 882 883 return PSCI_E_SUCCESS; 884 } 885 #else /* !__aarch64__ */ 886 static int psci_get_ns_ep_info(entry_point_info_t *ep, 887 uintptr_t entrypoint, 888 u_register_t context_id) 889 { 890 u_register_t ep_attr; 891 unsigned int aif, ee, mode; 892 u_register_t scr = read_scr(); 893 u_register_t ns_sctlr, sctlr; 894 895 /* Switch to non secure state */ 896 write_scr(scr | SCR_NS_BIT); 897 isb(); 898 ns_sctlr = read_sctlr(); 899 900 sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr; 901 902 /* Return to original state */ 903 write_scr(scr); 904 isb(); 905 ee = 0; 906 907 ep_attr = NON_SECURE | EP_ST_DISABLE; 908 if (sctlr & SCTLR_EE_BIT) { 909 ep_attr |= EP_EE_BIG; 910 ee = 1; 911 } 912 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 913 914 ep->pc = entrypoint; 915 zeromem(&ep->args, sizeof(ep->args)); 916 ep->args.arg0 = context_id; 917 918 mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc; 919 920 /* 921 * TODO: Choose async. exception bits if HYP mode is not 922 * implemented according to the values of SCR.{AW, FW} bits 923 */ 924 aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT; 925 926 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif); 927 928 return PSCI_E_SUCCESS; 929 } 930 931 #endif /* __aarch64__ */ 932 933 /******************************************************************************* 934 * This function validates the entrypoint with the platform layer if the 935 * appropriate pm_ops hook is exported by the platform and returns the 936 * 'entry_point_info'. 937 ******************************************************************************/ 938 int psci_validate_entry_point(entry_point_info_t *ep, 939 uintptr_t entrypoint, 940 u_register_t context_id) 941 { 942 int rc; 943 944 /* Validate the entrypoint using platform psci_ops */ 945 if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) { 946 rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint); 947 if (rc != PSCI_E_SUCCESS) 948 return PSCI_E_INVALID_ADDRESS; 949 } 950 951 /* 952 * Verify and derive the re-entry information for 953 * the non-secure world from the non-secure state from 954 * where this call originated. 955 */ 956 rc = psci_get_ns_ep_info(ep, entrypoint, context_id); 957 return rc; 958 } 959 960 /******************************************************************************* 961 * Generic handler which is called when a cpu is physically powered on. It 962 * traverses the node information and finds the highest power level powered 963 * off and performs generic, architectural, platform setup and state management 964 * to power on that power level and power levels below it. 965 * e.g. For a cpu that's been powered on, it will call the platform specific 966 * code to enable the gic cpu interface and for a cluster it will enable 967 * coherency at the interconnect level in addition to gic cpu interface. 968 ******************************************************************************/ 969 void psci_warmboot_entrypoint(void) 970 { 971 unsigned int end_pwrlvl; 972 unsigned int cpu_idx = plat_my_core_pos(); 973 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 974 psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} }; 975 976 /* Init registers that never change for the lifetime of TF-A */ 977 cm_manage_extensions_el3(); 978 979 /* 980 * Verify that we have been explicitly turned ON or resumed from 981 * suspend. 982 */ 983 if (psci_get_aff_info_state() == AFF_STATE_OFF) { 984 ERROR("Unexpected affinity info state.\n"); 985 panic(); 986 } 987 988 /* 989 * Get the maximum power domain level to traverse to after this cpu 990 * has been physically powered up. 991 */ 992 end_pwrlvl = get_power_on_target_pwrlvl(); 993 994 /* Get the parent nodes */ 995 psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes); 996 997 /* 998 * This function acquires the lock corresponding to each power level so 999 * that by the time all locks are taken, the system topology is snapshot 1000 * and state management can be done safely. 1001 */ 1002 psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes); 1003 1004 psci_get_target_local_pwr_states(end_pwrlvl, &state_info); 1005 1006 #if ENABLE_PSCI_STAT 1007 plat_psci_stat_accounting_stop(&state_info); 1008 #endif 1009 1010 /* 1011 * This CPU could be resuming from suspend or it could have just been 1012 * turned on. To distinguish between these 2 cases, we examine the 1013 * affinity state of the CPU: 1014 * - If the affinity state is ON_PENDING then it has just been 1015 * turned on. 1016 * - Else it is resuming from suspend. 1017 * 1018 * Depending on the type of warm reset identified, choose the right set 1019 * of power management handler and perform the generic, architecture 1020 * and platform specific handling. 1021 */ 1022 if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING) 1023 psci_cpu_on_finish(cpu_idx, &state_info); 1024 else 1025 psci_cpu_suspend_finish(cpu_idx, &state_info); 1026 1027 /* 1028 * Generic management: Now we just need to retrieve the 1029 * information that we had stashed away during the cpu_on 1030 * call to set this cpu on its way. 1031 */ 1032 cm_prepare_el3_exit_ns(); 1033 1034 /* 1035 * Set the requested and target state of this CPU and all the higher 1036 * power domains which are ancestors of this CPU to run. 1037 */ 1038 psci_set_pwr_domains_to_run(end_pwrlvl); 1039 1040 #if ENABLE_PSCI_STAT 1041 /* 1042 * Update PSCI stats. 1043 * Caches are off when writing stats data on the power down path. 1044 * Since caches are now enabled, it's necessary to do cache 1045 * maintenance before reading that same data. 1046 */ 1047 psci_stats_update_pwr_up(end_pwrlvl, &state_info); 1048 #endif 1049 1050 /* 1051 * This loop releases the lock corresponding to each power level 1052 * in the reverse order to which they were acquired. 1053 */ 1054 psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes); 1055 } 1056 1057 /******************************************************************************* 1058 * This function initializes the set of hooks that PSCI invokes as part of power 1059 * management operation. The power management hooks are expected to be provided 1060 * by the SPD, after it finishes all its initialization 1061 ******************************************************************************/ 1062 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm) 1063 { 1064 assert(pm != NULL); 1065 psci_spd_pm = pm; 1066 1067 if (pm->svc_migrate != NULL) 1068 psci_caps |= define_psci_cap(PSCI_MIG_AARCH64); 1069 1070 if (pm->svc_migrate_info != NULL) 1071 psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64) 1072 | define_psci_cap(PSCI_MIG_INFO_TYPE); 1073 } 1074 1075 /******************************************************************************* 1076 * This function invokes the migrate info hook in the spd_pm_ops. It performs 1077 * the necessary return value validation. If the Secure Payload is UP and 1078 * migrate capable, it returns the mpidr of the CPU on which the Secure payload 1079 * is resident through the mpidr parameter. Else the value of the parameter on 1080 * return is undefined. 1081 ******************************************************************************/ 1082 int psci_spd_migrate_info(u_register_t *mpidr) 1083 { 1084 int rc; 1085 1086 if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL)) 1087 return PSCI_E_NOT_SUPPORTED; 1088 1089 rc = psci_spd_pm->svc_migrate_info(mpidr); 1090 1091 assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) || 1092 (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED)); 1093 1094 return rc; 1095 } 1096 1097 1098 /******************************************************************************* 1099 * This function prints the state of all power domains present in the 1100 * system 1101 ******************************************************************************/ 1102 void psci_print_power_domain_map(void) 1103 { 1104 #if LOG_LEVEL >= LOG_LEVEL_INFO 1105 unsigned int idx; 1106 plat_local_state_t state; 1107 plat_local_state_type_t state_type; 1108 1109 /* This array maps to the PSCI_STATE_X definitions in psci.h */ 1110 static const char * const psci_state_type_str[] = { 1111 "ON", 1112 "RETENTION", 1113 "OFF", 1114 }; 1115 1116 INFO("PSCI Power Domain Map:\n"); 1117 for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count); 1118 idx++) { 1119 state_type = find_local_state_type( 1120 psci_non_cpu_pd_nodes[idx].local_state); 1121 INFO(" Domain Node : Level %u, parent_node %u," 1122 " State %s (0x%x)\n", 1123 psci_non_cpu_pd_nodes[idx].level, 1124 psci_non_cpu_pd_nodes[idx].parent_node, 1125 psci_state_type_str[state_type], 1126 psci_non_cpu_pd_nodes[idx].local_state); 1127 } 1128 1129 for (idx = 0; idx < psci_plat_core_count; idx++) { 1130 state = psci_get_cpu_local_state_by_idx(idx); 1131 state_type = find_local_state_type(state); 1132 INFO(" CPU Node : MPID 0x%llx, parent_node %u," 1133 " State %s (0x%x)\n", 1134 (unsigned long long)psci_cpu_pd_nodes[idx].mpidr, 1135 psci_cpu_pd_nodes[idx].parent_node, 1136 psci_state_type_str[state_type], 1137 psci_get_cpu_local_state_by_idx(idx)); 1138 } 1139 #endif 1140 } 1141 1142 /****************************************************************************** 1143 * Return whether any secondaries were powered up with CPU_ON call. A CPU that 1144 * have ever been powered up would have set its MPDIR value to something other 1145 * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to 1146 * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is 1147 * meaningful only when called on the primary CPU during early boot. 1148 *****************************************************************************/ 1149 int psci_secondaries_brought_up(void) 1150 { 1151 unsigned int idx, n_valid = 0U; 1152 1153 for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) { 1154 if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR) 1155 n_valid++; 1156 } 1157 1158 assert(n_valid > 0U); 1159 1160 return (n_valid > 1U) ? 1 : 0; 1161 } 1162 1163 /******************************************************************************* 1164 * Initiate power down sequence, by calling power down operations registered for 1165 * this CPU. 1166 ******************************************************************************/ 1167 void psci_pwrdown_cpu(unsigned int power_level) 1168 { 1169 psci_do_manage_extensions(); 1170 1171 #if HW_ASSISTED_COHERENCY 1172 /* 1173 * With hardware-assisted coherency, the CPU drivers only initiate the 1174 * power down sequence, without performing cache-maintenance operations 1175 * in software. Data caches enabled both before and after this call. 1176 */ 1177 prepare_cpu_pwr_dwn(power_level); 1178 #else 1179 /* 1180 * Without hardware-assisted coherency, the CPU drivers disable data 1181 * caches, then perform cache-maintenance operations in software. 1182 * 1183 * This also calls prepare_cpu_pwr_dwn() to initiate power down 1184 * sequence, but that function will return with data caches disabled. 1185 * We must ensure that the stack memory is flushed out to memory before 1186 * we start popping from it again. 1187 */ 1188 psci_do_pwrdown_cache_maintenance(power_level); 1189 #endif 1190 } 1191 1192 /******************************************************************************* 1193 * This function invokes the callback 'stop_func()' with the 'mpidr' of each 1194 * online PE. Caller can pass suitable method to stop a remote core. 1195 * 1196 * 'wait_ms' is the timeout value in milliseconds for the other cores to 1197 * transition to power down state. Passing '0' makes it non-blocking. 1198 * 1199 * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the 1200 * given timeout. 1201 ******************************************************************************/ 1202 int psci_stop_other_cores(unsigned int wait_ms, 1203 void (*stop_func)(u_register_t mpidr)) 1204 { 1205 unsigned int idx, this_cpu_idx; 1206 1207 this_cpu_idx = plat_my_core_pos(); 1208 1209 /* Invoke stop_func for each core */ 1210 for (idx = 0U; idx < psci_plat_core_count; idx++) { 1211 /* skip current CPU */ 1212 if (idx == this_cpu_idx) { 1213 continue; 1214 } 1215 1216 /* Check if the CPU is ON */ 1217 if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) { 1218 (*stop_func)(psci_cpu_pd_nodes[idx].mpidr); 1219 } 1220 } 1221 1222 /* Need to wait for other cores to shutdown */ 1223 if (wait_ms != 0U) { 1224 while ((wait_ms-- != 0U) && (!psci_is_last_on_cpu())) { 1225 mdelay(1U); 1226 } 1227 1228 if (!psci_is_last_on_cpu()) { 1229 WARN("Failed to stop all cores!\n"); 1230 psci_print_power_domain_map(); 1231 return PSCI_E_DENIED; 1232 } 1233 } 1234 1235 return PSCI_E_SUCCESS; 1236 } 1237 1238 /******************************************************************************* 1239 * This function verifies that all the other cores in the system have been 1240 * turned OFF and the current CPU is the last running CPU in the system. 1241 * Returns true if the current CPU is the last ON CPU or false otherwise. 1242 * 1243 * This API has following differences with psci_is_last_on_cpu 1244 * 1. PSCI states are locked 1245 ******************************************************************************/ 1246 bool psci_is_last_on_cpu_safe(void) 1247 { 1248 unsigned int this_core = plat_my_core_pos(); 1249 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 1250 1251 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes); 1252 1253 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1254 1255 if (!psci_is_last_on_cpu()) { 1256 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1257 return false; 1258 } 1259 1260 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1261 1262 return true; 1263 } 1264 1265 /******************************************************************************* 1266 * This function verifies that all cores in the system have been turned ON. 1267 * Returns true, if all CPUs are ON or false otherwise. 1268 * 1269 * This API has following differences with psci_are_all_cpus_on 1270 * 1. PSCI states are locked 1271 ******************************************************************************/ 1272 bool psci_are_all_cpus_on_safe(void) 1273 { 1274 unsigned int this_core = plat_my_core_pos(); 1275 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 1276 1277 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes); 1278 1279 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1280 1281 if (!psci_are_all_cpus_on()) { 1282 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1283 return false; 1284 } 1285 1286 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1287 1288 return true; 1289 } 1290 1291 /******************************************************************************* 1292 * This function performs architectural feature specific management. 1293 * It ensures the architectural features are disabled during cpu 1294 * power off/suspend operations. 1295 ******************************************************************************/ 1296 void psci_do_manage_extensions(void) 1297 { 1298 /* 1299 * On power down we need to disable statistical profiling extensions 1300 * before exiting coherency. 1301 */ 1302 if (is_feat_spe_supported()) { 1303 spe_disable(); 1304 } 1305 1306 } 1307