xref: /rk3399_ARM-atf/lib/psci/psci_common.c (revision 7944421ba4dfd3c49a26d525a884d8408ef127a8)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <string.h>
9 
10 #include <arch.h>
11 #include <arch_features.h>
12 #include <arch_helpers.h>
13 #include <common/bl_common.h>
14 #include <common/debug.h>
15 #include <context.h>
16 #include <drivers/delay_timer.h>
17 #include <lib/el3_runtime/context_mgmt.h>
18 #include <lib/extensions/spe.h>
19 #include <lib/utils.h>
20 #include <plat/common/platform.h>
21 
22 #include "psci_private.h"
23 
24 /*
25  * SPD power management operations, expected to be supplied by the registered
26  * SPD on successful SP initialization
27  */
28 const spd_pm_ops_t *psci_spd_pm;
29 
30 /*
31  * PSCI requested local power state map. This array is used to store the local
32  * power states requested by a CPU for power levels from level 1 to
33  * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
34  * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
35  * CPU are the same.
36  *
37  * During state coordination, the platform is passed an array containing the
38  * local states requested for a particular non cpu power domain by each cpu
39  * within the domain.
40  *
41  * TODO: Dense packing of the requested states will cause cache thrashing
42  * when multiple power domains write to it. If we allocate the requested
43  * states at each power level in a cache-line aligned per-domain memory,
44  * the cache thrashing can be avoided.
45  */
46 static plat_local_state_t
47 	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
48 
49 unsigned int psci_plat_core_count;
50 
51 /*******************************************************************************
52  * Arrays that hold the platform's power domain tree information for state
53  * management of power domains.
54  * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
55  * which is an ancestor of a CPU power domain.
56  * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
57  ******************************************************************************/
58 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
59 #if USE_COHERENT_MEM
60 __section(".tzfw_coherent_mem")
61 #endif
62 ;
63 
64 /* Lock for PSCI state coordination */
65 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
66 
67 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
68 
69 /*******************************************************************************
70  * Pointer to functions exported by the platform to complete power mgmt. ops
71  ******************************************************************************/
72 const plat_psci_ops_t *psci_plat_pm_ops;
73 
74 /******************************************************************************
75  * Check that the maximum power level supported by the platform makes sense
76  *****************************************************************************/
77 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
78 	(PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
79 	assert_platform_max_pwrlvl_check);
80 
81 #if PSCI_OS_INIT_MODE
82 /*******************************************************************************
83  * The power state coordination mode used in CPU_SUSPEND.
84  * Defaults to platform-coordinated mode.
85  ******************************************************************************/
86 suspend_mode_t psci_suspend_mode = PLAT_COORD;
87 #endif
88 
89 /*
90  * The plat_local_state used by the platform is one of these types: RUN,
91  * RETENTION and OFF. The platform can define further sub-states for each type
92  * apart from RUN. This categorization is done to verify the sanity of the
93  * psci_power_state passed by the platform and to print debug information. The
94  * categorization is done on the basis of the following conditions:
95  *
96  * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
97  *
98  * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
99  *    STATE_TYPE_RETN.
100  *
101  * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
102  *    STATE_TYPE_OFF.
103  */
104 typedef enum plat_local_state_type {
105 	STATE_TYPE_RUN = 0,
106 	STATE_TYPE_RETN,
107 	STATE_TYPE_OFF
108 } plat_local_state_type_t;
109 
110 /* Function used to categorize plat_local_state. */
111 static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
112 {
113 	if (state != 0U) {
114 		if (state > PLAT_MAX_RET_STATE) {
115 			return STATE_TYPE_OFF;
116 		} else {
117 			return STATE_TYPE_RETN;
118 		}
119 	} else {
120 		return STATE_TYPE_RUN;
121 	}
122 }
123 
124 /******************************************************************************
125  * Check that the maximum retention level supported by the platform is less
126  * than the maximum off level.
127  *****************************************************************************/
128 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
129 		assert_platform_max_off_and_retn_state_check);
130 
131 /******************************************************************************
132  * This function ensures that the power state parameter in a CPU_SUSPEND request
133  * is valid. If so, it returns the requested states for each power level.
134  *****************************************************************************/
135 int psci_validate_power_state(unsigned int power_state,
136 			      psci_power_state_t *state_info)
137 {
138 	/* Check SBZ bits in power state are zero */
139 	if (psci_check_power_state(power_state) != 0U)
140 		return PSCI_E_INVALID_PARAMS;
141 
142 	assert(psci_plat_pm_ops->validate_power_state != NULL);
143 
144 	/* Validate the power_state using platform pm_ops */
145 	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
146 }
147 
148 /******************************************************************************
149  * This function retrieves the `psci_power_state_t` for system suspend from
150  * the platform.
151  *****************************************************************************/
152 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
153 {
154 	/*
155 	 * Assert that the required pm_ops hook is implemented to ensure that
156 	 * the capability detected during psci_setup() is valid.
157 	 */
158 	assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
159 
160 	/*
161 	 * Query the platform for the power_state required for system suspend
162 	 */
163 	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
164 }
165 
166 #if PSCI_OS_INIT_MODE
167 /*******************************************************************************
168  * This function verifies that all the other cores at the 'end_pwrlvl' have been
169  * idled and the current CPU is the last running CPU at the 'end_pwrlvl'.
170  * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
171  * otherwise.
172  ******************************************************************************/
173 static bool psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int end_pwrlvl)
174 {
175 	unsigned int my_idx, lvl, parent_idx;
176 	unsigned int cpu_start_idx, ncpus, cpu_idx;
177 	plat_local_state_t local_state;
178 
179 	if (end_pwrlvl == PSCI_CPU_PWR_LVL) {
180 		return true;
181 	}
182 
183 	my_idx = plat_my_core_pos();
184 
185 	for (lvl = PSCI_CPU_PWR_LVL; lvl <= end_pwrlvl; lvl++) {
186 		parent_idx = psci_cpu_pd_nodes[my_idx].parent_node;
187 	}
188 
189 	cpu_start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
190 	ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
191 
192 	for (cpu_idx = cpu_start_idx; cpu_idx < cpu_start_idx + ncpus;
193 			cpu_idx++) {
194 		local_state = psci_get_cpu_local_state_by_idx(cpu_idx);
195 		if (cpu_idx == my_idx) {
196 			assert(is_local_state_run(local_state) != 0);
197 			continue;
198 		}
199 
200 		if (is_local_state_run(local_state) != 0) {
201 			return false;
202 		}
203 	}
204 
205 	return true;
206 }
207 #endif
208 
209 /*******************************************************************************
210  * This function verifies that all the other cores in the system have been
211  * turned OFF and the current CPU is the last running CPU in the system.
212  * Returns true, if the current CPU is the last ON CPU or false otherwise.
213  ******************************************************************************/
214 bool psci_is_last_on_cpu(void)
215 {
216 	unsigned int cpu_idx, my_idx = plat_my_core_pos();
217 
218 	for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
219 		if (cpu_idx == my_idx) {
220 			assert(psci_get_aff_info_state() == AFF_STATE_ON);
221 			continue;
222 		}
223 
224 		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) {
225 			VERBOSE("core=%u other than current core=%u %s\n",
226 				cpu_idx, my_idx, "running in the system");
227 			return false;
228 		}
229 	}
230 
231 	return true;
232 }
233 
234 /*******************************************************************************
235  * This function verifies that all cores in the system have been turned ON.
236  * Returns true, if all CPUs are ON or false otherwise.
237  ******************************************************************************/
238 static bool psci_are_all_cpus_on(void)
239 {
240 	unsigned int cpu_idx;
241 
242 	for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
243 		if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_OFF) {
244 			return false;
245 		}
246 	}
247 
248 	return true;
249 }
250 
251 /*******************************************************************************
252  * Routine to return the maximum power level to traverse to after a cpu has
253  * been physically powered up. It is expected to be called immediately after
254  * reset from assembler code.
255  ******************************************************************************/
256 static unsigned int get_power_on_target_pwrlvl(void)
257 {
258 	unsigned int pwrlvl;
259 
260 	/*
261 	 * Assume that this cpu was suspended and retrieve its target power
262 	 * level. If it is invalid then it could only have been turned off
263 	 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
264 	 * cpu can be turned off to.
265 	 */
266 	pwrlvl = psci_get_suspend_pwrlvl();
267 	if (pwrlvl == PSCI_INVALID_PWR_LVL)
268 		pwrlvl = PLAT_MAX_PWR_LVL;
269 	assert(pwrlvl < PSCI_INVALID_PWR_LVL);
270 	return pwrlvl;
271 }
272 
273 /******************************************************************************
274  * Helper function to update the requested local power state array. This array
275  * does not store the requested state for the CPU power level. Hence an
276  * assertion is added to prevent us from accessing the CPU power level.
277  *****************************************************************************/
278 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
279 					 unsigned int cpu_idx,
280 					 plat_local_state_t req_pwr_state)
281 {
282 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
283 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
284 			(cpu_idx < psci_plat_core_count)) {
285 		psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
286 	}
287 }
288 
289 /******************************************************************************
290  * This function initializes the psci_req_local_pwr_states.
291  *****************************************************************************/
292 void __init psci_init_req_local_pwr_states(void)
293 {
294 	/* Initialize the requested state of all non CPU power domains as OFF */
295 	unsigned int pwrlvl;
296 	unsigned int core;
297 
298 	for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
299 		for (core = 0; core < psci_plat_core_count; core++) {
300 			psci_req_local_pwr_states[pwrlvl][core] =
301 				PLAT_MAX_OFF_STATE;
302 		}
303 	}
304 }
305 
306 /******************************************************************************
307  * Helper function to return a reference to an array containing the local power
308  * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
309  * array will be the number of cpu power domains of which this power domain is
310  * an ancestor. These requested states will be used to determine a suitable
311  * target state for this power domain during psci state coordination. An
312  * assertion is added to prevent us from accessing the CPU power level.
313  *****************************************************************************/
314 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
315 							 unsigned int cpu_idx)
316 {
317 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
318 
319 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
320 			(cpu_idx < psci_plat_core_count)) {
321 		return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
322 	} else
323 		return NULL;
324 }
325 
326 #if PSCI_OS_INIT_MODE
327 /******************************************************************************
328  * Helper function to save a copy of the psci_req_local_pwr_states (prev) for a
329  * CPU (cpu_idx), and update psci_req_local_pwr_states with the new requested
330  * local power states (state_info).
331  *****************************************************************************/
332 void psci_update_req_local_pwr_states(unsigned int end_pwrlvl,
333 				      unsigned int cpu_idx,
334 				      psci_power_state_t *state_info,
335 				      plat_local_state_t *prev)
336 {
337 	unsigned int lvl;
338 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
339 	unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
340 #else
341 	unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
342 #endif
343 	plat_local_state_t req_state;
344 
345 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
346 		/* Save the previous requested local power state */
347 		prev[lvl - 1U] = *psci_get_req_local_pwr_states(lvl, cpu_idx);
348 
349 		/* Update the new requested local power state */
350 		if (lvl <= end_pwrlvl) {
351 			req_state = state_info->pwr_domain_state[lvl];
352 		} else {
353 			req_state = state_info->pwr_domain_state[end_pwrlvl];
354 		}
355 		psci_set_req_local_pwr_state(lvl, cpu_idx, req_state);
356 	}
357 }
358 
359 /******************************************************************************
360  * Helper function to restore the previously saved requested local power states
361  * (prev) for a CPU (cpu_idx) to psci_req_local_pwr_states.
362  *****************************************************************************/
363 void psci_restore_req_local_pwr_states(unsigned int cpu_idx,
364 				       plat_local_state_t *prev)
365 {
366 	unsigned int lvl;
367 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
368 	unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
369 #else
370 	unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
371 #endif
372 
373 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
374 		/* Restore the previous requested local power state */
375 		psci_set_req_local_pwr_state(lvl, cpu_idx, prev[lvl - 1U]);
376 	}
377 }
378 #endif
379 
380 /*
381  * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
382  * memory.
383  *
384  * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
385  * it's accessed by both cached and non-cached participants. To serve the common
386  * minimum, perform a cache flush before read and after write so that non-cached
387  * participants operate on latest data in main memory.
388  *
389  * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
390  * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
391  * In both cases, no cache operations are required.
392  */
393 
394 /*
395  * Retrieve local state of non-CPU power domain node from a non-cached CPU,
396  * after any required cache maintenance operation.
397  */
398 static plat_local_state_t get_non_cpu_pd_node_local_state(
399 		unsigned int parent_idx)
400 {
401 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
402 	flush_dcache_range(
403 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
404 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
405 #endif
406 	return psci_non_cpu_pd_nodes[parent_idx].local_state;
407 }
408 
409 /*
410  * Update local state of non-CPU power domain node from a cached CPU; perform
411  * any required cache maintenance operation afterwards.
412  */
413 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
414 		plat_local_state_t state)
415 {
416 	psci_non_cpu_pd_nodes[parent_idx].local_state = state;
417 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
418 	flush_dcache_range(
419 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
420 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
421 #endif
422 }
423 
424 /******************************************************************************
425  * Helper function to return the current local power state of each power domain
426  * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
427  * function will be called after a cpu is powered on to find the local state
428  * each power domain has emerged from.
429  *****************************************************************************/
430 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
431 				      psci_power_state_t *target_state)
432 {
433 	unsigned int parent_idx, lvl;
434 	plat_local_state_t *pd_state = target_state->pwr_domain_state;
435 
436 	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
437 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
438 
439 	/* Copy the local power state from node to state_info */
440 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
441 		pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
442 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
443 	}
444 
445 	/* Set the the higher levels to RUN */
446 	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
447 		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
448 }
449 
450 /******************************************************************************
451  * Helper function to set the target local power state that each power domain
452  * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
453  * enter. This function will be called after coordination of requested power
454  * states has been done for each power level.
455  *****************************************************************************/
456 void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
457 				      const psci_power_state_t *target_state)
458 {
459 	unsigned int parent_idx, lvl;
460 	const plat_local_state_t *pd_state = target_state->pwr_domain_state;
461 
462 	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
463 
464 	/*
465 	 * Need to flush as local_state might be accessed with Data Cache
466 	 * disabled during power on
467 	 */
468 	psci_flush_cpu_data(psci_svc_cpu_data.local_state);
469 
470 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
471 
472 	/* Copy the local_state from state_info */
473 	for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
474 		set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
475 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
476 	}
477 }
478 
479 /*******************************************************************************
480  * PSCI helper function to get the parent nodes corresponding to a cpu_index.
481  ******************************************************************************/
482 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
483 				      unsigned int end_lvl,
484 				      unsigned int *node_index)
485 {
486 	unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
487 	unsigned int i;
488 	unsigned int *node = node_index;
489 
490 	for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
491 		*node = parent_node;
492 		node++;
493 		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
494 	}
495 }
496 
497 /******************************************************************************
498  * This function is invoked post CPU power up and initialization. It sets the
499  * affinity info state, target power state and requested power state for the
500  * current CPU and all its ancestor power domains to RUN.
501  *****************************************************************************/
502 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
503 {
504 	unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
505 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
506 
507 	/* Reset the local_state to RUN for the non cpu power domains. */
508 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
509 		set_non_cpu_pd_node_local_state(parent_idx,
510 				PSCI_LOCAL_STATE_RUN);
511 		psci_set_req_local_pwr_state(lvl,
512 					     cpu_idx,
513 					     PSCI_LOCAL_STATE_RUN);
514 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
515 	}
516 
517 	/* Set the affinity info state to ON */
518 	psci_set_aff_info_state(AFF_STATE_ON);
519 
520 	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
521 	psci_flush_cpu_data(psci_svc_cpu_data);
522 }
523 
524 /******************************************************************************
525  * This function is used in platform-coordinated mode.
526  *
527  * This function is passed the local power states requested for each power
528  * domain (state_info) between the current CPU domain and its ancestors until
529  * the target power level (end_pwrlvl). It updates the array of requested power
530  * states with this information.
531  *
532  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
533  * retrieves the states requested by all the cpus of which the power domain at
534  * that level is an ancestor. It passes this information to the platform to
535  * coordinate and return the target power state. If the target state for a level
536  * is RUN then subsequent levels are not considered. At the CPU level, state
537  * coordination is not required. Hence, the requested and the target states are
538  * the same.
539  *
540  * The 'state_info' is updated with the target state for each level between the
541  * CPU and the 'end_pwrlvl' and returned to the caller.
542  *
543  * This function will only be invoked with data cache enabled and while
544  * powering down a core.
545  *****************************************************************************/
546 void psci_do_state_coordination(unsigned int end_pwrlvl,
547 				psci_power_state_t *state_info)
548 {
549 	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
550 	unsigned int start_idx;
551 	unsigned int ncpus;
552 	plat_local_state_t target_state, *req_states;
553 
554 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
555 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
556 
557 	/* For level 0, the requested state will be equivalent
558 	   to target state */
559 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
560 
561 		/* First update the requested power state */
562 		psci_set_req_local_pwr_state(lvl, cpu_idx,
563 					     state_info->pwr_domain_state[lvl]);
564 
565 		/* Get the requested power states for this power level */
566 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
567 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
568 
569 		/*
570 		 * Let the platform coordinate amongst the requested states at
571 		 * this power level and return the target local power state.
572 		 */
573 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
574 		target_state = plat_get_target_pwr_state(lvl,
575 							 req_states,
576 							 ncpus);
577 
578 		state_info->pwr_domain_state[lvl] = target_state;
579 
580 		/* Break early if the negotiated target power state is RUN */
581 		if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0)
582 			break;
583 
584 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
585 	}
586 
587 	/*
588 	 * This is for cases when we break out of the above loop early because
589 	 * the target power state is RUN at a power level < end_pwlvl.
590 	 * We update the requested power state from state_info and then
591 	 * set the target state as RUN.
592 	 */
593 	for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
594 		psci_set_req_local_pwr_state(lvl, cpu_idx,
595 					     state_info->pwr_domain_state[lvl]);
596 		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
597 
598 	}
599 }
600 
601 #if PSCI_OS_INIT_MODE
602 /******************************************************************************
603  * This function is used in OS-initiated mode.
604  *
605  * This function is passed the local power states requested for each power
606  * domain (state_info) between the current CPU domain and its ancestors until
607  * the target power level (end_pwrlvl), and ensures the requested power states
608  * are valid. It updates the array of requested power states with this
609  * information.
610  *
611  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
612  * retrieves the states requested by all the cpus of which the power domain at
613  * that level is an ancestor. It passes this information to the platform to
614  * coordinate and return the target power state. If the requested state does
615  * not match the target state, the request is denied.
616  *
617  * The 'state_info' is not modified.
618  *
619  * This function will only be invoked with data cache enabled and while
620  * powering down a core.
621  *****************************************************************************/
622 int psci_validate_state_coordination(unsigned int end_pwrlvl,
623 				     psci_power_state_t *state_info)
624 {
625 	int rc = PSCI_E_SUCCESS;
626 	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
627 	unsigned int start_idx;
628 	unsigned int ncpus;
629 	plat_local_state_t target_state, *req_states;
630 	plat_local_state_t prev[PLAT_MAX_PWR_LVL];
631 
632 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
633 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
634 
635 	/*
636 	 * Save a copy of the previous requested local power states and update
637 	 * the new requested local power states.
638 	 */
639 	psci_update_req_local_pwr_states(end_pwrlvl, cpu_idx, state_info, prev);
640 
641 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
642 		/* Get the requested power states for this power level */
643 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
644 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
645 
646 		/*
647 		 * Let the platform coordinate amongst the requested states at
648 		 * this power level and return the target local power state.
649 		 */
650 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
651 		target_state = plat_get_target_pwr_state(lvl,
652 							 req_states,
653 							 ncpus);
654 
655 		/*
656 		 * Verify that the requested power state matches the target
657 		 * local power state.
658 		 */
659 		if (state_info->pwr_domain_state[lvl] != target_state) {
660 			if (target_state == PSCI_LOCAL_STATE_RUN) {
661 				rc = PSCI_E_DENIED;
662 			} else {
663 				rc = PSCI_E_INVALID_PARAMS;
664 			}
665 			goto exit;
666 		}
667 	}
668 
669 	/*
670 	 * Verify that the current core is the last running core at the
671 	 * specified power level.
672 	 */
673 	lvl = state_info->last_at_pwrlvl;
674 	if (!psci_is_last_cpu_to_idle_at_pwrlvl(lvl)) {
675 		rc = PSCI_E_DENIED;
676 	}
677 
678 exit:
679 	if (rc != PSCI_E_SUCCESS) {
680 		/* Restore the previous requested local power states. */
681 		psci_restore_req_local_pwr_states(cpu_idx, prev);
682 		return rc;
683 	}
684 
685 	return rc;
686 }
687 #endif
688 
689 /******************************************************************************
690  * This function validates a suspend request by making sure that if a standby
691  * state is requested then no power level is turned off and the highest power
692  * level is placed in a standby/retention state.
693  *
694  * It also ensures that the state level X will enter is not shallower than the
695  * state level X + 1 will enter.
696  *
697  * This validation will be enabled only for DEBUG builds as the platform is
698  * expected to perform these validations as well.
699  *****************************************************************************/
700 int psci_validate_suspend_req(const psci_power_state_t *state_info,
701 			      unsigned int is_power_down_state)
702 {
703 	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
704 	plat_local_state_t state;
705 	plat_local_state_type_t req_state_type, deepest_state_type;
706 	int i;
707 
708 	/* Find the target suspend power level */
709 	target_lvl = psci_find_target_suspend_lvl(state_info);
710 	if (target_lvl == PSCI_INVALID_PWR_LVL)
711 		return PSCI_E_INVALID_PARAMS;
712 
713 	/* All power domain levels are in a RUN state to begin with */
714 	deepest_state_type = STATE_TYPE_RUN;
715 
716 	for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
717 		state = state_info->pwr_domain_state[i];
718 		req_state_type = find_local_state_type(state);
719 
720 		/*
721 		 * While traversing from the highest power level to the lowest,
722 		 * the state requested for lower levels has to be the same or
723 		 * deeper i.e. equal to or greater than the state at the higher
724 		 * levels. If this condition is true, then the requested state
725 		 * becomes the deepest state encountered so far.
726 		 */
727 		if (req_state_type < deepest_state_type)
728 			return PSCI_E_INVALID_PARAMS;
729 		deepest_state_type = req_state_type;
730 	}
731 
732 	/* Find the highest off power level */
733 	max_off_lvl = psci_find_max_off_lvl(state_info);
734 
735 	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
736 	max_retn_lvl = PSCI_INVALID_PWR_LVL;
737 	if (target_lvl != max_off_lvl)
738 		max_retn_lvl = target_lvl;
739 
740 	/*
741 	 * If this is not a request for a power down state then max off level
742 	 * has to be invalid and max retention level has to be a valid power
743 	 * level.
744 	 */
745 	if ((is_power_down_state == 0U) &&
746 			((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
747 			 (max_retn_lvl == PSCI_INVALID_PWR_LVL)))
748 		return PSCI_E_INVALID_PARAMS;
749 
750 	return PSCI_E_SUCCESS;
751 }
752 
753 /******************************************************************************
754  * This function finds the highest power level which will be powered down
755  * amongst all the power levels specified in the 'state_info' structure
756  *****************************************************************************/
757 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
758 {
759 	int i;
760 
761 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
762 		if (is_local_state_off(state_info->pwr_domain_state[i]) != 0)
763 			return (unsigned int) i;
764 	}
765 
766 	return PSCI_INVALID_PWR_LVL;
767 }
768 
769 /******************************************************************************
770  * This functions finds the level of the highest power domain which will be
771  * placed in a low power state during a suspend operation.
772  *****************************************************************************/
773 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
774 {
775 	int i;
776 
777 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
778 		if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
779 			return (unsigned int) i;
780 	}
781 
782 	return PSCI_INVALID_PWR_LVL;
783 }
784 
785 /*******************************************************************************
786  * This function is passed the highest level in the topology tree that the
787  * operation should be applied to and a list of node indexes. It picks up locks
788  * from the node index list in order of increasing power domain level in the
789  * range specified.
790  ******************************************************************************/
791 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
792 				   const unsigned int *parent_nodes)
793 {
794 	unsigned int parent_idx;
795 	unsigned int level;
796 
797 	/* No locking required for level 0. Hence start locking from level 1 */
798 	for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
799 		parent_idx = parent_nodes[level - 1U];
800 		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
801 	}
802 }
803 
804 /*******************************************************************************
805  * This function is passed the highest level in the topology tree that the
806  * operation should be applied to and a list of node indexes. It releases the
807  * locks in order of decreasing power domain level in the range specified.
808  ******************************************************************************/
809 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
810 				   const unsigned int *parent_nodes)
811 {
812 	unsigned int parent_idx;
813 	unsigned int level;
814 
815 	/* Unlock top down. No unlocking required for level 0. */
816 	for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) {
817 		parent_idx = parent_nodes[level - 1U];
818 		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
819 	}
820 }
821 
822 /*******************************************************************************
823  * This function determines the full entrypoint information for the requested
824  * PSCI entrypoint on power on/resume and returns it.
825  ******************************************************************************/
826 #ifdef __aarch64__
827 static int psci_get_ns_ep_info(entry_point_info_t *ep,
828 			       uintptr_t entrypoint,
829 			       u_register_t context_id)
830 {
831 	u_register_t ep_attr, sctlr;
832 	unsigned int daif, ee, mode;
833 	u_register_t ns_scr_el3 = read_scr_el3();
834 	u_register_t ns_sctlr_el1 = read_sctlr_el1();
835 
836 	sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
837 		read_sctlr_el2() : ns_sctlr_el1;
838 	ee = 0;
839 
840 	ep_attr = NON_SECURE | EP_ST_DISABLE;
841 	if ((sctlr & SCTLR_EE_BIT) != 0U) {
842 		ep_attr |= EP_EE_BIG;
843 		ee = 1;
844 	}
845 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
846 
847 	ep->pc = entrypoint;
848 	zeromem(&ep->args, sizeof(ep->args));
849 	ep->args.arg0 = context_id;
850 
851 	/*
852 	 * Figure out whether the cpu enters the non-secure address space
853 	 * in aarch32 or aarch64
854 	 */
855 	if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
856 
857 		/*
858 		 * Check whether a Thumb entry point has been provided for an
859 		 * aarch64 EL
860 		 */
861 		if ((entrypoint & 0x1UL) != 0UL)
862 			return PSCI_E_INVALID_ADDRESS;
863 
864 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
865 
866 		ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX,
867 				   DISABLE_ALL_EXCEPTIONS);
868 	} else {
869 
870 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
871 			MODE32_hyp : MODE32_svc;
872 
873 		/*
874 		 * TODO: Choose async. exception bits if HYP mode is not
875 		 * implemented according to the values of SCR.{AW, FW} bits
876 		 */
877 		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
878 
879 		ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee,
880 				       daif);
881 	}
882 
883 	return PSCI_E_SUCCESS;
884 }
885 #else /* !__aarch64__ */
886 static int psci_get_ns_ep_info(entry_point_info_t *ep,
887 			       uintptr_t entrypoint,
888 			       u_register_t context_id)
889 {
890 	u_register_t ep_attr;
891 	unsigned int aif, ee, mode;
892 	u_register_t scr = read_scr();
893 	u_register_t ns_sctlr, sctlr;
894 
895 	/* Switch to non secure state */
896 	write_scr(scr | SCR_NS_BIT);
897 	isb();
898 	ns_sctlr = read_sctlr();
899 
900 	sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
901 
902 	/* Return to original state */
903 	write_scr(scr);
904 	isb();
905 	ee = 0;
906 
907 	ep_attr = NON_SECURE | EP_ST_DISABLE;
908 	if (sctlr & SCTLR_EE_BIT) {
909 		ep_attr |= EP_EE_BIG;
910 		ee = 1;
911 	}
912 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
913 
914 	ep->pc = entrypoint;
915 	zeromem(&ep->args, sizeof(ep->args));
916 	ep->args.arg0 = context_id;
917 
918 	mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
919 
920 	/*
921 	 * TODO: Choose async. exception bits if HYP mode is not
922 	 * implemented according to the values of SCR.{AW, FW} bits
923 	 */
924 	aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
925 
926 	ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
927 
928 	return PSCI_E_SUCCESS;
929 }
930 
931 #endif /* __aarch64__ */
932 
933 /*******************************************************************************
934  * This function validates the entrypoint with the platform layer if the
935  * appropriate pm_ops hook is exported by the platform and returns the
936  * 'entry_point_info'.
937  ******************************************************************************/
938 int psci_validate_entry_point(entry_point_info_t *ep,
939 			      uintptr_t entrypoint,
940 			      u_register_t context_id)
941 {
942 	int rc;
943 
944 	/* Validate the entrypoint using platform psci_ops */
945 	if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
946 		rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
947 		if (rc != PSCI_E_SUCCESS)
948 			return PSCI_E_INVALID_ADDRESS;
949 	}
950 
951 	/*
952 	 * Verify and derive the re-entry information for
953 	 * the non-secure world from the non-secure state from
954 	 * where this call originated.
955 	 */
956 	rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
957 	return rc;
958 }
959 
960 /*******************************************************************************
961  * Generic handler which is called when a cpu is physically powered on. It
962  * traverses the node information and finds the highest power level powered
963  * off and performs generic, architectural, platform setup and state management
964  * to power on that power level and power levels below it.
965  * e.g. For a cpu that's been powered on, it will call the platform specific
966  * code to enable the gic cpu interface and for a cluster it will enable
967  * coherency at the interconnect level in addition to gic cpu interface.
968  ******************************************************************************/
969 void psci_warmboot_entrypoint(void)
970 {
971 	unsigned int end_pwrlvl;
972 	unsigned int cpu_idx = plat_my_core_pos();
973 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
974 	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
975 
976 	/* Init registers that never change for the lifetime of TF-A */
977 	cm_manage_extensions_el3();
978 
979 	/*
980 	 * Verify that we have been explicitly turned ON or resumed from
981 	 * suspend.
982 	 */
983 	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
984 		ERROR("Unexpected affinity info state.\n");
985 		panic();
986 	}
987 
988 	/*
989 	 * Get the maximum power domain level to traverse to after this cpu
990 	 * has been physically powered up.
991 	 */
992 	end_pwrlvl = get_power_on_target_pwrlvl();
993 
994 	/* Get the parent nodes */
995 	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
996 
997 	/*
998 	 * This function acquires the lock corresponding to each power level so
999 	 * that by the time all locks are taken, the system topology is snapshot
1000 	 * and state management can be done safely.
1001 	 */
1002 	psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes);
1003 
1004 	psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
1005 
1006 #if ENABLE_PSCI_STAT
1007 	plat_psci_stat_accounting_stop(&state_info);
1008 #endif
1009 
1010 	/*
1011 	 * This CPU could be resuming from suspend or it could have just been
1012 	 * turned on. To distinguish between these 2 cases, we examine the
1013 	 * affinity state of the CPU:
1014 	 *  - If the affinity state is ON_PENDING then it has just been
1015 	 *    turned on.
1016 	 *  - Else it is resuming from suspend.
1017 	 *
1018 	 * Depending on the type of warm reset identified, choose the right set
1019 	 * of power management handler and perform the generic, architecture
1020 	 * and platform specific handling.
1021 	 */
1022 	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
1023 		psci_cpu_on_finish(cpu_idx, &state_info);
1024 	else
1025 		psci_cpu_suspend_finish(cpu_idx, &state_info);
1026 
1027 	/*
1028 	 * Generic management: Now we just need to retrieve the
1029 	 * information that we had stashed away during the cpu_on
1030 	 * call to set this cpu on its way.
1031 	 */
1032 	cm_prepare_el3_exit_ns();
1033 
1034 	/*
1035 	 * Set the requested and target state of this CPU and all the higher
1036 	 * power domains which are ancestors of this CPU to run.
1037 	 */
1038 	psci_set_pwr_domains_to_run(end_pwrlvl);
1039 
1040 #if ENABLE_PSCI_STAT
1041 	/*
1042 	 * Update PSCI stats.
1043 	 * Caches are off when writing stats data on the power down path.
1044 	 * Since caches are now enabled, it's necessary to do cache
1045 	 * maintenance before reading that same data.
1046 	 */
1047 	psci_stats_update_pwr_up(end_pwrlvl, &state_info);
1048 #endif
1049 
1050 	/*
1051 	 * This loop releases the lock corresponding to each power level
1052 	 * in the reverse order to which they were acquired.
1053 	 */
1054 	psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes);
1055 }
1056 
1057 /*******************************************************************************
1058  * This function initializes the set of hooks that PSCI invokes as part of power
1059  * management operation. The power management hooks are expected to be provided
1060  * by the SPD, after it finishes all its initialization
1061  ******************************************************************************/
1062 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
1063 {
1064 	assert(pm != NULL);
1065 	psci_spd_pm = pm;
1066 
1067 	if (pm->svc_migrate != NULL)
1068 		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
1069 
1070 	if (pm->svc_migrate_info != NULL)
1071 		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
1072 				| define_psci_cap(PSCI_MIG_INFO_TYPE);
1073 }
1074 
1075 /*******************************************************************************
1076  * This function invokes the migrate info hook in the spd_pm_ops. It performs
1077  * the necessary return value validation. If the Secure Payload is UP and
1078  * migrate capable, it returns the mpidr of the CPU on which the Secure payload
1079  * is resident through the mpidr parameter. Else the value of the parameter on
1080  * return is undefined.
1081  ******************************************************************************/
1082 int psci_spd_migrate_info(u_register_t *mpidr)
1083 {
1084 	int rc;
1085 
1086 	if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
1087 		return PSCI_E_NOT_SUPPORTED;
1088 
1089 	rc = psci_spd_pm->svc_migrate_info(mpidr);
1090 
1091 	assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
1092 	       (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
1093 
1094 	return rc;
1095 }
1096 
1097 
1098 /*******************************************************************************
1099  * This function prints the state of all power domains present in the
1100  * system
1101  ******************************************************************************/
1102 void psci_print_power_domain_map(void)
1103 {
1104 #if LOG_LEVEL >= LOG_LEVEL_INFO
1105 	unsigned int idx;
1106 	plat_local_state_t state;
1107 	plat_local_state_type_t state_type;
1108 
1109 	/* This array maps to the PSCI_STATE_X definitions in psci.h */
1110 	static const char * const psci_state_type_str[] = {
1111 		"ON",
1112 		"RETENTION",
1113 		"OFF",
1114 	};
1115 
1116 	INFO("PSCI Power Domain Map:\n");
1117 	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count);
1118 							idx++) {
1119 		state_type = find_local_state_type(
1120 				psci_non_cpu_pd_nodes[idx].local_state);
1121 		INFO("  Domain Node : Level %u, parent_node %u,"
1122 				" State %s (0x%x)\n",
1123 				psci_non_cpu_pd_nodes[idx].level,
1124 				psci_non_cpu_pd_nodes[idx].parent_node,
1125 				psci_state_type_str[state_type],
1126 				psci_non_cpu_pd_nodes[idx].local_state);
1127 	}
1128 
1129 	for (idx = 0; idx < psci_plat_core_count; idx++) {
1130 		state = psci_get_cpu_local_state_by_idx(idx);
1131 		state_type = find_local_state_type(state);
1132 		INFO("  CPU Node : MPID 0x%llx, parent_node %u,"
1133 				" State %s (0x%x)\n",
1134 				(unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
1135 				psci_cpu_pd_nodes[idx].parent_node,
1136 				psci_state_type_str[state_type],
1137 				psci_get_cpu_local_state_by_idx(idx));
1138 	}
1139 #endif
1140 }
1141 
1142 /******************************************************************************
1143  * Return whether any secondaries were powered up with CPU_ON call. A CPU that
1144  * have ever been powered up would have set its MPDIR value to something other
1145  * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
1146  * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
1147  * meaningful only when called on the primary CPU during early boot.
1148  *****************************************************************************/
1149 int psci_secondaries_brought_up(void)
1150 {
1151 	unsigned int idx, n_valid = 0U;
1152 
1153 	for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
1154 		if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
1155 			n_valid++;
1156 	}
1157 
1158 	assert(n_valid > 0U);
1159 
1160 	return (n_valid > 1U) ? 1 : 0;
1161 }
1162 
1163 /*******************************************************************************
1164  * Initiate power down sequence, by calling power down operations registered for
1165  * this CPU.
1166  ******************************************************************************/
1167 void psci_pwrdown_cpu(unsigned int power_level)
1168 {
1169 	psci_do_manage_extensions();
1170 
1171 #if HW_ASSISTED_COHERENCY
1172 	/*
1173 	 * With hardware-assisted coherency, the CPU drivers only initiate the
1174 	 * power down sequence, without performing cache-maintenance operations
1175 	 * in software. Data caches enabled both before and after this call.
1176 	 */
1177 	prepare_cpu_pwr_dwn(power_level);
1178 #else
1179 	/*
1180 	 * Without hardware-assisted coherency, the CPU drivers disable data
1181 	 * caches, then perform cache-maintenance operations in software.
1182 	 *
1183 	 * This also calls prepare_cpu_pwr_dwn() to initiate power down
1184 	 * sequence, but that function will return with data caches disabled.
1185 	 * We must ensure that the stack memory is flushed out to memory before
1186 	 * we start popping from it again.
1187 	 */
1188 	psci_do_pwrdown_cache_maintenance(power_level);
1189 #endif
1190 }
1191 
1192 /*******************************************************************************
1193  * This function invokes the callback 'stop_func()' with the 'mpidr' of each
1194  * online PE. Caller can pass suitable method to stop a remote core.
1195  *
1196  * 'wait_ms' is the timeout value in milliseconds for the other cores to
1197  * transition to power down state. Passing '0' makes it non-blocking.
1198  *
1199  * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the
1200  * given timeout.
1201  ******************************************************************************/
1202 int psci_stop_other_cores(unsigned int wait_ms,
1203 				   void (*stop_func)(u_register_t mpidr))
1204 {
1205 	unsigned int idx, this_cpu_idx;
1206 
1207 	this_cpu_idx = plat_my_core_pos();
1208 
1209 	/* Invoke stop_func for each core */
1210 	for (idx = 0U; idx < psci_plat_core_count; idx++) {
1211 		/* skip current CPU */
1212 		if (idx == this_cpu_idx) {
1213 			continue;
1214 		}
1215 
1216 		/* Check if the CPU is ON */
1217 		if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) {
1218 			(*stop_func)(psci_cpu_pd_nodes[idx].mpidr);
1219 		}
1220 	}
1221 
1222 	/* Need to wait for other cores to shutdown */
1223 	if (wait_ms != 0U) {
1224 		while ((wait_ms-- != 0U) && (!psci_is_last_on_cpu())) {
1225 			mdelay(1U);
1226 		}
1227 
1228 		if (!psci_is_last_on_cpu()) {
1229 			WARN("Failed to stop all cores!\n");
1230 			psci_print_power_domain_map();
1231 			return PSCI_E_DENIED;
1232 		}
1233 	}
1234 
1235 	return PSCI_E_SUCCESS;
1236 }
1237 
1238 /*******************************************************************************
1239  * This function verifies that all the other cores in the system have been
1240  * turned OFF and the current CPU is the last running CPU in the system.
1241  * Returns true if the current CPU is the last ON CPU or false otherwise.
1242  *
1243  * This API has following differences with psci_is_last_on_cpu
1244  *  1. PSCI states are locked
1245  ******************************************************************************/
1246 bool psci_is_last_on_cpu_safe(void)
1247 {
1248 	unsigned int this_core = plat_my_core_pos();
1249 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1250 
1251 	psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1252 
1253 	psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1254 
1255 	if (!psci_is_last_on_cpu()) {
1256 		psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1257 		return false;
1258 	}
1259 
1260 	psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1261 
1262 	return true;
1263 }
1264 
1265 /*******************************************************************************
1266  * This function verifies that all cores in the system have been turned ON.
1267  * Returns true, if all CPUs are ON or false otherwise.
1268  *
1269  * This API has following differences with psci_are_all_cpus_on
1270  *  1. PSCI states are locked
1271  ******************************************************************************/
1272 bool psci_are_all_cpus_on_safe(void)
1273 {
1274 	unsigned int this_core = plat_my_core_pos();
1275 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1276 
1277 	psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1278 
1279 	psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1280 
1281 	if (!psci_are_all_cpus_on()) {
1282 		psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1283 		return false;
1284 	}
1285 
1286 	psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1287 
1288 	return true;
1289 }
1290 
1291 /*******************************************************************************
1292  * This function performs architectural feature specific management.
1293  * It ensures the architectural features are disabled during cpu
1294  * power off/suspend operations.
1295  ******************************************************************************/
1296 void psci_do_manage_extensions(void)
1297 {
1298 	/*
1299 	 * On power down we need to disable statistical profiling extensions
1300 	 * before exiting coherency.
1301 	 */
1302 	if (is_feat_spe_supported()) {
1303 		spe_disable();
1304 	}
1305 
1306 }
1307