1 /* 2 * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 #include <string.h> 9 10 #include <arch.h> 11 #include <arch_helpers.h> 12 #include <common/bl_common.h> 13 #include <common/debug.h> 14 #include <context.h> 15 #include <lib/el3_runtime/context_mgmt.h> 16 #include <lib/utils.h> 17 #include <plat/common/platform.h> 18 19 #include "psci_private.h" 20 21 /* 22 * SPD power management operations, expected to be supplied by the registered 23 * SPD on successful SP initialization 24 */ 25 const spd_pm_ops_t *psci_spd_pm; 26 27 /* 28 * PSCI requested local power state map. This array is used to store the local 29 * power states requested by a CPU for power levels from level 1 to 30 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power 31 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a 32 * CPU are the same. 33 * 34 * During state coordination, the platform is passed an array containing the 35 * local states requested for a particular non cpu power domain by each cpu 36 * within the domain. 37 * 38 * TODO: Dense packing of the requested states will cause cache thrashing 39 * when multiple power domains write to it. If we allocate the requested 40 * states at each power level in a cache-line aligned per-domain memory, 41 * the cache thrashing can be avoided. 42 */ 43 static plat_local_state_t 44 psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT]; 45 46 47 /******************************************************************************* 48 * Arrays that hold the platform's power domain tree information for state 49 * management of power domains. 50 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain 51 * which is an ancestor of a CPU power domain. 52 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain 53 ******************************************************************************/ 54 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS] 55 #if USE_COHERENT_MEM 56 __section("tzfw_coherent_mem") 57 #endif 58 ; 59 60 /* Lock for PSCI state coordination */ 61 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]); 62 63 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT]; 64 65 /******************************************************************************* 66 * Pointer to functions exported by the platform to complete power mgmt. ops 67 ******************************************************************************/ 68 const plat_psci_ops_t *psci_plat_pm_ops; 69 70 /****************************************************************************** 71 * Check that the maximum power level supported by the platform makes sense 72 *****************************************************************************/ 73 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) && 74 (PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL), 75 assert_platform_max_pwrlvl_check); 76 77 /* 78 * The plat_local_state used by the platform is one of these types: RUN, 79 * RETENTION and OFF. The platform can define further sub-states for each type 80 * apart from RUN. This categorization is done to verify the sanity of the 81 * psci_power_state passed by the platform and to print debug information. The 82 * categorization is done on the basis of the following conditions: 83 * 84 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN. 85 * 86 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is 87 * STATE_TYPE_RETN. 88 * 89 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is 90 * STATE_TYPE_OFF. 91 */ 92 typedef enum plat_local_state_type { 93 STATE_TYPE_RUN = 0, 94 STATE_TYPE_RETN, 95 STATE_TYPE_OFF 96 } plat_local_state_type_t; 97 98 /* Function used to categorize plat_local_state. */ 99 static plat_local_state_type_t find_local_state_type(plat_local_state_t state) 100 { 101 if (state != 0U) { 102 if (state > PLAT_MAX_RET_STATE) { 103 return STATE_TYPE_OFF; 104 } else { 105 return STATE_TYPE_RETN; 106 } 107 } else { 108 return STATE_TYPE_RUN; 109 } 110 } 111 112 /****************************************************************************** 113 * Check that the maximum retention level supported by the platform is less 114 * than the maximum off level. 115 *****************************************************************************/ 116 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, 117 assert_platform_max_off_and_retn_state_check); 118 119 /****************************************************************************** 120 * This function ensures that the power state parameter in a CPU_SUSPEND request 121 * is valid. If so, it returns the requested states for each power level. 122 *****************************************************************************/ 123 int psci_validate_power_state(unsigned int power_state, 124 psci_power_state_t *state_info) 125 { 126 /* Check SBZ bits in power state are zero */ 127 if (psci_check_power_state(power_state) != 0U) 128 return PSCI_E_INVALID_PARAMS; 129 130 assert(psci_plat_pm_ops->validate_power_state != NULL); 131 132 /* Validate the power_state using platform pm_ops */ 133 return psci_plat_pm_ops->validate_power_state(power_state, state_info); 134 } 135 136 /****************************************************************************** 137 * This function retrieves the `psci_power_state_t` for system suspend from 138 * the platform. 139 *****************************************************************************/ 140 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info) 141 { 142 /* 143 * Assert that the required pm_ops hook is implemented to ensure that 144 * the capability detected during psci_setup() is valid. 145 */ 146 assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL); 147 148 /* 149 * Query the platform for the power_state required for system suspend 150 */ 151 psci_plat_pm_ops->get_sys_suspend_power_state(state_info); 152 } 153 154 /******************************************************************************* 155 * This function verifies that the all the other cores in the system have been 156 * turned OFF and the current CPU is the last running CPU in the system. 157 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false) 158 * otherwise. 159 ******************************************************************************/ 160 unsigned int psci_is_last_on_cpu(void) 161 { 162 unsigned int cpu_idx, my_idx = plat_my_core_pos(); 163 164 for (cpu_idx = 0; cpu_idx < (unsigned int)PLATFORM_CORE_COUNT; 165 cpu_idx++) { 166 if (cpu_idx == my_idx) { 167 assert(psci_get_aff_info_state() == AFF_STATE_ON); 168 continue; 169 } 170 171 if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) 172 return 0; 173 } 174 175 return 1; 176 } 177 178 /******************************************************************************* 179 * Routine to return the maximum power level to traverse to after a cpu has 180 * been physically powered up. It is expected to be called immediately after 181 * reset from assembler code. 182 ******************************************************************************/ 183 static unsigned int get_power_on_target_pwrlvl(void) 184 { 185 unsigned int pwrlvl; 186 187 /* 188 * Assume that this cpu was suspended and retrieve its target power 189 * level. If it is invalid then it could only have been turned off 190 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a 191 * cpu can be turned off to. 192 */ 193 pwrlvl = psci_get_suspend_pwrlvl(); 194 if (pwrlvl == PSCI_INVALID_PWR_LVL) 195 pwrlvl = PLAT_MAX_PWR_LVL; 196 return pwrlvl; 197 } 198 199 /****************************************************************************** 200 * Helper function to update the requested local power state array. This array 201 * does not store the requested state for the CPU power level. Hence an 202 * assertion is added to prevent us from accessing the CPU power level. 203 *****************************************************************************/ 204 static void psci_set_req_local_pwr_state(unsigned int pwrlvl, 205 unsigned int cpu_idx, 206 plat_local_state_t req_pwr_state) 207 { 208 assert(pwrlvl > PSCI_CPU_PWR_LVL); 209 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && 210 (cpu_idx < (unsigned int) PLATFORM_CORE_COUNT)) { 211 psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state; 212 } 213 } 214 215 /****************************************************************************** 216 * This function initializes the psci_req_local_pwr_states. 217 *****************************************************************************/ 218 void __init psci_init_req_local_pwr_states(void) 219 { 220 /* Initialize the requested state of all non CPU power domains as OFF */ 221 unsigned int pwrlvl; 222 int core; 223 224 for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) { 225 for (core = 0; core < PLATFORM_CORE_COUNT; core++) { 226 psci_req_local_pwr_states[pwrlvl][core] = 227 PLAT_MAX_OFF_STATE; 228 } 229 } 230 } 231 232 /****************************************************************************** 233 * Helper function to return a reference to an array containing the local power 234 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the 235 * array will be the number of cpu power domains of which this power domain is 236 * an ancestor. These requested states will be used to determine a suitable 237 * target state for this power domain during psci state coordination. An 238 * assertion is added to prevent us from accessing the CPU power level. 239 *****************************************************************************/ 240 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl, 241 unsigned int cpu_idx) 242 { 243 assert(pwrlvl > PSCI_CPU_PWR_LVL); 244 245 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && 246 (cpu_idx < (unsigned int) PLATFORM_CORE_COUNT)) { 247 return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx]; 248 } else 249 return NULL; 250 } 251 252 /* 253 * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent 254 * memory. 255 * 256 * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory, 257 * it's accessed by both cached and non-cached participants. To serve the common 258 * minimum, perform a cache flush before read and after write so that non-cached 259 * participants operate on latest data in main memory. 260 * 261 * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent 262 * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent. 263 * In both cases, no cache operations are required. 264 */ 265 266 /* 267 * Retrieve local state of non-CPU power domain node from a non-cached CPU, 268 * after any required cache maintenance operation. 269 */ 270 static plat_local_state_t get_non_cpu_pd_node_local_state( 271 unsigned int parent_idx) 272 { 273 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 274 flush_dcache_range( 275 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 276 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 277 #endif 278 return psci_non_cpu_pd_nodes[parent_idx].local_state; 279 } 280 281 /* 282 * Update local state of non-CPU power domain node from a cached CPU; perform 283 * any required cache maintenance operation afterwards. 284 */ 285 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx, 286 plat_local_state_t state) 287 { 288 psci_non_cpu_pd_nodes[parent_idx].local_state = state; 289 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 290 flush_dcache_range( 291 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 292 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 293 #endif 294 } 295 296 /****************************************************************************** 297 * Helper function to return the current local power state of each power domain 298 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This 299 * function will be called after a cpu is powered on to find the local state 300 * each power domain has emerged from. 301 *****************************************************************************/ 302 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl, 303 psci_power_state_t *target_state) 304 { 305 unsigned int parent_idx, lvl; 306 plat_local_state_t *pd_state = target_state->pwr_domain_state; 307 308 pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state(); 309 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; 310 311 /* Copy the local power state from node to state_info */ 312 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 313 pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx); 314 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 315 } 316 317 /* Set the the higher levels to RUN */ 318 for (; lvl <= PLAT_MAX_PWR_LVL; lvl++) 319 target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 320 } 321 322 /****************************************************************************** 323 * Helper function to set the target local power state that each power domain 324 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will 325 * enter. This function will be called after coordination of requested power 326 * states has been done for each power level. 327 *****************************************************************************/ 328 static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl, 329 const psci_power_state_t *target_state) 330 { 331 unsigned int parent_idx, lvl; 332 const plat_local_state_t *pd_state = target_state->pwr_domain_state; 333 334 psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]); 335 336 /* 337 * Need to flush as local_state might be accessed with Data Cache 338 * disabled during power on 339 */ 340 psci_flush_cpu_data(psci_svc_cpu_data.local_state); 341 342 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; 343 344 /* Copy the local_state from state_info */ 345 for (lvl = 1U; lvl <= end_pwrlvl; lvl++) { 346 set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]); 347 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 348 } 349 } 350 351 352 /******************************************************************************* 353 * PSCI helper function to get the parent nodes corresponding to a cpu_index. 354 ******************************************************************************/ 355 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx, 356 unsigned int end_lvl, 357 unsigned int *node_index) 358 { 359 unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node; 360 unsigned int i; 361 unsigned int *node = node_index; 362 363 for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) { 364 *node = parent_node; 365 node++; 366 parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node; 367 } 368 } 369 370 /****************************************************************************** 371 * This function is invoked post CPU power up and initialization. It sets the 372 * affinity info state, target power state and requested power state for the 373 * current CPU and all its ancestor power domains to RUN. 374 *****************************************************************************/ 375 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl) 376 { 377 unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl; 378 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 379 380 /* Reset the local_state to RUN for the non cpu power domains. */ 381 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 382 set_non_cpu_pd_node_local_state(parent_idx, 383 PSCI_LOCAL_STATE_RUN); 384 psci_set_req_local_pwr_state(lvl, 385 cpu_idx, 386 PSCI_LOCAL_STATE_RUN); 387 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 388 } 389 390 /* Set the affinity info state to ON */ 391 psci_set_aff_info_state(AFF_STATE_ON); 392 393 psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN); 394 psci_flush_cpu_data(psci_svc_cpu_data); 395 } 396 397 /****************************************************************************** 398 * This function is passed the local power states requested for each power 399 * domain (state_info) between the current CPU domain and its ancestors until 400 * the target power level (end_pwrlvl). It updates the array of requested power 401 * states with this information. 402 * 403 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it 404 * retrieves the states requested by all the cpus of which the power domain at 405 * that level is an ancestor. It passes this information to the platform to 406 * coordinate and return the target power state. If the target state for a level 407 * is RUN then subsequent levels are not considered. At the CPU level, state 408 * coordination is not required. Hence, the requested and the target states are 409 * the same. 410 * 411 * The 'state_info' is updated with the target state for each level between the 412 * CPU and the 'end_pwrlvl' and returned to the caller. 413 * 414 * This function will only be invoked with data cache enabled and while 415 * powering down a core. 416 *****************************************************************************/ 417 void psci_do_state_coordination(unsigned int end_pwrlvl, 418 psci_power_state_t *state_info) 419 { 420 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos(); 421 unsigned int start_idx; 422 unsigned int ncpus; 423 plat_local_state_t target_state, *req_states; 424 425 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); 426 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 427 428 /* For level 0, the requested state will be equivalent 429 to target state */ 430 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 431 432 /* First update the requested power state */ 433 psci_set_req_local_pwr_state(lvl, cpu_idx, 434 state_info->pwr_domain_state[lvl]); 435 436 /* Get the requested power states for this power level */ 437 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 438 req_states = psci_get_req_local_pwr_states(lvl, start_idx); 439 440 /* 441 * Let the platform coordinate amongst the requested states at 442 * this power level and return the target local power state. 443 */ 444 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 445 target_state = plat_get_target_pwr_state(lvl, 446 req_states, 447 ncpus); 448 449 state_info->pwr_domain_state[lvl] = target_state; 450 451 /* Break early if the negotiated target power state is RUN */ 452 if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0) 453 break; 454 455 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 456 } 457 458 /* 459 * This is for cases when we break out of the above loop early because 460 * the target power state is RUN at a power level < end_pwlvl. 461 * We update the requested power state from state_info and then 462 * set the target state as RUN. 463 */ 464 for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) { 465 psci_set_req_local_pwr_state(lvl, cpu_idx, 466 state_info->pwr_domain_state[lvl]); 467 state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 468 469 } 470 471 /* Update the target state in the power domain nodes */ 472 psci_set_target_local_pwr_states(end_pwrlvl, state_info); 473 } 474 475 /****************************************************************************** 476 * This function validates a suspend request by making sure that if a standby 477 * state is requested then no power level is turned off and the highest power 478 * level is placed in a standby/retention state. 479 * 480 * It also ensures that the state level X will enter is not shallower than the 481 * state level X + 1 will enter. 482 * 483 * This validation will be enabled only for DEBUG builds as the platform is 484 * expected to perform these validations as well. 485 *****************************************************************************/ 486 int psci_validate_suspend_req(const psci_power_state_t *state_info, 487 unsigned int is_power_down_state) 488 { 489 unsigned int max_off_lvl, target_lvl, max_retn_lvl; 490 plat_local_state_t state; 491 plat_local_state_type_t req_state_type, deepest_state_type; 492 int i; 493 494 /* Find the target suspend power level */ 495 target_lvl = psci_find_target_suspend_lvl(state_info); 496 if (target_lvl == PSCI_INVALID_PWR_LVL) 497 return PSCI_E_INVALID_PARAMS; 498 499 /* All power domain levels are in a RUN state to begin with */ 500 deepest_state_type = STATE_TYPE_RUN; 501 502 for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) { 503 state = state_info->pwr_domain_state[i]; 504 req_state_type = find_local_state_type(state); 505 506 /* 507 * While traversing from the highest power level to the lowest, 508 * the state requested for lower levels has to be the same or 509 * deeper i.e. equal to or greater than the state at the higher 510 * levels. If this condition is true, then the requested state 511 * becomes the deepest state encountered so far. 512 */ 513 if (req_state_type < deepest_state_type) 514 return PSCI_E_INVALID_PARAMS; 515 deepest_state_type = req_state_type; 516 } 517 518 /* Find the highest off power level */ 519 max_off_lvl = psci_find_max_off_lvl(state_info); 520 521 /* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */ 522 max_retn_lvl = PSCI_INVALID_PWR_LVL; 523 if (target_lvl != max_off_lvl) 524 max_retn_lvl = target_lvl; 525 526 /* 527 * If this is not a request for a power down state then max off level 528 * has to be invalid and max retention level has to be a valid power 529 * level. 530 */ 531 if ((is_power_down_state == 0U) && 532 ((max_off_lvl != PSCI_INVALID_PWR_LVL) || 533 (max_retn_lvl == PSCI_INVALID_PWR_LVL))) 534 return PSCI_E_INVALID_PARAMS; 535 536 return PSCI_E_SUCCESS; 537 } 538 539 /****************************************************************************** 540 * This function finds the highest power level which will be powered down 541 * amongst all the power levels specified in the 'state_info' structure 542 *****************************************************************************/ 543 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info) 544 { 545 int i; 546 547 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 548 if (is_local_state_off(state_info->pwr_domain_state[i]) != 0) 549 return (unsigned int) i; 550 } 551 552 return PSCI_INVALID_PWR_LVL; 553 } 554 555 /****************************************************************************** 556 * This functions finds the level of the highest power domain which will be 557 * placed in a low power state during a suspend operation. 558 *****************************************************************************/ 559 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info) 560 { 561 int i; 562 563 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 564 if (is_local_state_run(state_info->pwr_domain_state[i]) == 0) 565 return (unsigned int) i; 566 } 567 568 return PSCI_INVALID_PWR_LVL; 569 } 570 571 /******************************************************************************* 572 * This function is passed the highest level in the topology tree that the 573 * operation should be applied to and a list of node indexes. It picks up locks 574 * from the node index list in order of increasing power domain level in the 575 * range specified. 576 ******************************************************************************/ 577 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl, 578 const unsigned int *parent_nodes) 579 { 580 unsigned int parent_idx; 581 unsigned int level; 582 583 /* No locking required for level 0. Hence start locking from level 1 */ 584 for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) { 585 parent_idx = parent_nodes[level - 1U]; 586 psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]); 587 } 588 } 589 590 /******************************************************************************* 591 * This function is passed the highest level in the topology tree that the 592 * operation should be applied to and a list of node indexes. It releases the 593 * locks in order of decreasing power domain level in the range specified. 594 ******************************************************************************/ 595 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl, 596 const unsigned int *parent_nodes) 597 { 598 unsigned int parent_idx; 599 unsigned int level; 600 601 /* Unlock top down. No unlocking required for level 0. */ 602 for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1U; level--) { 603 parent_idx = parent_nodes[level - 1U]; 604 psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]); 605 } 606 } 607 608 /******************************************************************************* 609 * Simple routine to determine whether a mpidr is valid or not. 610 ******************************************************************************/ 611 int psci_validate_mpidr(u_register_t mpidr) 612 { 613 if (plat_core_pos_by_mpidr(mpidr) < 0) 614 return PSCI_E_INVALID_PARAMS; 615 616 return PSCI_E_SUCCESS; 617 } 618 619 /******************************************************************************* 620 * This function determines the full entrypoint information for the requested 621 * PSCI entrypoint on power on/resume and returns it. 622 ******************************************************************************/ 623 #ifdef __aarch64__ 624 static int psci_get_ns_ep_info(entry_point_info_t *ep, 625 uintptr_t entrypoint, 626 u_register_t context_id) 627 { 628 u_register_t ep_attr, sctlr; 629 unsigned int daif, ee, mode; 630 u_register_t ns_scr_el3 = read_scr_el3(); 631 u_register_t ns_sctlr_el1 = read_sctlr_el1(); 632 633 sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 634 read_sctlr_el2() : ns_sctlr_el1; 635 ee = 0; 636 637 ep_attr = NON_SECURE | EP_ST_DISABLE; 638 if ((sctlr & SCTLR_EE_BIT) != 0U) { 639 ep_attr |= EP_EE_BIG; 640 ee = 1; 641 } 642 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 643 644 ep->pc = entrypoint; 645 zeromem(&ep->args, sizeof(ep->args)); 646 ep->args.arg0 = context_id; 647 648 /* 649 * Figure out whether the cpu enters the non-secure address space 650 * in aarch32 or aarch64 651 */ 652 if ((ns_scr_el3 & SCR_RW_BIT) != 0U) { 653 654 /* 655 * Check whether a Thumb entry point has been provided for an 656 * aarch64 EL 657 */ 658 if ((entrypoint & 0x1UL) != 0UL) 659 return PSCI_E_INVALID_ADDRESS; 660 661 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1; 662 663 ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); 664 } else { 665 666 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 667 MODE32_hyp : MODE32_svc; 668 669 /* 670 * TODO: Choose async. exception bits if HYP mode is not 671 * implemented according to the values of SCR.{AW, FW} bits 672 */ 673 daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT; 674 675 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif); 676 } 677 678 return PSCI_E_SUCCESS; 679 } 680 #else /* !__aarch64__ */ 681 static int psci_get_ns_ep_info(entry_point_info_t *ep, 682 uintptr_t entrypoint, 683 u_register_t context_id) 684 { 685 u_register_t ep_attr; 686 unsigned int aif, ee, mode; 687 u_register_t scr = read_scr(); 688 u_register_t ns_sctlr, sctlr; 689 690 /* Switch to non secure state */ 691 write_scr(scr | SCR_NS_BIT); 692 isb(); 693 ns_sctlr = read_sctlr(); 694 695 sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr; 696 697 /* Return to original state */ 698 write_scr(scr); 699 isb(); 700 ee = 0; 701 702 ep_attr = NON_SECURE | EP_ST_DISABLE; 703 if (sctlr & SCTLR_EE_BIT) { 704 ep_attr |= EP_EE_BIG; 705 ee = 1; 706 } 707 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 708 709 ep->pc = entrypoint; 710 zeromem(&ep->args, sizeof(ep->args)); 711 ep->args.arg0 = context_id; 712 713 mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc; 714 715 /* 716 * TODO: Choose async. exception bits if HYP mode is not 717 * implemented according to the values of SCR.{AW, FW} bits 718 */ 719 aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT; 720 721 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif); 722 723 return PSCI_E_SUCCESS; 724 } 725 726 #endif /* __aarch64__ */ 727 728 /******************************************************************************* 729 * This function validates the entrypoint with the platform layer if the 730 * appropriate pm_ops hook is exported by the platform and returns the 731 * 'entry_point_info'. 732 ******************************************************************************/ 733 int psci_validate_entry_point(entry_point_info_t *ep, 734 uintptr_t entrypoint, 735 u_register_t context_id) 736 { 737 int rc; 738 739 /* Validate the entrypoint using platform psci_ops */ 740 if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) { 741 rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint); 742 if (rc != PSCI_E_SUCCESS) 743 return PSCI_E_INVALID_ADDRESS; 744 } 745 746 /* 747 * Verify and derive the re-entry information for 748 * the non-secure world from the non-secure state from 749 * where this call originated. 750 */ 751 rc = psci_get_ns_ep_info(ep, entrypoint, context_id); 752 return rc; 753 } 754 755 /******************************************************************************* 756 * Generic handler which is called when a cpu is physically powered on. It 757 * traverses the node information and finds the highest power level powered 758 * off and performs generic, architectural, platform setup and state management 759 * to power on that power level and power levels below it. 760 * e.g. For a cpu that's been powered on, it will call the platform specific 761 * code to enable the gic cpu interface and for a cluster it will enable 762 * coherency at the interconnect level in addition to gic cpu interface. 763 ******************************************************************************/ 764 void psci_warmboot_entrypoint(void) 765 { 766 unsigned int end_pwrlvl; 767 unsigned int cpu_idx = plat_my_core_pos(); 768 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 769 psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} }; 770 771 /* 772 * Verify that we have been explicitly turned ON or resumed from 773 * suspend. 774 */ 775 if (psci_get_aff_info_state() == AFF_STATE_OFF) { 776 ERROR("Unexpected affinity info state"); 777 panic(); 778 } 779 780 /* 781 * Get the maximum power domain level to traverse to after this cpu 782 * has been physically powered up. 783 */ 784 end_pwrlvl = get_power_on_target_pwrlvl(); 785 786 /* Get the parent nodes */ 787 psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes); 788 789 /* 790 * This function acquires the lock corresponding to each power level so 791 * that by the time all locks are taken, the system topology is snapshot 792 * and state management can be done safely. 793 */ 794 psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes); 795 796 psci_get_target_local_pwr_states(end_pwrlvl, &state_info); 797 798 #if ENABLE_PSCI_STAT 799 plat_psci_stat_accounting_stop(&state_info); 800 #endif 801 802 /* 803 * This CPU could be resuming from suspend or it could have just been 804 * turned on. To distinguish between these 2 cases, we examine the 805 * affinity state of the CPU: 806 * - If the affinity state is ON_PENDING then it has just been 807 * turned on. 808 * - Else it is resuming from suspend. 809 * 810 * Depending on the type of warm reset identified, choose the right set 811 * of power management handler and perform the generic, architecture 812 * and platform specific handling. 813 */ 814 if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING) 815 psci_cpu_on_finish(cpu_idx, &state_info); 816 else 817 psci_cpu_suspend_finish(cpu_idx, &state_info); 818 819 /* 820 * Set the requested and target state of this CPU and all the higher 821 * power domains which are ancestors of this CPU to run. 822 */ 823 psci_set_pwr_domains_to_run(end_pwrlvl); 824 825 #if ENABLE_PSCI_STAT 826 /* 827 * Update PSCI stats. 828 * Caches are off when writing stats data on the power down path. 829 * Since caches are now enabled, it's necessary to do cache 830 * maintenance before reading that same data. 831 */ 832 psci_stats_update_pwr_up(end_pwrlvl, &state_info); 833 #endif 834 835 /* 836 * This loop releases the lock corresponding to each power level 837 * in the reverse order to which they were acquired. 838 */ 839 psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes); 840 } 841 842 /******************************************************************************* 843 * This function initializes the set of hooks that PSCI invokes as part of power 844 * management operation. The power management hooks are expected to be provided 845 * by the SPD, after it finishes all its initialization 846 ******************************************************************************/ 847 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm) 848 { 849 assert(pm != NULL); 850 psci_spd_pm = pm; 851 852 if (pm->svc_migrate != NULL) 853 psci_caps |= define_psci_cap(PSCI_MIG_AARCH64); 854 855 if (pm->svc_migrate_info != NULL) 856 psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64) 857 | define_psci_cap(PSCI_MIG_INFO_TYPE); 858 } 859 860 /******************************************************************************* 861 * This function invokes the migrate info hook in the spd_pm_ops. It performs 862 * the necessary return value validation. If the Secure Payload is UP and 863 * migrate capable, it returns the mpidr of the CPU on which the Secure payload 864 * is resident through the mpidr parameter. Else the value of the parameter on 865 * return is undefined. 866 ******************************************************************************/ 867 int psci_spd_migrate_info(u_register_t *mpidr) 868 { 869 int rc; 870 871 if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL)) 872 return PSCI_E_NOT_SUPPORTED; 873 874 rc = psci_spd_pm->svc_migrate_info(mpidr); 875 876 assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) || 877 (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED)); 878 879 return rc; 880 } 881 882 883 /******************************************************************************* 884 * This function prints the state of all power domains present in the 885 * system 886 ******************************************************************************/ 887 void psci_print_power_domain_map(void) 888 { 889 #if LOG_LEVEL >= LOG_LEVEL_INFO 890 int idx; 891 plat_local_state_t state; 892 plat_local_state_type_t state_type; 893 894 /* This array maps to the PSCI_STATE_X definitions in psci.h */ 895 static const char * const psci_state_type_str[] = { 896 "ON", 897 "RETENTION", 898 "OFF", 899 }; 900 901 INFO("PSCI Power Domain Map:\n"); 902 for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - PLATFORM_CORE_COUNT); 903 idx++) { 904 state_type = find_local_state_type( 905 psci_non_cpu_pd_nodes[idx].local_state); 906 INFO(" Domain Node : Level %u, parent_node %d," 907 " State %s (0x%x)\n", 908 psci_non_cpu_pd_nodes[idx].level, 909 psci_non_cpu_pd_nodes[idx].parent_node, 910 psci_state_type_str[state_type], 911 psci_non_cpu_pd_nodes[idx].local_state); 912 } 913 914 for (idx = 0; idx < PLATFORM_CORE_COUNT; idx++) { 915 state = psci_get_cpu_local_state_by_idx(idx); 916 state_type = find_local_state_type(state); 917 INFO(" CPU Node : MPID 0x%llx, parent_node %d," 918 " State %s (0x%x)\n", 919 (unsigned long long)psci_cpu_pd_nodes[idx].mpidr, 920 psci_cpu_pd_nodes[idx].parent_node, 921 psci_state_type_str[state_type], 922 psci_get_cpu_local_state_by_idx(idx)); 923 } 924 #endif 925 } 926 927 /****************************************************************************** 928 * Return whether any secondaries were powered up with CPU_ON call. A CPU that 929 * have ever been powered up would have set its MPDIR value to something other 930 * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to 931 * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is 932 * meaningful only when called on the primary CPU during early boot. 933 *****************************************************************************/ 934 int psci_secondaries_brought_up(void) 935 { 936 unsigned int idx, n_valid = 0U; 937 938 for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) { 939 if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR) 940 n_valid++; 941 } 942 943 assert(n_valid > 0U); 944 945 return (n_valid > 1U) ? 1 : 0; 946 } 947 948 /******************************************************************************* 949 * Initiate power down sequence, by calling power down operations registered for 950 * this CPU. 951 ******************************************************************************/ 952 void psci_do_pwrdown_sequence(unsigned int power_level) 953 { 954 #if HW_ASSISTED_COHERENCY 955 /* 956 * With hardware-assisted coherency, the CPU drivers only initiate the 957 * power down sequence, without performing cache-maintenance operations 958 * in software. Data caches enabled both before and after this call. 959 */ 960 prepare_cpu_pwr_dwn(power_level); 961 #else 962 /* 963 * Without hardware-assisted coherency, the CPU drivers disable data 964 * caches, then perform cache-maintenance operations in software. 965 * 966 * This also calls prepare_cpu_pwr_dwn() to initiate power down 967 * sequence, but that function will return with data caches disabled. 968 * We must ensure that the stack memory is flushed out to memory before 969 * we start popping from it again. 970 */ 971 psci_do_pwrdown_cache_maintenance(power_level); 972 #endif 973 } 974