xref: /rk3399_ARM-atf/lib/psci/psci_common.c (revision 5f7956c0489790ddf7c269265ea87a4bdcd14de7)
1 /*
2  * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <string.h>
9 
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/bl_common.h>
13 #include <common/debug.h>
14 #include <context.h>
15 #include <lib/el3_runtime/context_mgmt.h>
16 #include <lib/utils.h>
17 #include <plat/common/platform.h>
18 
19 #include "psci_private.h"
20 
21 /*
22  * SPD power management operations, expected to be supplied by the registered
23  * SPD on successful SP initialization
24  */
25 const spd_pm_ops_t *psci_spd_pm;
26 
27 /*
28  * PSCI requested local power state map. This array is used to store the local
29  * power states requested by a CPU for power levels from level 1 to
30  * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
31  * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
32  * CPU are the same.
33  *
34  * During state coordination, the platform is passed an array containing the
35  * local states requested for a particular non cpu power domain by each cpu
36  * within the domain.
37  *
38  * TODO: Dense packing of the requested states will cause cache thrashing
39  * when multiple power domains write to it. If we allocate the requested
40  * states at each power level in a cache-line aligned per-domain memory,
41  * the cache thrashing can be avoided.
42  */
43 static plat_local_state_t
44 	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
45 
46 
47 /*******************************************************************************
48  * Arrays that hold the platform's power domain tree information for state
49  * management of power domains.
50  * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
51  * which is an ancestor of a CPU power domain.
52  * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
53  ******************************************************************************/
54 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
55 #if USE_COHERENT_MEM
56 __section("tzfw_coherent_mem")
57 #endif
58 ;
59 
60 /* Lock for PSCI state coordination */
61 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
62 
63 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
64 
65 /*******************************************************************************
66  * Pointer to functions exported by the platform to complete power mgmt. ops
67  ******************************************************************************/
68 const plat_psci_ops_t *psci_plat_pm_ops;
69 
70 /******************************************************************************
71  * Check that the maximum power level supported by the platform makes sense
72  *****************************************************************************/
73 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
74 	(PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
75 	assert_platform_max_pwrlvl_check);
76 
77 /*
78  * The plat_local_state used by the platform is one of these types: RUN,
79  * RETENTION and OFF. The platform can define further sub-states for each type
80  * apart from RUN. This categorization is done to verify the sanity of the
81  * psci_power_state passed by the platform and to print debug information. The
82  * categorization is done on the basis of the following conditions:
83  *
84  * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
85  *
86  * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
87  *    STATE_TYPE_RETN.
88  *
89  * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
90  *    STATE_TYPE_OFF.
91  */
92 typedef enum plat_local_state_type {
93 	STATE_TYPE_RUN = 0,
94 	STATE_TYPE_RETN,
95 	STATE_TYPE_OFF
96 } plat_local_state_type_t;
97 
98 /* Function used to categorize plat_local_state. */
99 static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
100 {
101 	if (state != 0U) {
102 		if (state > PLAT_MAX_RET_STATE) {
103 			return STATE_TYPE_OFF;
104 		} else {
105 			return STATE_TYPE_RETN;
106 		}
107 	} else {
108 		return STATE_TYPE_RUN;
109 	}
110 }
111 
112 /******************************************************************************
113  * Check that the maximum retention level supported by the platform is less
114  * than the maximum off level.
115  *****************************************************************************/
116 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
117 		assert_platform_max_off_and_retn_state_check);
118 
119 /******************************************************************************
120  * This function ensures that the power state parameter in a CPU_SUSPEND request
121  * is valid. If so, it returns the requested states for each power level.
122  *****************************************************************************/
123 int psci_validate_power_state(unsigned int power_state,
124 			      psci_power_state_t *state_info)
125 {
126 	/* Check SBZ bits in power state are zero */
127 	if (psci_check_power_state(power_state) != 0U)
128 		return PSCI_E_INVALID_PARAMS;
129 
130 	assert(psci_plat_pm_ops->validate_power_state != NULL);
131 
132 	/* Validate the power_state using platform pm_ops */
133 	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
134 }
135 
136 /******************************************************************************
137  * This function retrieves the `psci_power_state_t` for system suspend from
138  * the platform.
139  *****************************************************************************/
140 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
141 {
142 	/*
143 	 * Assert that the required pm_ops hook is implemented to ensure that
144 	 * the capability detected during psci_setup() is valid.
145 	 */
146 	assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
147 
148 	/*
149 	 * Query the platform for the power_state required for system suspend
150 	 */
151 	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
152 }
153 
154 /*******************************************************************************
155  * This function verifies that the all the other cores in the system have been
156  * turned OFF and the current CPU is the last running CPU in the system.
157  * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
158  * otherwise.
159  ******************************************************************************/
160 unsigned int psci_is_last_on_cpu(void)
161 {
162 	unsigned int cpu_idx, my_idx = plat_my_core_pos();
163 
164 	for (cpu_idx = 0; cpu_idx < (unsigned int)PLATFORM_CORE_COUNT;
165 			cpu_idx++) {
166 		if (cpu_idx == my_idx) {
167 			assert(psci_get_aff_info_state() == AFF_STATE_ON);
168 			continue;
169 		}
170 
171 		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF)
172 			return 0;
173 	}
174 
175 	return 1;
176 }
177 
178 /*******************************************************************************
179  * Routine to return the maximum power level to traverse to after a cpu has
180  * been physically powered up. It is expected to be called immediately after
181  * reset from assembler code.
182  ******************************************************************************/
183 static unsigned int get_power_on_target_pwrlvl(void)
184 {
185 	unsigned int pwrlvl;
186 
187 	/*
188 	 * Assume that this cpu was suspended and retrieve its target power
189 	 * level. If it is invalid then it could only have been turned off
190 	 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
191 	 * cpu can be turned off to.
192 	 */
193 	pwrlvl = psci_get_suspend_pwrlvl();
194 	if (pwrlvl == PSCI_INVALID_PWR_LVL)
195 		pwrlvl = PLAT_MAX_PWR_LVL;
196 	return pwrlvl;
197 }
198 
199 /******************************************************************************
200  * Helper function to update the requested local power state array. This array
201  * does not store the requested state for the CPU power level. Hence an
202  * assertion is added to prevent us from accessing the CPU power level.
203  *****************************************************************************/
204 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
205 					 unsigned int cpu_idx,
206 					 plat_local_state_t req_pwr_state)
207 {
208 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
209 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
210 			(cpu_idx < (unsigned int) PLATFORM_CORE_COUNT)) {
211 		psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
212 	}
213 }
214 
215 /******************************************************************************
216  * This function initializes the psci_req_local_pwr_states.
217  *****************************************************************************/
218 void __init psci_init_req_local_pwr_states(void)
219 {
220 	/* Initialize the requested state of all non CPU power domains as OFF */
221 	unsigned int pwrlvl;
222 	int core;
223 
224 	for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
225 		for (core = 0; core < PLATFORM_CORE_COUNT; core++) {
226 			psci_req_local_pwr_states[pwrlvl][core] =
227 				PLAT_MAX_OFF_STATE;
228 		}
229 	}
230 }
231 
232 /******************************************************************************
233  * Helper function to return a reference to an array containing the local power
234  * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
235  * array will be the number of cpu power domains of which this power domain is
236  * an ancestor. These requested states will be used to determine a suitable
237  * target state for this power domain during psci state coordination. An
238  * assertion is added to prevent us from accessing the CPU power level.
239  *****************************************************************************/
240 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
241 							 unsigned int cpu_idx)
242 {
243 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
244 
245 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
246 			(cpu_idx < (unsigned int) PLATFORM_CORE_COUNT)) {
247 		return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
248 	} else
249 		return NULL;
250 }
251 
252 /*
253  * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
254  * memory.
255  *
256  * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
257  * it's accessed by both cached and non-cached participants. To serve the common
258  * minimum, perform a cache flush before read and after write so that non-cached
259  * participants operate on latest data in main memory.
260  *
261  * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
262  * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
263  * In both cases, no cache operations are required.
264  */
265 
266 /*
267  * Retrieve local state of non-CPU power domain node from a non-cached CPU,
268  * after any required cache maintenance operation.
269  */
270 static plat_local_state_t get_non_cpu_pd_node_local_state(
271 		unsigned int parent_idx)
272 {
273 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
274 	flush_dcache_range(
275 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
276 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
277 #endif
278 	return psci_non_cpu_pd_nodes[parent_idx].local_state;
279 }
280 
281 /*
282  * Update local state of non-CPU power domain node from a cached CPU; perform
283  * any required cache maintenance operation afterwards.
284  */
285 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
286 		plat_local_state_t state)
287 {
288 	psci_non_cpu_pd_nodes[parent_idx].local_state = state;
289 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
290 	flush_dcache_range(
291 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
292 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
293 #endif
294 }
295 
296 /******************************************************************************
297  * Helper function to return the current local power state of each power domain
298  * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
299  * function will be called after a cpu is powered on to find the local state
300  * each power domain has emerged from.
301  *****************************************************************************/
302 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
303 				      psci_power_state_t *target_state)
304 {
305 	unsigned int parent_idx, lvl;
306 	plat_local_state_t *pd_state = target_state->pwr_domain_state;
307 
308 	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
309 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
310 
311 	/* Copy the local power state from node to state_info */
312 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
313 		pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
314 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
315 	}
316 
317 	/* Set the the higher levels to RUN */
318 	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
319 		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
320 }
321 
322 /******************************************************************************
323  * Helper function to set the target local power state that each power domain
324  * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
325  * enter. This function will be called after coordination of requested power
326  * states has been done for each power level.
327  *****************************************************************************/
328 static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
329 					const psci_power_state_t *target_state)
330 {
331 	unsigned int parent_idx, lvl;
332 	const plat_local_state_t *pd_state = target_state->pwr_domain_state;
333 
334 	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
335 
336 	/*
337 	 * Need to flush as local_state might be accessed with Data Cache
338 	 * disabled during power on
339 	 */
340 	psci_flush_cpu_data(psci_svc_cpu_data.local_state);
341 
342 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
343 
344 	/* Copy the local_state from state_info */
345 	for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
346 		set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
347 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
348 	}
349 }
350 
351 
352 /*******************************************************************************
353  * PSCI helper function to get the parent nodes corresponding to a cpu_index.
354  ******************************************************************************/
355 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
356 				      unsigned int end_lvl,
357 				      unsigned int *node_index)
358 {
359 	unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
360 	unsigned int i;
361 	unsigned int *node = node_index;
362 
363 	for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
364 		*node = parent_node;
365 		node++;
366 		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
367 	}
368 }
369 
370 /******************************************************************************
371  * This function is invoked post CPU power up and initialization. It sets the
372  * affinity info state, target power state and requested power state for the
373  * current CPU and all its ancestor power domains to RUN.
374  *****************************************************************************/
375 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
376 {
377 	unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
378 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
379 
380 	/* Reset the local_state to RUN for the non cpu power domains. */
381 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
382 		set_non_cpu_pd_node_local_state(parent_idx,
383 				PSCI_LOCAL_STATE_RUN);
384 		psci_set_req_local_pwr_state(lvl,
385 					     cpu_idx,
386 					     PSCI_LOCAL_STATE_RUN);
387 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
388 	}
389 
390 	/* Set the affinity info state to ON */
391 	psci_set_aff_info_state(AFF_STATE_ON);
392 
393 	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
394 	psci_flush_cpu_data(psci_svc_cpu_data);
395 }
396 
397 /******************************************************************************
398  * This function is passed the local power states requested for each power
399  * domain (state_info) between the current CPU domain and its ancestors until
400  * the target power level (end_pwrlvl). It updates the array of requested power
401  * states with this information.
402  *
403  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
404  * retrieves the states requested by all the cpus of which the power domain at
405  * that level is an ancestor. It passes this information to the platform to
406  * coordinate and return the target power state. If the target state for a level
407  * is RUN then subsequent levels are not considered. At the CPU level, state
408  * coordination is not required. Hence, the requested and the target states are
409  * the same.
410  *
411  * The 'state_info' is updated with the target state for each level between the
412  * CPU and the 'end_pwrlvl' and returned to the caller.
413  *
414  * This function will only be invoked with data cache enabled and while
415  * powering down a core.
416  *****************************************************************************/
417 void psci_do_state_coordination(unsigned int end_pwrlvl,
418 				psci_power_state_t *state_info)
419 {
420 	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
421 	unsigned int start_idx;
422 	unsigned int ncpus;
423 	plat_local_state_t target_state, *req_states;
424 
425 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
426 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
427 
428 	/* For level 0, the requested state will be equivalent
429 	   to target state */
430 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
431 
432 		/* First update the requested power state */
433 		psci_set_req_local_pwr_state(lvl, cpu_idx,
434 					     state_info->pwr_domain_state[lvl]);
435 
436 		/* Get the requested power states for this power level */
437 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
438 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
439 
440 		/*
441 		 * Let the platform coordinate amongst the requested states at
442 		 * this power level and return the target local power state.
443 		 */
444 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
445 		target_state = plat_get_target_pwr_state(lvl,
446 							 req_states,
447 							 ncpus);
448 
449 		state_info->pwr_domain_state[lvl] = target_state;
450 
451 		/* Break early if the negotiated target power state is RUN */
452 		if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0)
453 			break;
454 
455 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
456 	}
457 
458 	/*
459 	 * This is for cases when we break out of the above loop early because
460 	 * the target power state is RUN at a power level < end_pwlvl.
461 	 * We update the requested power state from state_info and then
462 	 * set the target state as RUN.
463 	 */
464 	for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
465 		psci_set_req_local_pwr_state(lvl, cpu_idx,
466 					     state_info->pwr_domain_state[lvl]);
467 		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
468 
469 	}
470 
471 	/* Update the target state in the power domain nodes */
472 	psci_set_target_local_pwr_states(end_pwrlvl, state_info);
473 }
474 
475 /******************************************************************************
476  * This function validates a suspend request by making sure that if a standby
477  * state is requested then no power level is turned off and the highest power
478  * level is placed in a standby/retention state.
479  *
480  * It also ensures that the state level X will enter is not shallower than the
481  * state level X + 1 will enter.
482  *
483  * This validation will be enabled only for DEBUG builds as the platform is
484  * expected to perform these validations as well.
485  *****************************************************************************/
486 int psci_validate_suspend_req(const psci_power_state_t *state_info,
487 			      unsigned int is_power_down_state)
488 {
489 	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
490 	plat_local_state_t state;
491 	plat_local_state_type_t req_state_type, deepest_state_type;
492 	int i;
493 
494 	/* Find the target suspend power level */
495 	target_lvl = psci_find_target_suspend_lvl(state_info);
496 	if (target_lvl == PSCI_INVALID_PWR_LVL)
497 		return PSCI_E_INVALID_PARAMS;
498 
499 	/* All power domain levels are in a RUN state to begin with */
500 	deepest_state_type = STATE_TYPE_RUN;
501 
502 	for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
503 		state = state_info->pwr_domain_state[i];
504 		req_state_type = find_local_state_type(state);
505 
506 		/*
507 		 * While traversing from the highest power level to the lowest,
508 		 * the state requested for lower levels has to be the same or
509 		 * deeper i.e. equal to or greater than the state at the higher
510 		 * levels. If this condition is true, then the requested state
511 		 * becomes the deepest state encountered so far.
512 		 */
513 		if (req_state_type < deepest_state_type)
514 			return PSCI_E_INVALID_PARAMS;
515 		deepest_state_type = req_state_type;
516 	}
517 
518 	/* Find the highest off power level */
519 	max_off_lvl = psci_find_max_off_lvl(state_info);
520 
521 	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
522 	max_retn_lvl = PSCI_INVALID_PWR_LVL;
523 	if (target_lvl != max_off_lvl)
524 		max_retn_lvl = target_lvl;
525 
526 	/*
527 	 * If this is not a request for a power down state then max off level
528 	 * has to be invalid and max retention level has to be a valid power
529 	 * level.
530 	 */
531 	if ((is_power_down_state == 0U) &&
532 			((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
533 			 (max_retn_lvl == PSCI_INVALID_PWR_LVL)))
534 		return PSCI_E_INVALID_PARAMS;
535 
536 	return PSCI_E_SUCCESS;
537 }
538 
539 /******************************************************************************
540  * This function finds the highest power level which will be powered down
541  * amongst all the power levels specified in the 'state_info' structure
542  *****************************************************************************/
543 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
544 {
545 	int i;
546 
547 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
548 		if (is_local_state_off(state_info->pwr_domain_state[i]) != 0)
549 			return (unsigned int) i;
550 	}
551 
552 	return PSCI_INVALID_PWR_LVL;
553 }
554 
555 /******************************************************************************
556  * This functions finds the level of the highest power domain which will be
557  * placed in a low power state during a suspend operation.
558  *****************************************************************************/
559 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
560 {
561 	int i;
562 
563 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
564 		if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
565 			return (unsigned int) i;
566 	}
567 
568 	return PSCI_INVALID_PWR_LVL;
569 }
570 
571 /*******************************************************************************
572  * This function is passed the highest level in the topology tree that the
573  * operation should be applied to and a list of node indexes. It picks up locks
574  * from the node index list in order of increasing power domain level in the
575  * range specified.
576  ******************************************************************************/
577 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
578 				   const unsigned int *parent_nodes)
579 {
580 	unsigned int parent_idx;
581 	unsigned int level;
582 
583 	/* No locking required for level 0. Hence start locking from level 1 */
584 	for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
585 		parent_idx = parent_nodes[level - 1U];
586 		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
587 	}
588 }
589 
590 /*******************************************************************************
591  * This function is passed the highest level in the topology tree that the
592  * operation should be applied to and a list of node indexes. It releases the
593  * locks in order of decreasing power domain level in the range specified.
594  ******************************************************************************/
595 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
596 				   const unsigned int *parent_nodes)
597 {
598 	unsigned int parent_idx;
599 	unsigned int level;
600 
601 	/* Unlock top down. No unlocking required for level 0. */
602 	for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1U; level--) {
603 		parent_idx = parent_nodes[level - 1U];
604 		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
605 	}
606 }
607 
608 /*******************************************************************************
609  * Simple routine to determine whether a mpidr is valid or not.
610  ******************************************************************************/
611 int psci_validate_mpidr(u_register_t mpidr)
612 {
613 	if (plat_core_pos_by_mpidr(mpidr) < 0)
614 		return PSCI_E_INVALID_PARAMS;
615 
616 	return PSCI_E_SUCCESS;
617 }
618 
619 /*******************************************************************************
620  * This function determines the full entrypoint information for the requested
621  * PSCI entrypoint on power on/resume and returns it.
622  ******************************************************************************/
623 #ifdef __aarch64__
624 static int psci_get_ns_ep_info(entry_point_info_t *ep,
625 			       uintptr_t entrypoint,
626 			       u_register_t context_id)
627 {
628 	u_register_t ep_attr, sctlr;
629 	unsigned int daif, ee, mode;
630 	u_register_t ns_scr_el3 = read_scr_el3();
631 	u_register_t ns_sctlr_el1 = read_sctlr_el1();
632 
633 	sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
634 		read_sctlr_el2() : ns_sctlr_el1;
635 	ee = 0;
636 
637 	ep_attr = NON_SECURE | EP_ST_DISABLE;
638 	if ((sctlr & SCTLR_EE_BIT) != 0U) {
639 		ep_attr |= EP_EE_BIG;
640 		ee = 1;
641 	}
642 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
643 
644 	ep->pc = entrypoint;
645 	zeromem(&ep->args, sizeof(ep->args));
646 	ep->args.arg0 = context_id;
647 
648 	/*
649 	 * Figure out whether the cpu enters the non-secure address space
650 	 * in aarch32 or aarch64
651 	 */
652 	if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
653 
654 		/*
655 		 * Check whether a Thumb entry point has been provided for an
656 		 * aarch64 EL
657 		 */
658 		if ((entrypoint & 0x1UL) != 0UL)
659 			return PSCI_E_INVALID_ADDRESS;
660 
661 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
662 
663 		ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
664 	} else {
665 
666 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
667 			MODE32_hyp : MODE32_svc;
668 
669 		/*
670 		 * TODO: Choose async. exception bits if HYP mode is not
671 		 * implemented according to the values of SCR.{AW, FW} bits
672 		 */
673 		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
674 
675 		ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
676 	}
677 
678 	return PSCI_E_SUCCESS;
679 }
680 #else /* !__aarch64__ */
681 static int psci_get_ns_ep_info(entry_point_info_t *ep,
682 			       uintptr_t entrypoint,
683 			       u_register_t context_id)
684 {
685 	u_register_t ep_attr;
686 	unsigned int aif, ee, mode;
687 	u_register_t scr = read_scr();
688 	u_register_t ns_sctlr, sctlr;
689 
690 	/* Switch to non secure state */
691 	write_scr(scr | SCR_NS_BIT);
692 	isb();
693 	ns_sctlr = read_sctlr();
694 
695 	sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
696 
697 	/* Return to original state */
698 	write_scr(scr);
699 	isb();
700 	ee = 0;
701 
702 	ep_attr = NON_SECURE | EP_ST_DISABLE;
703 	if (sctlr & SCTLR_EE_BIT) {
704 		ep_attr |= EP_EE_BIG;
705 		ee = 1;
706 	}
707 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
708 
709 	ep->pc = entrypoint;
710 	zeromem(&ep->args, sizeof(ep->args));
711 	ep->args.arg0 = context_id;
712 
713 	mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
714 
715 	/*
716 	 * TODO: Choose async. exception bits if HYP mode is not
717 	 * implemented according to the values of SCR.{AW, FW} bits
718 	 */
719 	aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
720 
721 	ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
722 
723 	return PSCI_E_SUCCESS;
724 }
725 
726 #endif /* __aarch64__ */
727 
728 /*******************************************************************************
729  * This function validates the entrypoint with the platform layer if the
730  * appropriate pm_ops hook is exported by the platform and returns the
731  * 'entry_point_info'.
732  ******************************************************************************/
733 int psci_validate_entry_point(entry_point_info_t *ep,
734 			      uintptr_t entrypoint,
735 			      u_register_t context_id)
736 {
737 	int rc;
738 
739 	/* Validate the entrypoint using platform psci_ops */
740 	if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
741 		rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
742 		if (rc != PSCI_E_SUCCESS)
743 			return PSCI_E_INVALID_ADDRESS;
744 	}
745 
746 	/*
747 	 * Verify and derive the re-entry information for
748 	 * the non-secure world from the non-secure state from
749 	 * where this call originated.
750 	 */
751 	rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
752 	return rc;
753 }
754 
755 /*******************************************************************************
756  * Generic handler which is called when a cpu is physically powered on. It
757  * traverses the node information and finds the highest power level powered
758  * off and performs generic, architectural, platform setup and state management
759  * to power on that power level and power levels below it.
760  * e.g. For a cpu that's been powered on, it will call the platform specific
761  * code to enable the gic cpu interface and for a cluster it will enable
762  * coherency at the interconnect level in addition to gic cpu interface.
763  ******************************************************************************/
764 void psci_warmboot_entrypoint(void)
765 {
766 	unsigned int end_pwrlvl;
767 	unsigned int cpu_idx = plat_my_core_pos();
768 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
769 	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
770 
771 	/*
772 	 * Verify that we have been explicitly turned ON or resumed from
773 	 * suspend.
774 	 */
775 	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
776 		ERROR("Unexpected affinity info state");
777 		panic();
778 	}
779 
780 	/*
781 	 * Get the maximum power domain level to traverse to after this cpu
782 	 * has been physically powered up.
783 	 */
784 	end_pwrlvl = get_power_on_target_pwrlvl();
785 
786 	/* Get the parent nodes */
787 	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
788 
789 	/*
790 	 * This function acquires the lock corresponding to each power level so
791 	 * that by the time all locks are taken, the system topology is snapshot
792 	 * and state management can be done safely.
793 	 */
794 	psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes);
795 
796 	psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
797 
798 #if ENABLE_PSCI_STAT
799 	plat_psci_stat_accounting_stop(&state_info);
800 #endif
801 
802 	/*
803 	 * This CPU could be resuming from suspend or it could have just been
804 	 * turned on. To distinguish between these 2 cases, we examine the
805 	 * affinity state of the CPU:
806 	 *  - If the affinity state is ON_PENDING then it has just been
807 	 *    turned on.
808 	 *  - Else it is resuming from suspend.
809 	 *
810 	 * Depending on the type of warm reset identified, choose the right set
811 	 * of power management handler and perform the generic, architecture
812 	 * and platform specific handling.
813 	 */
814 	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
815 		psci_cpu_on_finish(cpu_idx, &state_info);
816 	else
817 		psci_cpu_suspend_finish(cpu_idx, &state_info);
818 
819 	/*
820 	 * Set the requested and target state of this CPU and all the higher
821 	 * power domains which are ancestors of this CPU to run.
822 	 */
823 	psci_set_pwr_domains_to_run(end_pwrlvl);
824 
825 #if ENABLE_PSCI_STAT
826 	/*
827 	 * Update PSCI stats.
828 	 * Caches are off when writing stats data on the power down path.
829 	 * Since caches are now enabled, it's necessary to do cache
830 	 * maintenance before reading that same data.
831 	 */
832 	psci_stats_update_pwr_up(end_pwrlvl, &state_info);
833 #endif
834 
835 	/*
836 	 * This loop releases the lock corresponding to each power level
837 	 * in the reverse order to which they were acquired.
838 	 */
839 	psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes);
840 }
841 
842 /*******************************************************************************
843  * This function initializes the set of hooks that PSCI invokes as part of power
844  * management operation. The power management hooks are expected to be provided
845  * by the SPD, after it finishes all its initialization
846  ******************************************************************************/
847 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
848 {
849 	assert(pm != NULL);
850 	psci_spd_pm = pm;
851 
852 	if (pm->svc_migrate != NULL)
853 		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
854 
855 	if (pm->svc_migrate_info != NULL)
856 		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
857 				| define_psci_cap(PSCI_MIG_INFO_TYPE);
858 }
859 
860 /*******************************************************************************
861  * This function invokes the migrate info hook in the spd_pm_ops. It performs
862  * the necessary return value validation. If the Secure Payload is UP and
863  * migrate capable, it returns the mpidr of the CPU on which the Secure payload
864  * is resident through the mpidr parameter. Else the value of the parameter on
865  * return is undefined.
866  ******************************************************************************/
867 int psci_spd_migrate_info(u_register_t *mpidr)
868 {
869 	int rc;
870 
871 	if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
872 		return PSCI_E_NOT_SUPPORTED;
873 
874 	rc = psci_spd_pm->svc_migrate_info(mpidr);
875 
876 	assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
877 	       (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
878 
879 	return rc;
880 }
881 
882 
883 /*******************************************************************************
884  * This function prints the state of all power domains present in the
885  * system
886  ******************************************************************************/
887 void psci_print_power_domain_map(void)
888 {
889 #if LOG_LEVEL >= LOG_LEVEL_INFO
890 	int idx;
891 	plat_local_state_t state;
892 	plat_local_state_type_t state_type;
893 
894 	/* This array maps to the PSCI_STATE_X definitions in psci.h */
895 	static const char * const psci_state_type_str[] = {
896 		"ON",
897 		"RETENTION",
898 		"OFF",
899 	};
900 
901 	INFO("PSCI Power Domain Map:\n");
902 	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - PLATFORM_CORE_COUNT);
903 							idx++) {
904 		state_type = find_local_state_type(
905 				psci_non_cpu_pd_nodes[idx].local_state);
906 		INFO("  Domain Node : Level %u, parent_node %d,"
907 				" State %s (0x%x)\n",
908 				psci_non_cpu_pd_nodes[idx].level,
909 				psci_non_cpu_pd_nodes[idx].parent_node,
910 				psci_state_type_str[state_type],
911 				psci_non_cpu_pd_nodes[idx].local_state);
912 	}
913 
914 	for (idx = 0; idx < PLATFORM_CORE_COUNT; idx++) {
915 		state = psci_get_cpu_local_state_by_idx(idx);
916 		state_type = find_local_state_type(state);
917 		INFO("  CPU Node : MPID 0x%llx, parent_node %d,"
918 				" State %s (0x%x)\n",
919 				(unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
920 				psci_cpu_pd_nodes[idx].parent_node,
921 				psci_state_type_str[state_type],
922 				psci_get_cpu_local_state_by_idx(idx));
923 	}
924 #endif
925 }
926 
927 /******************************************************************************
928  * Return whether any secondaries were powered up with CPU_ON call. A CPU that
929  * have ever been powered up would have set its MPDIR value to something other
930  * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
931  * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
932  * meaningful only when called on the primary CPU during early boot.
933  *****************************************************************************/
934 int psci_secondaries_brought_up(void)
935 {
936 	unsigned int idx, n_valid = 0U;
937 
938 	for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
939 		if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
940 			n_valid++;
941 	}
942 
943 	assert(n_valid > 0U);
944 
945 	return (n_valid > 1U) ? 1 : 0;
946 }
947 
948 /*******************************************************************************
949  * Initiate power down sequence, by calling power down operations registered for
950  * this CPU.
951  ******************************************************************************/
952 void psci_do_pwrdown_sequence(unsigned int power_level)
953 {
954 #if HW_ASSISTED_COHERENCY
955 	/*
956 	 * With hardware-assisted coherency, the CPU drivers only initiate the
957 	 * power down sequence, without performing cache-maintenance operations
958 	 * in software. Data caches enabled both before and after this call.
959 	 */
960 	prepare_cpu_pwr_dwn(power_level);
961 #else
962 	/*
963 	 * Without hardware-assisted coherency, the CPU drivers disable data
964 	 * caches, then perform cache-maintenance operations in software.
965 	 *
966 	 * This also calls prepare_cpu_pwr_dwn() to initiate power down
967 	 * sequence, but that function will return with data caches disabled.
968 	 * We must ensure that the stack memory is flushed out to memory before
969 	 * we start popping from it again.
970 	 */
971 	psci_do_pwrdown_cache_maintenance(power_level);
972 #endif
973 }
974