1 /* 2 * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 #include <string.h> 9 10 #include <arch.h> 11 #include <arch_helpers.h> 12 #include <common/bl_common.h> 13 #include <common/debug.h> 14 #include <context.h> 15 #include <lib/el3_runtime/context_mgmt.h> 16 #include <lib/utils.h> 17 #include <plat/common/platform.h> 18 19 #include "psci_private.h" 20 21 /* 22 * SPD power management operations, expected to be supplied by the registered 23 * SPD on successful SP initialization 24 */ 25 const spd_pm_ops_t *psci_spd_pm; 26 27 /* 28 * PSCI requested local power state map. This array is used to store the local 29 * power states requested by a CPU for power levels from level 1 to 30 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power 31 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a 32 * CPU are the same. 33 * 34 * During state coordination, the platform is passed an array containing the 35 * local states requested for a particular non cpu power domain by each cpu 36 * within the domain. 37 * 38 * TODO: Dense packing of the requested states will cause cache thrashing 39 * when multiple power domains write to it. If we allocate the requested 40 * states at each power level in a cache-line aligned per-domain memory, 41 * the cache thrashing can be avoided. 42 */ 43 static plat_local_state_t 44 psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT]; 45 46 47 /******************************************************************************* 48 * Arrays that hold the platform's power domain tree information for state 49 * management of power domains. 50 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain 51 * which is an ancestor of a CPU power domain. 52 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain 53 ******************************************************************************/ 54 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS] 55 #if USE_COHERENT_MEM 56 __section("tzfw_coherent_mem") 57 #endif 58 ; 59 60 /* Lock for PSCI state coordination */ 61 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]); 62 63 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT]; 64 65 /******************************************************************************* 66 * Pointer to functions exported by the platform to complete power mgmt. ops 67 ******************************************************************************/ 68 const plat_psci_ops_t *psci_plat_pm_ops; 69 70 /****************************************************************************** 71 * Check that the maximum power level supported by the platform makes sense 72 *****************************************************************************/ 73 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) && 74 (PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL), 75 assert_platform_max_pwrlvl_check); 76 77 /* 78 * The plat_local_state used by the platform is one of these types: RUN, 79 * RETENTION and OFF. The platform can define further sub-states for each type 80 * apart from RUN. This categorization is done to verify the sanity of the 81 * psci_power_state passed by the platform and to print debug information. The 82 * categorization is done on the basis of the following conditions: 83 * 84 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN. 85 * 86 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is 87 * STATE_TYPE_RETN. 88 * 89 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is 90 * STATE_TYPE_OFF. 91 */ 92 typedef enum plat_local_state_type { 93 STATE_TYPE_RUN = 0, 94 STATE_TYPE_RETN, 95 STATE_TYPE_OFF 96 } plat_local_state_type_t; 97 98 /* Function used to categorize plat_local_state. */ 99 static plat_local_state_type_t find_local_state_type(plat_local_state_t state) 100 { 101 if (state != 0U) { 102 if (state > PLAT_MAX_RET_STATE) { 103 return STATE_TYPE_OFF; 104 } else { 105 return STATE_TYPE_RETN; 106 } 107 } else { 108 return STATE_TYPE_RUN; 109 } 110 } 111 112 /****************************************************************************** 113 * Check that the maximum retention level supported by the platform is less 114 * than the maximum off level. 115 *****************************************************************************/ 116 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, 117 assert_platform_max_off_and_retn_state_check); 118 119 /****************************************************************************** 120 * This function ensures that the power state parameter in a CPU_SUSPEND request 121 * is valid. If so, it returns the requested states for each power level. 122 *****************************************************************************/ 123 int psci_validate_power_state(unsigned int power_state, 124 psci_power_state_t *state_info) 125 { 126 /* Check SBZ bits in power state are zero */ 127 if (psci_check_power_state(power_state) != 0U) 128 return PSCI_E_INVALID_PARAMS; 129 130 assert(psci_plat_pm_ops->validate_power_state != NULL); 131 132 /* Validate the power_state using platform pm_ops */ 133 return psci_plat_pm_ops->validate_power_state(power_state, state_info); 134 } 135 136 /****************************************************************************** 137 * This function retrieves the `psci_power_state_t` for system suspend from 138 * the platform. 139 *****************************************************************************/ 140 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info) 141 { 142 /* 143 * Assert that the required pm_ops hook is implemented to ensure that 144 * the capability detected during psci_setup() is valid. 145 */ 146 assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL); 147 148 /* 149 * Query the platform for the power_state required for system suspend 150 */ 151 psci_plat_pm_ops->get_sys_suspend_power_state(state_info); 152 } 153 154 /******************************************************************************* 155 * This function verifies that the all the other cores in the system have been 156 * turned OFF and the current CPU is the last running CPU in the system. 157 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false) 158 * otherwise. 159 ******************************************************************************/ 160 unsigned int psci_is_last_on_cpu(void) 161 { 162 unsigned int cpu_idx, my_idx = plat_my_core_pos(); 163 164 for (cpu_idx = 0; cpu_idx < (unsigned int)PLATFORM_CORE_COUNT; 165 cpu_idx++) { 166 if (cpu_idx == my_idx) { 167 assert(psci_get_aff_info_state() == AFF_STATE_ON); 168 continue; 169 } 170 171 if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) 172 return 0; 173 } 174 175 return 1; 176 } 177 178 /******************************************************************************* 179 * Routine to return the maximum power level to traverse to after a cpu has 180 * been physically powered up. It is expected to be called immediately after 181 * reset from assembler code. 182 ******************************************************************************/ 183 static unsigned int get_power_on_target_pwrlvl(void) 184 { 185 unsigned int pwrlvl; 186 187 /* 188 * Assume that this cpu was suspended and retrieve its target power 189 * level. If it is invalid then it could only have been turned off 190 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a 191 * cpu can be turned off to. 192 */ 193 pwrlvl = psci_get_suspend_pwrlvl(); 194 if (pwrlvl == PSCI_INVALID_PWR_LVL) 195 pwrlvl = PLAT_MAX_PWR_LVL; 196 assert(pwrlvl < PSCI_INVALID_PWR_LVL); 197 return pwrlvl; 198 } 199 200 /****************************************************************************** 201 * Helper function to update the requested local power state array. This array 202 * does not store the requested state for the CPU power level. Hence an 203 * assertion is added to prevent us from accessing the CPU power level. 204 *****************************************************************************/ 205 static void psci_set_req_local_pwr_state(unsigned int pwrlvl, 206 unsigned int cpu_idx, 207 plat_local_state_t req_pwr_state) 208 { 209 assert(pwrlvl > PSCI_CPU_PWR_LVL); 210 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && 211 (cpu_idx < (unsigned int) PLATFORM_CORE_COUNT)) { 212 psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state; 213 } 214 } 215 216 /****************************************************************************** 217 * This function initializes the psci_req_local_pwr_states. 218 *****************************************************************************/ 219 void __init psci_init_req_local_pwr_states(void) 220 { 221 /* Initialize the requested state of all non CPU power domains as OFF */ 222 unsigned int pwrlvl; 223 int core; 224 225 for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) { 226 for (core = 0; core < PLATFORM_CORE_COUNT; core++) { 227 psci_req_local_pwr_states[pwrlvl][core] = 228 PLAT_MAX_OFF_STATE; 229 } 230 } 231 } 232 233 /****************************************************************************** 234 * Helper function to return a reference to an array containing the local power 235 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the 236 * array will be the number of cpu power domains of which this power domain is 237 * an ancestor. These requested states will be used to determine a suitable 238 * target state for this power domain during psci state coordination. An 239 * assertion is added to prevent us from accessing the CPU power level. 240 *****************************************************************************/ 241 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl, 242 unsigned int cpu_idx) 243 { 244 assert(pwrlvl > PSCI_CPU_PWR_LVL); 245 246 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && 247 (cpu_idx < (unsigned int) PLATFORM_CORE_COUNT)) { 248 return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx]; 249 } else 250 return NULL; 251 } 252 253 /* 254 * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent 255 * memory. 256 * 257 * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory, 258 * it's accessed by both cached and non-cached participants. To serve the common 259 * minimum, perform a cache flush before read and after write so that non-cached 260 * participants operate on latest data in main memory. 261 * 262 * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent 263 * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent. 264 * In both cases, no cache operations are required. 265 */ 266 267 /* 268 * Retrieve local state of non-CPU power domain node from a non-cached CPU, 269 * after any required cache maintenance operation. 270 */ 271 static plat_local_state_t get_non_cpu_pd_node_local_state( 272 unsigned int parent_idx) 273 { 274 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 275 flush_dcache_range( 276 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 277 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 278 #endif 279 return psci_non_cpu_pd_nodes[parent_idx].local_state; 280 } 281 282 /* 283 * Update local state of non-CPU power domain node from a cached CPU; perform 284 * any required cache maintenance operation afterwards. 285 */ 286 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx, 287 plat_local_state_t state) 288 { 289 psci_non_cpu_pd_nodes[parent_idx].local_state = state; 290 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 291 flush_dcache_range( 292 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 293 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 294 #endif 295 } 296 297 /****************************************************************************** 298 * Helper function to return the current local power state of each power domain 299 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This 300 * function will be called after a cpu is powered on to find the local state 301 * each power domain has emerged from. 302 *****************************************************************************/ 303 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl, 304 psci_power_state_t *target_state) 305 { 306 unsigned int parent_idx, lvl; 307 plat_local_state_t *pd_state = target_state->pwr_domain_state; 308 309 pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state(); 310 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; 311 312 /* Copy the local power state from node to state_info */ 313 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 314 pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx); 315 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 316 } 317 318 /* Set the the higher levels to RUN */ 319 for (; lvl <= PLAT_MAX_PWR_LVL; lvl++) 320 target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 321 } 322 323 /****************************************************************************** 324 * Helper function to set the target local power state that each power domain 325 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will 326 * enter. This function will be called after coordination of requested power 327 * states has been done for each power level. 328 *****************************************************************************/ 329 static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl, 330 const psci_power_state_t *target_state) 331 { 332 unsigned int parent_idx, lvl; 333 const plat_local_state_t *pd_state = target_state->pwr_domain_state; 334 335 psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]); 336 337 /* 338 * Need to flush as local_state might be accessed with Data Cache 339 * disabled during power on 340 */ 341 psci_flush_cpu_data(psci_svc_cpu_data.local_state); 342 343 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; 344 345 /* Copy the local_state from state_info */ 346 for (lvl = 1U; lvl <= end_pwrlvl; lvl++) { 347 set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]); 348 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 349 } 350 } 351 352 353 /******************************************************************************* 354 * PSCI helper function to get the parent nodes corresponding to a cpu_index. 355 ******************************************************************************/ 356 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx, 357 unsigned int end_lvl, 358 unsigned int *node_index) 359 { 360 unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node; 361 unsigned int i; 362 unsigned int *node = node_index; 363 364 for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) { 365 *node = parent_node; 366 node++; 367 parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node; 368 } 369 } 370 371 /****************************************************************************** 372 * This function is invoked post CPU power up and initialization. It sets the 373 * affinity info state, target power state and requested power state for the 374 * current CPU and all its ancestor power domains to RUN. 375 *****************************************************************************/ 376 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl) 377 { 378 unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl; 379 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 380 381 /* Reset the local_state to RUN for the non cpu power domains. */ 382 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 383 set_non_cpu_pd_node_local_state(parent_idx, 384 PSCI_LOCAL_STATE_RUN); 385 psci_set_req_local_pwr_state(lvl, 386 cpu_idx, 387 PSCI_LOCAL_STATE_RUN); 388 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 389 } 390 391 /* Set the affinity info state to ON */ 392 psci_set_aff_info_state(AFF_STATE_ON); 393 394 psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN); 395 psci_flush_cpu_data(psci_svc_cpu_data); 396 } 397 398 /****************************************************************************** 399 * This function is passed the local power states requested for each power 400 * domain (state_info) between the current CPU domain and its ancestors until 401 * the target power level (end_pwrlvl). It updates the array of requested power 402 * states with this information. 403 * 404 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it 405 * retrieves the states requested by all the cpus of which the power domain at 406 * that level is an ancestor. It passes this information to the platform to 407 * coordinate and return the target power state. If the target state for a level 408 * is RUN then subsequent levels are not considered. At the CPU level, state 409 * coordination is not required. Hence, the requested and the target states are 410 * the same. 411 * 412 * The 'state_info' is updated with the target state for each level between the 413 * CPU and the 'end_pwrlvl' and returned to the caller. 414 * 415 * This function will only be invoked with data cache enabled and while 416 * powering down a core. 417 *****************************************************************************/ 418 void psci_do_state_coordination(unsigned int end_pwrlvl, 419 psci_power_state_t *state_info) 420 { 421 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos(); 422 unsigned int start_idx; 423 unsigned int ncpus; 424 plat_local_state_t target_state, *req_states; 425 426 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); 427 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 428 429 /* For level 0, the requested state will be equivalent 430 to target state */ 431 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 432 433 /* First update the requested power state */ 434 psci_set_req_local_pwr_state(lvl, cpu_idx, 435 state_info->pwr_domain_state[lvl]); 436 437 /* Get the requested power states for this power level */ 438 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 439 req_states = psci_get_req_local_pwr_states(lvl, start_idx); 440 441 /* 442 * Let the platform coordinate amongst the requested states at 443 * this power level and return the target local power state. 444 */ 445 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 446 target_state = plat_get_target_pwr_state(lvl, 447 req_states, 448 ncpus); 449 450 state_info->pwr_domain_state[lvl] = target_state; 451 452 /* Break early if the negotiated target power state is RUN */ 453 if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0) 454 break; 455 456 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 457 } 458 459 /* 460 * This is for cases when we break out of the above loop early because 461 * the target power state is RUN at a power level < end_pwlvl. 462 * We update the requested power state from state_info and then 463 * set the target state as RUN. 464 */ 465 for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) { 466 psci_set_req_local_pwr_state(lvl, cpu_idx, 467 state_info->pwr_domain_state[lvl]); 468 state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 469 470 } 471 472 /* Update the target state in the power domain nodes */ 473 psci_set_target_local_pwr_states(end_pwrlvl, state_info); 474 } 475 476 /****************************************************************************** 477 * This function validates a suspend request by making sure that if a standby 478 * state is requested then no power level is turned off and the highest power 479 * level is placed in a standby/retention state. 480 * 481 * It also ensures that the state level X will enter is not shallower than the 482 * state level X + 1 will enter. 483 * 484 * This validation will be enabled only for DEBUG builds as the platform is 485 * expected to perform these validations as well. 486 *****************************************************************************/ 487 int psci_validate_suspend_req(const psci_power_state_t *state_info, 488 unsigned int is_power_down_state) 489 { 490 unsigned int max_off_lvl, target_lvl, max_retn_lvl; 491 plat_local_state_t state; 492 plat_local_state_type_t req_state_type, deepest_state_type; 493 int i; 494 495 /* Find the target suspend power level */ 496 target_lvl = psci_find_target_suspend_lvl(state_info); 497 if (target_lvl == PSCI_INVALID_PWR_LVL) 498 return PSCI_E_INVALID_PARAMS; 499 500 /* All power domain levels are in a RUN state to begin with */ 501 deepest_state_type = STATE_TYPE_RUN; 502 503 for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) { 504 state = state_info->pwr_domain_state[i]; 505 req_state_type = find_local_state_type(state); 506 507 /* 508 * While traversing from the highest power level to the lowest, 509 * the state requested for lower levels has to be the same or 510 * deeper i.e. equal to or greater than the state at the higher 511 * levels. If this condition is true, then the requested state 512 * becomes the deepest state encountered so far. 513 */ 514 if (req_state_type < deepest_state_type) 515 return PSCI_E_INVALID_PARAMS; 516 deepest_state_type = req_state_type; 517 } 518 519 /* Find the highest off power level */ 520 max_off_lvl = psci_find_max_off_lvl(state_info); 521 522 /* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */ 523 max_retn_lvl = PSCI_INVALID_PWR_LVL; 524 if (target_lvl != max_off_lvl) 525 max_retn_lvl = target_lvl; 526 527 /* 528 * If this is not a request for a power down state then max off level 529 * has to be invalid and max retention level has to be a valid power 530 * level. 531 */ 532 if ((is_power_down_state == 0U) && 533 ((max_off_lvl != PSCI_INVALID_PWR_LVL) || 534 (max_retn_lvl == PSCI_INVALID_PWR_LVL))) 535 return PSCI_E_INVALID_PARAMS; 536 537 return PSCI_E_SUCCESS; 538 } 539 540 /****************************************************************************** 541 * This function finds the highest power level which will be powered down 542 * amongst all the power levels specified in the 'state_info' structure 543 *****************************************************************************/ 544 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info) 545 { 546 int i; 547 548 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 549 if (is_local_state_off(state_info->pwr_domain_state[i]) != 0) 550 return (unsigned int) i; 551 } 552 553 return PSCI_INVALID_PWR_LVL; 554 } 555 556 /****************************************************************************** 557 * This functions finds the level of the highest power domain which will be 558 * placed in a low power state during a suspend operation. 559 *****************************************************************************/ 560 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info) 561 { 562 int i; 563 564 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 565 if (is_local_state_run(state_info->pwr_domain_state[i]) == 0) 566 return (unsigned int) i; 567 } 568 569 return PSCI_INVALID_PWR_LVL; 570 } 571 572 /******************************************************************************* 573 * This function is passed the highest level in the topology tree that the 574 * operation should be applied to and a list of node indexes. It picks up locks 575 * from the node index list in order of increasing power domain level in the 576 * range specified. 577 ******************************************************************************/ 578 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl, 579 const unsigned int *parent_nodes) 580 { 581 unsigned int parent_idx; 582 unsigned int level; 583 584 /* No locking required for level 0. Hence start locking from level 1 */ 585 for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) { 586 parent_idx = parent_nodes[level - 1U]; 587 psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]); 588 } 589 } 590 591 /******************************************************************************* 592 * This function is passed the highest level in the topology tree that the 593 * operation should be applied to and a list of node indexes. It releases the 594 * locks in order of decreasing power domain level in the range specified. 595 ******************************************************************************/ 596 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl, 597 const unsigned int *parent_nodes) 598 { 599 unsigned int parent_idx; 600 unsigned int level; 601 602 /* Unlock top down. No unlocking required for level 0. */ 603 for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1U; level--) { 604 parent_idx = parent_nodes[level - 1U]; 605 psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]); 606 } 607 } 608 609 /******************************************************************************* 610 * Simple routine to determine whether a mpidr is valid or not. 611 ******************************************************************************/ 612 int psci_validate_mpidr(u_register_t mpidr) 613 { 614 if (plat_core_pos_by_mpidr(mpidr) < 0) 615 return PSCI_E_INVALID_PARAMS; 616 617 return PSCI_E_SUCCESS; 618 } 619 620 /******************************************************************************* 621 * This function determines the full entrypoint information for the requested 622 * PSCI entrypoint on power on/resume and returns it. 623 ******************************************************************************/ 624 #ifdef __aarch64__ 625 static int psci_get_ns_ep_info(entry_point_info_t *ep, 626 uintptr_t entrypoint, 627 u_register_t context_id) 628 { 629 u_register_t ep_attr, sctlr; 630 unsigned int daif, ee, mode; 631 u_register_t ns_scr_el3 = read_scr_el3(); 632 u_register_t ns_sctlr_el1 = read_sctlr_el1(); 633 634 sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 635 read_sctlr_el2() : ns_sctlr_el1; 636 ee = 0; 637 638 ep_attr = NON_SECURE | EP_ST_DISABLE; 639 if ((sctlr & SCTLR_EE_BIT) != 0U) { 640 ep_attr |= EP_EE_BIG; 641 ee = 1; 642 } 643 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 644 645 ep->pc = entrypoint; 646 zeromem(&ep->args, sizeof(ep->args)); 647 ep->args.arg0 = context_id; 648 649 /* 650 * Figure out whether the cpu enters the non-secure address space 651 * in aarch32 or aarch64 652 */ 653 if ((ns_scr_el3 & SCR_RW_BIT) != 0U) { 654 655 /* 656 * Check whether a Thumb entry point has been provided for an 657 * aarch64 EL 658 */ 659 if ((entrypoint & 0x1UL) != 0UL) 660 return PSCI_E_INVALID_ADDRESS; 661 662 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1; 663 664 ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); 665 } else { 666 667 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 668 MODE32_hyp : MODE32_svc; 669 670 /* 671 * TODO: Choose async. exception bits if HYP mode is not 672 * implemented according to the values of SCR.{AW, FW} bits 673 */ 674 daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT; 675 676 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif); 677 } 678 679 return PSCI_E_SUCCESS; 680 } 681 #else /* !__aarch64__ */ 682 static int psci_get_ns_ep_info(entry_point_info_t *ep, 683 uintptr_t entrypoint, 684 u_register_t context_id) 685 { 686 u_register_t ep_attr; 687 unsigned int aif, ee, mode; 688 u_register_t scr = read_scr(); 689 u_register_t ns_sctlr, sctlr; 690 691 /* Switch to non secure state */ 692 write_scr(scr | SCR_NS_BIT); 693 isb(); 694 ns_sctlr = read_sctlr(); 695 696 sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr; 697 698 /* Return to original state */ 699 write_scr(scr); 700 isb(); 701 ee = 0; 702 703 ep_attr = NON_SECURE | EP_ST_DISABLE; 704 if (sctlr & SCTLR_EE_BIT) { 705 ep_attr |= EP_EE_BIG; 706 ee = 1; 707 } 708 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 709 710 ep->pc = entrypoint; 711 zeromem(&ep->args, sizeof(ep->args)); 712 ep->args.arg0 = context_id; 713 714 mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc; 715 716 /* 717 * TODO: Choose async. exception bits if HYP mode is not 718 * implemented according to the values of SCR.{AW, FW} bits 719 */ 720 aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT; 721 722 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif); 723 724 return PSCI_E_SUCCESS; 725 } 726 727 #endif /* __aarch64__ */ 728 729 /******************************************************************************* 730 * This function validates the entrypoint with the platform layer if the 731 * appropriate pm_ops hook is exported by the platform and returns the 732 * 'entry_point_info'. 733 ******************************************************************************/ 734 int psci_validate_entry_point(entry_point_info_t *ep, 735 uintptr_t entrypoint, 736 u_register_t context_id) 737 { 738 int rc; 739 740 /* Validate the entrypoint using platform psci_ops */ 741 if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) { 742 rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint); 743 if (rc != PSCI_E_SUCCESS) 744 return PSCI_E_INVALID_ADDRESS; 745 } 746 747 /* 748 * Verify and derive the re-entry information for 749 * the non-secure world from the non-secure state from 750 * where this call originated. 751 */ 752 rc = psci_get_ns_ep_info(ep, entrypoint, context_id); 753 return rc; 754 } 755 756 /******************************************************************************* 757 * Generic handler which is called when a cpu is physically powered on. It 758 * traverses the node information and finds the highest power level powered 759 * off and performs generic, architectural, platform setup and state management 760 * to power on that power level and power levels below it. 761 * e.g. For a cpu that's been powered on, it will call the platform specific 762 * code to enable the gic cpu interface and for a cluster it will enable 763 * coherency at the interconnect level in addition to gic cpu interface. 764 ******************************************************************************/ 765 void psci_warmboot_entrypoint(void) 766 { 767 unsigned int end_pwrlvl; 768 unsigned int cpu_idx = plat_my_core_pos(); 769 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 770 psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} }; 771 772 /* 773 * Verify that we have been explicitly turned ON or resumed from 774 * suspend. 775 */ 776 if (psci_get_aff_info_state() == AFF_STATE_OFF) { 777 ERROR("Unexpected affinity info state"); 778 panic(); 779 } 780 781 /* 782 * Get the maximum power domain level to traverse to after this cpu 783 * has been physically powered up. 784 */ 785 end_pwrlvl = get_power_on_target_pwrlvl(); 786 787 /* Get the parent nodes */ 788 psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes); 789 790 /* 791 * This function acquires the lock corresponding to each power level so 792 * that by the time all locks are taken, the system topology is snapshot 793 * and state management can be done safely. 794 */ 795 psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes); 796 797 psci_get_target_local_pwr_states(end_pwrlvl, &state_info); 798 799 #if ENABLE_PSCI_STAT 800 plat_psci_stat_accounting_stop(&state_info); 801 #endif 802 803 /* 804 * This CPU could be resuming from suspend or it could have just been 805 * turned on. To distinguish between these 2 cases, we examine the 806 * affinity state of the CPU: 807 * - If the affinity state is ON_PENDING then it has just been 808 * turned on. 809 * - Else it is resuming from suspend. 810 * 811 * Depending on the type of warm reset identified, choose the right set 812 * of power management handler and perform the generic, architecture 813 * and platform specific handling. 814 */ 815 if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING) 816 psci_cpu_on_finish(cpu_idx, &state_info); 817 else 818 psci_cpu_suspend_finish(cpu_idx, &state_info); 819 820 /* 821 * Set the requested and target state of this CPU and all the higher 822 * power domains which are ancestors of this CPU to run. 823 */ 824 psci_set_pwr_domains_to_run(end_pwrlvl); 825 826 #if ENABLE_PSCI_STAT 827 /* 828 * Update PSCI stats. 829 * Caches are off when writing stats data on the power down path. 830 * Since caches are now enabled, it's necessary to do cache 831 * maintenance before reading that same data. 832 */ 833 psci_stats_update_pwr_up(end_pwrlvl, &state_info); 834 #endif 835 836 /* 837 * This loop releases the lock corresponding to each power level 838 * in the reverse order to which they were acquired. 839 */ 840 psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes); 841 } 842 843 /******************************************************************************* 844 * This function initializes the set of hooks that PSCI invokes as part of power 845 * management operation. The power management hooks are expected to be provided 846 * by the SPD, after it finishes all its initialization 847 ******************************************************************************/ 848 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm) 849 { 850 assert(pm != NULL); 851 psci_spd_pm = pm; 852 853 if (pm->svc_migrate != NULL) 854 psci_caps |= define_psci_cap(PSCI_MIG_AARCH64); 855 856 if (pm->svc_migrate_info != NULL) 857 psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64) 858 | define_psci_cap(PSCI_MIG_INFO_TYPE); 859 } 860 861 /******************************************************************************* 862 * This function invokes the migrate info hook in the spd_pm_ops. It performs 863 * the necessary return value validation. If the Secure Payload is UP and 864 * migrate capable, it returns the mpidr of the CPU on which the Secure payload 865 * is resident through the mpidr parameter. Else the value of the parameter on 866 * return is undefined. 867 ******************************************************************************/ 868 int psci_spd_migrate_info(u_register_t *mpidr) 869 { 870 int rc; 871 872 if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL)) 873 return PSCI_E_NOT_SUPPORTED; 874 875 rc = psci_spd_pm->svc_migrate_info(mpidr); 876 877 assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) || 878 (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED)); 879 880 return rc; 881 } 882 883 884 /******************************************************************************* 885 * This function prints the state of all power domains present in the 886 * system 887 ******************************************************************************/ 888 void psci_print_power_domain_map(void) 889 { 890 #if LOG_LEVEL >= LOG_LEVEL_INFO 891 int idx; 892 plat_local_state_t state; 893 plat_local_state_type_t state_type; 894 895 /* This array maps to the PSCI_STATE_X definitions in psci.h */ 896 static const char * const psci_state_type_str[] = { 897 "ON", 898 "RETENTION", 899 "OFF", 900 }; 901 902 INFO("PSCI Power Domain Map:\n"); 903 for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - PLATFORM_CORE_COUNT); 904 idx++) { 905 state_type = find_local_state_type( 906 psci_non_cpu_pd_nodes[idx].local_state); 907 INFO(" Domain Node : Level %u, parent_node %d," 908 " State %s (0x%x)\n", 909 psci_non_cpu_pd_nodes[idx].level, 910 psci_non_cpu_pd_nodes[idx].parent_node, 911 psci_state_type_str[state_type], 912 psci_non_cpu_pd_nodes[idx].local_state); 913 } 914 915 for (idx = 0; idx < PLATFORM_CORE_COUNT; idx++) { 916 state = psci_get_cpu_local_state_by_idx(idx); 917 state_type = find_local_state_type(state); 918 INFO(" CPU Node : MPID 0x%llx, parent_node %d," 919 " State %s (0x%x)\n", 920 (unsigned long long)psci_cpu_pd_nodes[idx].mpidr, 921 psci_cpu_pd_nodes[idx].parent_node, 922 psci_state_type_str[state_type], 923 psci_get_cpu_local_state_by_idx(idx)); 924 } 925 #endif 926 } 927 928 /****************************************************************************** 929 * Return whether any secondaries were powered up with CPU_ON call. A CPU that 930 * have ever been powered up would have set its MPDIR value to something other 931 * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to 932 * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is 933 * meaningful only when called on the primary CPU during early boot. 934 *****************************************************************************/ 935 int psci_secondaries_brought_up(void) 936 { 937 unsigned int idx, n_valid = 0U; 938 939 for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) { 940 if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR) 941 n_valid++; 942 } 943 944 assert(n_valid > 0U); 945 946 return (n_valid > 1U) ? 1 : 0; 947 } 948 949 /******************************************************************************* 950 * Initiate power down sequence, by calling power down operations registered for 951 * this CPU. 952 ******************************************************************************/ 953 void psci_do_pwrdown_sequence(unsigned int power_level) 954 { 955 #if HW_ASSISTED_COHERENCY 956 /* 957 * With hardware-assisted coherency, the CPU drivers only initiate the 958 * power down sequence, without performing cache-maintenance operations 959 * in software. Data caches enabled both before and after this call. 960 */ 961 prepare_cpu_pwr_dwn(power_level); 962 #else 963 /* 964 * Without hardware-assisted coherency, the CPU drivers disable data 965 * caches, then perform cache-maintenance operations in software. 966 * 967 * This also calls prepare_cpu_pwr_dwn() to initiate power down 968 * sequence, but that function will return with data caches disabled. 969 * We must ensure that the stack memory is flushed out to memory before 970 * we start popping from it again. 971 */ 972 psci_do_pwrdown_cache_maintenance(power_level); 973 #endif 974 } 975