xref: /rk3399_ARM-atf/lib/psci/psci_common.c (revision 530ceda57288aa931d0c8ba7b3066340d587cc9b)
1 /*
2  * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <string.h>
9 
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/bl_common.h>
13 #include <common/debug.h>
14 #include <context.h>
15 #include <lib/el3_runtime/context_mgmt.h>
16 #include <lib/utils.h>
17 #include <plat/common/platform.h>
18 
19 #include "psci_private.h"
20 
21 /*
22  * SPD power management operations, expected to be supplied by the registered
23  * SPD on successful SP initialization
24  */
25 const spd_pm_ops_t *psci_spd_pm;
26 
27 /*
28  * PSCI requested local power state map. This array is used to store the local
29  * power states requested by a CPU for power levels from level 1 to
30  * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
31  * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
32  * CPU are the same.
33  *
34  * During state coordination, the platform is passed an array containing the
35  * local states requested for a particular non cpu power domain by each cpu
36  * within the domain.
37  *
38  * TODO: Dense packing of the requested states will cause cache thrashing
39  * when multiple power domains write to it. If we allocate the requested
40  * states at each power level in a cache-line aligned per-domain memory,
41  * the cache thrashing can be avoided.
42  */
43 static plat_local_state_t
44 	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
45 
46 
47 /*******************************************************************************
48  * Arrays that hold the platform's power domain tree information for state
49  * management of power domains.
50  * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
51  * which is an ancestor of a CPU power domain.
52  * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
53  ******************************************************************************/
54 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
55 #if USE_COHERENT_MEM
56 __section("tzfw_coherent_mem")
57 #endif
58 ;
59 
60 /* Lock for PSCI state coordination */
61 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
62 
63 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
64 
65 /*******************************************************************************
66  * Pointer to functions exported by the platform to complete power mgmt. ops
67  ******************************************************************************/
68 const plat_psci_ops_t *psci_plat_pm_ops;
69 
70 /******************************************************************************
71  * Check that the maximum power level supported by the platform makes sense
72  *****************************************************************************/
73 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
74 	(PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
75 	assert_platform_max_pwrlvl_check);
76 
77 /*
78  * The plat_local_state used by the platform is one of these types: RUN,
79  * RETENTION and OFF. The platform can define further sub-states for each type
80  * apart from RUN. This categorization is done to verify the sanity of the
81  * psci_power_state passed by the platform and to print debug information. The
82  * categorization is done on the basis of the following conditions:
83  *
84  * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
85  *
86  * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
87  *    STATE_TYPE_RETN.
88  *
89  * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
90  *    STATE_TYPE_OFF.
91  */
92 typedef enum plat_local_state_type {
93 	STATE_TYPE_RUN = 0,
94 	STATE_TYPE_RETN,
95 	STATE_TYPE_OFF
96 } plat_local_state_type_t;
97 
98 /* Function used to categorize plat_local_state. */
99 static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
100 {
101 	if (state != 0U) {
102 		if (state > PLAT_MAX_RET_STATE) {
103 			return STATE_TYPE_OFF;
104 		} else {
105 			return STATE_TYPE_RETN;
106 		}
107 	} else {
108 		return STATE_TYPE_RUN;
109 	}
110 }
111 
112 /******************************************************************************
113  * Check that the maximum retention level supported by the platform is less
114  * than the maximum off level.
115  *****************************************************************************/
116 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
117 		assert_platform_max_off_and_retn_state_check);
118 
119 /******************************************************************************
120  * This function ensures that the power state parameter in a CPU_SUSPEND request
121  * is valid. If so, it returns the requested states for each power level.
122  *****************************************************************************/
123 int psci_validate_power_state(unsigned int power_state,
124 			      psci_power_state_t *state_info)
125 {
126 	/* Check SBZ bits in power state are zero */
127 	if (psci_check_power_state(power_state) != 0U)
128 		return PSCI_E_INVALID_PARAMS;
129 
130 	assert(psci_plat_pm_ops->validate_power_state != NULL);
131 
132 	/* Validate the power_state using platform pm_ops */
133 	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
134 }
135 
136 /******************************************************************************
137  * This function retrieves the `psci_power_state_t` for system suspend from
138  * the platform.
139  *****************************************************************************/
140 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
141 {
142 	/*
143 	 * Assert that the required pm_ops hook is implemented to ensure that
144 	 * the capability detected during psci_setup() is valid.
145 	 */
146 	assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
147 
148 	/*
149 	 * Query the platform for the power_state required for system suspend
150 	 */
151 	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
152 }
153 
154 /*******************************************************************************
155  * This function verifies that the all the other cores in the system have been
156  * turned OFF and the current CPU is the last running CPU in the system.
157  * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
158  * otherwise.
159  ******************************************************************************/
160 unsigned int psci_is_last_on_cpu(void)
161 {
162 	unsigned int cpu_idx, my_idx = plat_my_core_pos();
163 
164 	for (cpu_idx = 0; cpu_idx < (unsigned int)PLATFORM_CORE_COUNT;
165 			cpu_idx++) {
166 		if (cpu_idx == my_idx) {
167 			assert(psci_get_aff_info_state() == AFF_STATE_ON);
168 			continue;
169 		}
170 
171 		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF)
172 			return 0;
173 	}
174 
175 	return 1;
176 }
177 
178 /*******************************************************************************
179  * Routine to return the maximum power level to traverse to after a cpu has
180  * been physically powered up. It is expected to be called immediately after
181  * reset from assembler code.
182  ******************************************************************************/
183 static unsigned int get_power_on_target_pwrlvl(void)
184 {
185 	unsigned int pwrlvl;
186 
187 	/*
188 	 * Assume that this cpu was suspended and retrieve its target power
189 	 * level. If it is invalid then it could only have been turned off
190 	 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
191 	 * cpu can be turned off to.
192 	 */
193 	pwrlvl = psci_get_suspend_pwrlvl();
194 	if (pwrlvl == PSCI_INVALID_PWR_LVL)
195 		pwrlvl = PLAT_MAX_PWR_LVL;
196 	assert(pwrlvl < PSCI_INVALID_PWR_LVL);
197 	return pwrlvl;
198 }
199 
200 /******************************************************************************
201  * Helper function to update the requested local power state array. This array
202  * does not store the requested state for the CPU power level. Hence an
203  * assertion is added to prevent us from accessing the CPU power level.
204  *****************************************************************************/
205 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
206 					 unsigned int cpu_idx,
207 					 plat_local_state_t req_pwr_state)
208 {
209 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
210 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
211 			(cpu_idx < (unsigned int) PLATFORM_CORE_COUNT)) {
212 		psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
213 	}
214 }
215 
216 /******************************************************************************
217  * This function initializes the psci_req_local_pwr_states.
218  *****************************************************************************/
219 void __init psci_init_req_local_pwr_states(void)
220 {
221 	/* Initialize the requested state of all non CPU power domains as OFF */
222 	unsigned int pwrlvl;
223 	int core;
224 
225 	for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
226 		for (core = 0; core < PLATFORM_CORE_COUNT; core++) {
227 			psci_req_local_pwr_states[pwrlvl][core] =
228 				PLAT_MAX_OFF_STATE;
229 		}
230 	}
231 }
232 
233 /******************************************************************************
234  * Helper function to return a reference to an array containing the local power
235  * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
236  * array will be the number of cpu power domains of which this power domain is
237  * an ancestor. These requested states will be used to determine a suitable
238  * target state for this power domain during psci state coordination. An
239  * assertion is added to prevent us from accessing the CPU power level.
240  *****************************************************************************/
241 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
242 							 unsigned int cpu_idx)
243 {
244 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
245 
246 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
247 			(cpu_idx < (unsigned int) PLATFORM_CORE_COUNT)) {
248 		return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
249 	} else
250 		return NULL;
251 }
252 
253 /*
254  * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
255  * memory.
256  *
257  * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
258  * it's accessed by both cached and non-cached participants. To serve the common
259  * minimum, perform a cache flush before read and after write so that non-cached
260  * participants operate on latest data in main memory.
261  *
262  * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
263  * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
264  * In both cases, no cache operations are required.
265  */
266 
267 /*
268  * Retrieve local state of non-CPU power domain node from a non-cached CPU,
269  * after any required cache maintenance operation.
270  */
271 static plat_local_state_t get_non_cpu_pd_node_local_state(
272 		unsigned int parent_idx)
273 {
274 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
275 	flush_dcache_range(
276 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
277 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
278 #endif
279 	return psci_non_cpu_pd_nodes[parent_idx].local_state;
280 }
281 
282 /*
283  * Update local state of non-CPU power domain node from a cached CPU; perform
284  * any required cache maintenance operation afterwards.
285  */
286 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
287 		plat_local_state_t state)
288 {
289 	psci_non_cpu_pd_nodes[parent_idx].local_state = state;
290 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
291 	flush_dcache_range(
292 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
293 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
294 #endif
295 }
296 
297 /******************************************************************************
298  * Helper function to return the current local power state of each power domain
299  * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
300  * function will be called after a cpu is powered on to find the local state
301  * each power domain has emerged from.
302  *****************************************************************************/
303 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
304 				      psci_power_state_t *target_state)
305 {
306 	unsigned int parent_idx, lvl;
307 	plat_local_state_t *pd_state = target_state->pwr_domain_state;
308 
309 	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
310 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
311 
312 	/* Copy the local power state from node to state_info */
313 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
314 		pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
315 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
316 	}
317 
318 	/* Set the the higher levels to RUN */
319 	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
320 		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
321 }
322 
323 /******************************************************************************
324  * Helper function to set the target local power state that each power domain
325  * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
326  * enter. This function will be called after coordination of requested power
327  * states has been done for each power level.
328  *****************************************************************************/
329 static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
330 					const psci_power_state_t *target_state)
331 {
332 	unsigned int parent_idx, lvl;
333 	const plat_local_state_t *pd_state = target_state->pwr_domain_state;
334 
335 	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
336 
337 	/*
338 	 * Need to flush as local_state might be accessed with Data Cache
339 	 * disabled during power on
340 	 */
341 	psci_flush_cpu_data(psci_svc_cpu_data.local_state);
342 
343 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
344 
345 	/* Copy the local_state from state_info */
346 	for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
347 		set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
348 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
349 	}
350 }
351 
352 
353 /*******************************************************************************
354  * PSCI helper function to get the parent nodes corresponding to a cpu_index.
355  ******************************************************************************/
356 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
357 				      unsigned int end_lvl,
358 				      unsigned int *node_index)
359 {
360 	unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
361 	unsigned int i;
362 	unsigned int *node = node_index;
363 
364 	for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
365 		*node = parent_node;
366 		node++;
367 		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
368 	}
369 }
370 
371 /******************************************************************************
372  * This function is invoked post CPU power up and initialization. It sets the
373  * affinity info state, target power state and requested power state for the
374  * current CPU and all its ancestor power domains to RUN.
375  *****************************************************************************/
376 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
377 {
378 	unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
379 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
380 
381 	/* Reset the local_state to RUN for the non cpu power domains. */
382 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
383 		set_non_cpu_pd_node_local_state(parent_idx,
384 				PSCI_LOCAL_STATE_RUN);
385 		psci_set_req_local_pwr_state(lvl,
386 					     cpu_idx,
387 					     PSCI_LOCAL_STATE_RUN);
388 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
389 	}
390 
391 	/* Set the affinity info state to ON */
392 	psci_set_aff_info_state(AFF_STATE_ON);
393 
394 	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
395 	psci_flush_cpu_data(psci_svc_cpu_data);
396 }
397 
398 /******************************************************************************
399  * This function is passed the local power states requested for each power
400  * domain (state_info) between the current CPU domain and its ancestors until
401  * the target power level (end_pwrlvl). It updates the array of requested power
402  * states with this information.
403  *
404  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
405  * retrieves the states requested by all the cpus of which the power domain at
406  * that level is an ancestor. It passes this information to the platform to
407  * coordinate and return the target power state. If the target state for a level
408  * is RUN then subsequent levels are not considered. At the CPU level, state
409  * coordination is not required. Hence, the requested and the target states are
410  * the same.
411  *
412  * The 'state_info' is updated with the target state for each level between the
413  * CPU and the 'end_pwrlvl' and returned to the caller.
414  *
415  * This function will only be invoked with data cache enabled and while
416  * powering down a core.
417  *****************************************************************************/
418 void psci_do_state_coordination(unsigned int end_pwrlvl,
419 				psci_power_state_t *state_info)
420 {
421 	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
422 	unsigned int start_idx;
423 	unsigned int ncpus;
424 	plat_local_state_t target_state, *req_states;
425 
426 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
427 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
428 
429 	/* For level 0, the requested state will be equivalent
430 	   to target state */
431 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
432 
433 		/* First update the requested power state */
434 		psci_set_req_local_pwr_state(lvl, cpu_idx,
435 					     state_info->pwr_domain_state[lvl]);
436 
437 		/* Get the requested power states for this power level */
438 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
439 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
440 
441 		/*
442 		 * Let the platform coordinate amongst the requested states at
443 		 * this power level and return the target local power state.
444 		 */
445 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
446 		target_state = plat_get_target_pwr_state(lvl,
447 							 req_states,
448 							 ncpus);
449 
450 		state_info->pwr_domain_state[lvl] = target_state;
451 
452 		/* Break early if the negotiated target power state is RUN */
453 		if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0)
454 			break;
455 
456 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
457 	}
458 
459 	/*
460 	 * This is for cases when we break out of the above loop early because
461 	 * the target power state is RUN at a power level < end_pwlvl.
462 	 * We update the requested power state from state_info and then
463 	 * set the target state as RUN.
464 	 */
465 	for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
466 		psci_set_req_local_pwr_state(lvl, cpu_idx,
467 					     state_info->pwr_domain_state[lvl]);
468 		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
469 
470 	}
471 
472 	/* Update the target state in the power domain nodes */
473 	psci_set_target_local_pwr_states(end_pwrlvl, state_info);
474 }
475 
476 /******************************************************************************
477  * This function validates a suspend request by making sure that if a standby
478  * state is requested then no power level is turned off and the highest power
479  * level is placed in a standby/retention state.
480  *
481  * It also ensures that the state level X will enter is not shallower than the
482  * state level X + 1 will enter.
483  *
484  * This validation will be enabled only for DEBUG builds as the platform is
485  * expected to perform these validations as well.
486  *****************************************************************************/
487 int psci_validate_suspend_req(const psci_power_state_t *state_info,
488 			      unsigned int is_power_down_state)
489 {
490 	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
491 	plat_local_state_t state;
492 	plat_local_state_type_t req_state_type, deepest_state_type;
493 	int i;
494 
495 	/* Find the target suspend power level */
496 	target_lvl = psci_find_target_suspend_lvl(state_info);
497 	if (target_lvl == PSCI_INVALID_PWR_LVL)
498 		return PSCI_E_INVALID_PARAMS;
499 
500 	/* All power domain levels are in a RUN state to begin with */
501 	deepest_state_type = STATE_TYPE_RUN;
502 
503 	for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
504 		state = state_info->pwr_domain_state[i];
505 		req_state_type = find_local_state_type(state);
506 
507 		/*
508 		 * While traversing from the highest power level to the lowest,
509 		 * the state requested for lower levels has to be the same or
510 		 * deeper i.e. equal to or greater than the state at the higher
511 		 * levels. If this condition is true, then the requested state
512 		 * becomes the deepest state encountered so far.
513 		 */
514 		if (req_state_type < deepest_state_type)
515 			return PSCI_E_INVALID_PARAMS;
516 		deepest_state_type = req_state_type;
517 	}
518 
519 	/* Find the highest off power level */
520 	max_off_lvl = psci_find_max_off_lvl(state_info);
521 
522 	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
523 	max_retn_lvl = PSCI_INVALID_PWR_LVL;
524 	if (target_lvl != max_off_lvl)
525 		max_retn_lvl = target_lvl;
526 
527 	/*
528 	 * If this is not a request for a power down state then max off level
529 	 * has to be invalid and max retention level has to be a valid power
530 	 * level.
531 	 */
532 	if ((is_power_down_state == 0U) &&
533 			((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
534 			 (max_retn_lvl == PSCI_INVALID_PWR_LVL)))
535 		return PSCI_E_INVALID_PARAMS;
536 
537 	return PSCI_E_SUCCESS;
538 }
539 
540 /******************************************************************************
541  * This function finds the highest power level which will be powered down
542  * amongst all the power levels specified in the 'state_info' structure
543  *****************************************************************************/
544 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
545 {
546 	int i;
547 
548 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
549 		if (is_local_state_off(state_info->pwr_domain_state[i]) != 0)
550 			return (unsigned int) i;
551 	}
552 
553 	return PSCI_INVALID_PWR_LVL;
554 }
555 
556 /******************************************************************************
557  * This functions finds the level of the highest power domain which will be
558  * placed in a low power state during a suspend operation.
559  *****************************************************************************/
560 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
561 {
562 	int i;
563 
564 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
565 		if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
566 			return (unsigned int) i;
567 	}
568 
569 	return PSCI_INVALID_PWR_LVL;
570 }
571 
572 /*******************************************************************************
573  * This function is passed the highest level in the topology tree that the
574  * operation should be applied to and a list of node indexes. It picks up locks
575  * from the node index list in order of increasing power domain level in the
576  * range specified.
577  ******************************************************************************/
578 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
579 				   const unsigned int *parent_nodes)
580 {
581 	unsigned int parent_idx;
582 	unsigned int level;
583 
584 	/* No locking required for level 0. Hence start locking from level 1 */
585 	for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
586 		parent_idx = parent_nodes[level - 1U];
587 		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
588 	}
589 }
590 
591 /*******************************************************************************
592  * This function is passed the highest level in the topology tree that the
593  * operation should be applied to and a list of node indexes. It releases the
594  * locks in order of decreasing power domain level in the range specified.
595  ******************************************************************************/
596 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
597 				   const unsigned int *parent_nodes)
598 {
599 	unsigned int parent_idx;
600 	unsigned int level;
601 
602 	/* Unlock top down. No unlocking required for level 0. */
603 	for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1U; level--) {
604 		parent_idx = parent_nodes[level - 1U];
605 		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
606 	}
607 }
608 
609 /*******************************************************************************
610  * Simple routine to determine whether a mpidr is valid or not.
611  ******************************************************************************/
612 int psci_validate_mpidr(u_register_t mpidr)
613 {
614 	if (plat_core_pos_by_mpidr(mpidr) < 0)
615 		return PSCI_E_INVALID_PARAMS;
616 
617 	return PSCI_E_SUCCESS;
618 }
619 
620 /*******************************************************************************
621  * This function determines the full entrypoint information for the requested
622  * PSCI entrypoint on power on/resume and returns it.
623  ******************************************************************************/
624 #ifdef __aarch64__
625 static int psci_get_ns_ep_info(entry_point_info_t *ep,
626 			       uintptr_t entrypoint,
627 			       u_register_t context_id)
628 {
629 	u_register_t ep_attr, sctlr;
630 	unsigned int daif, ee, mode;
631 	u_register_t ns_scr_el3 = read_scr_el3();
632 	u_register_t ns_sctlr_el1 = read_sctlr_el1();
633 
634 	sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
635 		read_sctlr_el2() : ns_sctlr_el1;
636 	ee = 0;
637 
638 	ep_attr = NON_SECURE | EP_ST_DISABLE;
639 	if ((sctlr & SCTLR_EE_BIT) != 0U) {
640 		ep_attr |= EP_EE_BIG;
641 		ee = 1;
642 	}
643 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
644 
645 	ep->pc = entrypoint;
646 	zeromem(&ep->args, sizeof(ep->args));
647 	ep->args.arg0 = context_id;
648 
649 	/*
650 	 * Figure out whether the cpu enters the non-secure address space
651 	 * in aarch32 or aarch64
652 	 */
653 	if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
654 
655 		/*
656 		 * Check whether a Thumb entry point has been provided for an
657 		 * aarch64 EL
658 		 */
659 		if ((entrypoint & 0x1UL) != 0UL)
660 			return PSCI_E_INVALID_ADDRESS;
661 
662 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
663 
664 		ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
665 	} else {
666 
667 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
668 			MODE32_hyp : MODE32_svc;
669 
670 		/*
671 		 * TODO: Choose async. exception bits if HYP mode is not
672 		 * implemented according to the values of SCR.{AW, FW} bits
673 		 */
674 		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
675 
676 		ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
677 	}
678 
679 	return PSCI_E_SUCCESS;
680 }
681 #else /* !__aarch64__ */
682 static int psci_get_ns_ep_info(entry_point_info_t *ep,
683 			       uintptr_t entrypoint,
684 			       u_register_t context_id)
685 {
686 	u_register_t ep_attr;
687 	unsigned int aif, ee, mode;
688 	u_register_t scr = read_scr();
689 	u_register_t ns_sctlr, sctlr;
690 
691 	/* Switch to non secure state */
692 	write_scr(scr | SCR_NS_BIT);
693 	isb();
694 	ns_sctlr = read_sctlr();
695 
696 	sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
697 
698 	/* Return to original state */
699 	write_scr(scr);
700 	isb();
701 	ee = 0;
702 
703 	ep_attr = NON_SECURE | EP_ST_DISABLE;
704 	if (sctlr & SCTLR_EE_BIT) {
705 		ep_attr |= EP_EE_BIG;
706 		ee = 1;
707 	}
708 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
709 
710 	ep->pc = entrypoint;
711 	zeromem(&ep->args, sizeof(ep->args));
712 	ep->args.arg0 = context_id;
713 
714 	mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
715 
716 	/*
717 	 * TODO: Choose async. exception bits if HYP mode is not
718 	 * implemented according to the values of SCR.{AW, FW} bits
719 	 */
720 	aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
721 
722 	ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
723 
724 	return PSCI_E_SUCCESS;
725 }
726 
727 #endif /* __aarch64__ */
728 
729 /*******************************************************************************
730  * This function validates the entrypoint with the platform layer if the
731  * appropriate pm_ops hook is exported by the platform and returns the
732  * 'entry_point_info'.
733  ******************************************************************************/
734 int psci_validate_entry_point(entry_point_info_t *ep,
735 			      uintptr_t entrypoint,
736 			      u_register_t context_id)
737 {
738 	int rc;
739 
740 	/* Validate the entrypoint using platform psci_ops */
741 	if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
742 		rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
743 		if (rc != PSCI_E_SUCCESS)
744 			return PSCI_E_INVALID_ADDRESS;
745 	}
746 
747 	/*
748 	 * Verify and derive the re-entry information for
749 	 * the non-secure world from the non-secure state from
750 	 * where this call originated.
751 	 */
752 	rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
753 	return rc;
754 }
755 
756 /*******************************************************************************
757  * Generic handler which is called when a cpu is physically powered on. It
758  * traverses the node information and finds the highest power level powered
759  * off and performs generic, architectural, platform setup and state management
760  * to power on that power level and power levels below it.
761  * e.g. For a cpu that's been powered on, it will call the platform specific
762  * code to enable the gic cpu interface and for a cluster it will enable
763  * coherency at the interconnect level in addition to gic cpu interface.
764  ******************************************************************************/
765 void psci_warmboot_entrypoint(void)
766 {
767 	unsigned int end_pwrlvl;
768 	unsigned int cpu_idx = plat_my_core_pos();
769 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
770 	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
771 
772 	/*
773 	 * Verify that we have been explicitly turned ON or resumed from
774 	 * suspend.
775 	 */
776 	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
777 		ERROR("Unexpected affinity info state");
778 		panic();
779 	}
780 
781 	/*
782 	 * Get the maximum power domain level to traverse to after this cpu
783 	 * has been physically powered up.
784 	 */
785 	end_pwrlvl = get_power_on_target_pwrlvl();
786 
787 	/* Get the parent nodes */
788 	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
789 
790 	/*
791 	 * This function acquires the lock corresponding to each power level so
792 	 * that by the time all locks are taken, the system topology is snapshot
793 	 * and state management can be done safely.
794 	 */
795 	psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes);
796 
797 	psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
798 
799 #if ENABLE_PSCI_STAT
800 	plat_psci_stat_accounting_stop(&state_info);
801 #endif
802 
803 	/*
804 	 * This CPU could be resuming from suspend or it could have just been
805 	 * turned on. To distinguish between these 2 cases, we examine the
806 	 * affinity state of the CPU:
807 	 *  - If the affinity state is ON_PENDING then it has just been
808 	 *    turned on.
809 	 *  - Else it is resuming from suspend.
810 	 *
811 	 * Depending on the type of warm reset identified, choose the right set
812 	 * of power management handler and perform the generic, architecture
813 	 * and platform specific handling.
814 	 */
815 	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
816 		psci_cpu_on_finish(cpu_idx, &state_info);
817 	else
818 		psci_cpu_suspend_finish(cpu_idx, &state_info);
819 
820 	/*
821 	 * Set the requested and target state of this CPU and all the higher
822 	 * power domains which are ancestors of this CPU to run.
823 	 */
824 	psci_set_pwr_domains_to_run(end_pwrlvl);
825 
826 #if ENABLE_PSCI_STAT
827 	/*
828 	 * Update PSCI stats.
829 	 * Caches are off when writing stats data on the power down path.
830 	 * Since caches are now enabled, it's necessary to do cache
831 	 * maintenance before reading that same data.
832 	 */
833 	psci_stats_update_pwr_up(end_pwrlvl, &state_info);
834 #endif
835 
836 	/*
837 	 * This loop releases the lock corresponding to each power level
838 	 * in the reverse order to which they were acquired.
839 	 */
840 	psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes);
841 }
842 
843 /*******************************************************************************
844  * This function initializes the set of hooks that PSCI invokes as part of power
845  * management operation. The power management hooks are expected to be provided
846  * by the SPD, after it finishes all its initialization
847  ******************************************************************************/
848 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
849 {
850 	assert(pm != NULL);
851 	psci_spd_pm = pm;
852 
853 	if (pm->svc_migrate != NULL)
854 		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
855 
856 	if (pm->svc_migrate_info != NULL)
857 		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
858 				| define_psci_cap(PSCI_MIG_INFO_TYPE);
859 }
860 
861 /*******************************************************************************
862  * This function invokes the migrate info hook in the spd_pm_ops. It performs
863  * the necessary return value validation. If the Secure Payload is UP and
864  * migrate capable, it returns the mpidr of the CPU on which the Secure payload
865  * is resident through the mpidr parameter. Else the value of the parameter on
866  * return is undefined.
867  ******************************************************************************/
868 int psci_spd_migrate_info(u_register_t *mpidr)
869 {
870 	int rc;
871 
872 	if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
873 		return PSCI_E_NOT_SUPPORTED;
874 
875 	rc = psci_spd_pm->svc_migrate_info(mpidr);
876 
877 	assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
878 	       (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
879 
880 	return rc;
881 }
882 
883 
884 /*******************************************************************************
885  * This function prints the state of all power domains present in the
886  * system
887  ******************************************************************************/
888 void psci_print_power_domain_map(void)
889 {
890 #if LOG_LEVEL >= LOG_LEVEL_INFO
891 	int idx;
892 	plat_local_state_t state;
893 	plat_local_state_type_t state_type;
894 
895 	/* This array maps to the PSCI_STATE_X definitions in psci.h */
896 	static const char * const psci_state_type_str[] = {
897 		"ON",
898 		"RETENTION",
899 		"OFF",
900 	};
901 
902 	INFO("PSCI Power Domain Map:\n");
903 	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - PLATFORM_CORE_COUNT);
904 							idx++) {
905 		state_type = find_local_state_type(
906 				psci_non_cpu_pd_nodes[idx].local_state);
907 		INFO("  Domain Node : Level %u, parent_node %d,"
908 				" State %s (0x%x)\n",
909 				psci_non_cpu_pd_nodes[idx].level,
910 				psci_non_cpu_pd_nodes[idx].parent_node,
911 				psci_state_type_str[state_type],
912 				psci_non_cpu_pd_nodes[idx].local_state);
913 	}
914 
915 	for (idx = 0; idx < PLATFORM_CORE_COUNT; idx++) {
916 		state = psci_get_cpu_local_state_by_idx(idx);
917 		state_type = find_local_state_type(state);
918 		INFO("  CPU Node : MPID 0x%llx, parent_node %d,"
919 				" State %s (0x%x)\n",
920 				(unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
921 				psci_cpu_pd_nodes[idx].parent_node,
922 				psci_state_type_str[state_type],
923 				psci_get_cpu_local_state_by_idx(idx));
924 	}
925 #endif
926 }
927 
928 /******************************************************************************
929  * Return whether any secondaries were powered up with CPU_ON call. A CPU that
930  * have ever been powered up would have set its MPDIR value to something other
931  * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
932  * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
933  * meaningful only when called on the primary CPU during early boot.
934  *****************************************************************************/
935 int psci_secondaries_brought_up(void)
936 {
937 	unsigned int idx, n_valid = 0U;
938 
939 	for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
940 		if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
941 			n_valid++;
942 	}
943 
944 	assert(n_valid > 0U);
945 
946 	return (n_valid > 1U) ? 1 : 0;
947 }
948 
949 /*******************************************************************************
950  * Initiate power down sequence, by calling power down operations registered for
951  * this CPU.
952  ******************************************************************************/
953 void psci_do_pwrdown_sequence(unsigned int power_level)
954 {
955 #if HW_ASSISTED_COHERENCY
956 	/*
957 	 * With hardware-assisted coherency, the CPU drivers only initiate the
958 	 * power down sequence, without performing cache-maintenance operations
959 	 * in software. Data caches enabled both before and after this call.
960 	 */
961 	prepare_cpu_pwr_dwn(power_level);
962 #else
963 	/*
964 	 * Without hardware-assisted coherency, the CPU drivers disable data
965 	 * caches, then perform cache-maintenance operations in software.
966 	 *
967 	 * This also calls prepare_cpu_pwr_dwn() to initiate power down
968 	 * sequence, but that function will return with data caches disabled.
969 	 * We must ensure that the stack memory is flushed out to memory before
970 	 * we start popping from it again.
971 	 */
972 	psci_do_pwrdown_cache_maintenance(power_level);
973 #endif
974 }
975