1 /* 2 * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 #include <string.h> 9 10 #include <arch.h> 11 #include <arch_features.h> 12 #include <arch_helpers.h> 13 #include <common/bl_common.h> 14 #include <common/debug.h> 15 #include <context.h> 16 #include <drivers/delay_timer.h> 17 #include <lib/el3_runtime/context_mgmt.h> 18 #include <lib/extensions/spe.h> 19 #include <lib/utils.h> 20 #include <plat/common/platform.h> 21 22 #include "psci_private.h" 23 24 /* 25 * SPD power management operations, expected to be supplied by the registered 26 * SPD on successful SP initialization 27 */ 28 const spd_pm_ops_t *psci_spd_pm; 29 30 /* 31 * PSCI requested local power state map. This array is used to store the local 32 * power states requested by a CPU for power levels from level 1 to 33 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power 34 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a 35 * CPU are the same. 36 * 37 * During state coordination, the platform is passed an array containing the 38 * local states requested for a particular non cpu power domain by each cpu 39 * within the domain. 40 * 41 * TODO: Dense packing of the requested states will cause cache thrashing 42 * when multiple power domains write to it. If we allocate the requested 43 * states at each power level in a cache-line aligned per-domain memory, 44 * the cache thrashing can be avoided. 45 */ 46 static plat_local_state_t 47 psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT]; 48 49 unsigned int psci_plat_core_count; 50 51 /******************************************************************************* 52 * Arrays that hold the platform's power domain tree information for state 53 * management of power domains. 54 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain 55 * which is an ancestor of a CPU power domain. 56 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain 57 ******************************************************************************/ 58 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS] 59 #if USE_COHERENT_MEM 60 __section(".tzfw_coherent_mem") 61 #endif 62 ; 63 64 /* Lock for PSCI state coordination */ 65 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]); 66 67 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT]; 68 69 /******************************************************************************* 70 * Pointer to functions exported by the platform to complete power mgmt. ops 71 ******************************************************************************/ 72 const plat_psci_ops_t *psci_plat_pm_ops; 73 74 /****************************************************************************** 75 * Check that the maximum power level supported by the platform makes sense 76 *****************************************************************************/ 77 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) && 78 (PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL), 79 assert_platform_max_pwrlvl_check); 80 81 #if PSCI_OS_INIT_MODE 82 /******************************************************************************* 83 * The power state coordination mode used in CPU_SUSPEND. 84 * Defaults to platform-coordinated mode. 85 ******************************************************************************/ 86 suspend_mode_t psci_suspend_mode = PLAT_COORD; 87 #endif 88 89 /* 90 * The plat_local_state used by the platform is one of these types: RUN, 91 * RETENTION and OFF. The platform can define further sub-states for each type 92 * apart from RUN. This categorization is done to verify the sanity of the 93 * psci_power_state passed by the platform and to print debug information. The 94 * categorization is done on the basis of the following conditions: 95 * 96 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN. 97 * 98 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is 99 * STATE_TYPE_RETN. 100 * 101 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is 102 * STATE_TYPE_OFF. 103 */ 104 typedef enum plat_local_state_type { 105 STATE_TYPE_RUN = 0, 106 STATE_TYPE_RETN, 107 STATE_TYPE_OFF 108 } plat_local_state_type_t; 109 110 /* Function used to categorize plat_local_state. */ 111 static plat_local_state_type_t find_local_state_type(plat_local_state_t state) 112 { 113 if (state != 0U) { 114 if (state > PLAT_MAX_RET_STATE) { 115 return STATE_TYPE_OFF; 116 } else { 117 return STATE_TYPE_RETN; 118 } 119 } else { 120 return STATE_TYPE_RUN; 121 } 122 } 123 124 /****************************************************************************** 125 * Check that the maximum retention level supported by the platform is less 126 * than the maximum off level. 127 *****************************************************************************/ 128 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, 129 assert_platform_max_off_and_retn_state_check); 130 131 /****************************************************************************** 132 * This function ensures that the power state parameter in a CPU_SUSPEND request 133 * is valid. If so, it returns the requested states for each power level. 134 *****************************************************************************/ 135 int psci_validate_power_state(unsigned int power_state, 136 psci_power_state_t *state_info) 137 { 138 /* Check SBZ bits in power state are zero */ 139 if (psci_check_power_state(power_state) != 0U) 140 return PSCI_E_INVALID_PARAMS; 141 142 assert(psci_plat_pm_ops->validate_power_state != NULL); 143 144 /* Validate the power_state using platform pm_ops */ 145 return psci_plat_pm_ops->validate_power_state(power_state, state_info); 146 } 147 148 /****************************************************************************** 149 * This function retrieves the `psci_power_state_t` for system suspend from 150 * the platform. 151 *****************************************************************************/ 152 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info) 153 { 154 /* 155 * Assert that the required pm_ops hook is implemented to ensure that 156 * the capability detected during psci_setup() is valid. 157 */ 158 assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL); 159 160 /* 161 * Query the platform for the power_state required for system suspend 162 */ 163 psci_plat_pm_ops->get_sys_suspend_power_state(state_info); 164 } 165 166 #if PSCI_OS_INIT_MODE 167 /******************************************************************************* 168 * This function verifies that all the other cores at the 'end_pwrlvl' have been 169 * idled and the current CPU is the last running CPU at the 'end_pwrlvl'. 170 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false) 171 * otherwise. 172 ******************************************************************************/ 173 static bool psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int end_pwrlvl) 174 { 175 unsigned int my_idx, lvl; 176 unsigned int parent_idx = 0; 177 unsigned int cpu_start_idx, ncpus, cpu_idx; 178 plat_local_state_t local_state; 179 180 if (end_pwrlvl == PSCI_CPU_PWR_LVL) { 181 return true; 182 } 183 184 my_idx = plat_my_core_pos(); 185 186 for (lvl = PSCI_CPU_PWR_LVL; lvl <= end_pwrlvl; lvl++) { 187 parent_idx = psci_cpu_pd_nodes[my_idx].parent_node; 188 } 189 190 cpu_start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 191 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 192 193 for (cpu_idx = cpu_start_idx; cpu_idx < cpu_start_idx + ncpus; 194 cpu_idx++) { 195 local_state = psci_get_cpu_local_state_by_idx(cpu_idx); 196 if (cpu_idx == my_idx) { 197 assert(is_local_state_run(local_state) != 0); 198 continue; 199 } 200 201 if (is_local_state_run(local_state) != 0) { 202 return false; 203 } 204 } 205 206 return true; 207 } 208 #endif 209 210 /******************************************************************************* 211 * This function verifies that all the other cores in the system have been 212 * turned OFF and the current CPU is the last running CPU in the system. 213 * Returns true, if the current CPU is the last ON CPU or false otherwise. 214 ******************************************************************************/ 215 bool psci_is_last_on_cpu(void) 216 { 217 unsigned int cpu_idx, my_idx = plat_my_core_pos(); 218 219 for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) { 220 if (cpu_idx == my_idx) { 221 assert(psci_get_aff_info_state() == AFF_STATE_ON); 222 continue; 223 } 224 225 if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) { 226 VERBOSE("core=%u other than current core=%u %s\n", 227 cpu_idx, my_idx, "running in the system"); 228 return false; 229 } 230 } 231 232 return true; 233 } 234 235 /******************************************************************************* 236 * This function verifies that all cores in the system have been turned ON. 237 * Returns true, if all CPUs are ON or false otherwise. 238 ******************************************************************************/ 239 static bool psci_are_all_cpus_on(void) 240 { 241 unsigned int cpu_idx; 242 243 for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) { 244 if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_OFF) { 245 return false; 246 } 247 } 248 249 return true; 250 } 251 252 /******************************************************************************* 253 * Routine to return the maximum power level to traverse to after a cpu has 254 * been physically powered up. It is expected to be called immediately after 255 * reset from assembler code. 256 ******************************************************************************/ 257 static unsigned int get_power_on_target_pwrlvl(void) 258 { 259 unsigned int pwrlvl; 260 261 /* 262 * Assume that this cpu was suspended and retrieve its target power 263 * level. If it is invalid then it could only have been turned off 264 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a 265 * cpu can be turned off to. 266 */ 267 pwrlvl = psci_get_suspend_pwrlvl(); 268 if (pwrlvl == PSCI_INVALID_PWR_LVL) 269 pwrlvl = PLAT_MAX_PWR_LVL; 270 assert(pwrlvl < PSCI_INVALID_PWR_LVL); 271 return pwrlvl; 272 } 273 274 /****************************************************************************** 275 * Helper function to update the requested local power state array. This array 276 * does not store the requested state for the CPU power level. Hence an 277 * assertion is added to prevent us from accessing the CPU power level. 278 *****************************************************************************/ 279 static void psci_set_req_local_pwr_state(unsigned int pwrlvl, 280 unsigned int cpu_idx, 281 plat_local_state_t req_pwr_state) 282 { 283 assert(pwrlvl > PSCI_CPU_PWR_LVL); 284 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && 285 (cpu_idx < psci_plat_core_count)) { 286 psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state; 287 } 288 } 289 290 /****************************************************************************** 291 * This function initializes the psci_req_local_pwr_states. 292 *****************************************************************************/ 293 void __init psci_init_req_local_pwr_states(void) 294 { 295 /* Initialize the requested state of all non CPU power domains as OFF */ 296 unsigned int pwrlvl; 297 unsigned int core; 298 299 for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) { 300 for (core = 0; core < psci_plat_core_count; core++) { 301 psci_req_local_pwr_states[pwrlvl][core] = 302 PLAT_MAX_OFF_STATE; 303 } 304 } 305 } 306 307 /****************************************************************************** 308 * Helper function to return a reference to an array containing the local power 309 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the 310 * array will be the number of cpu power domains of which this power domain is 311 * an ancestor. These requested states will be used to determine a suitable 312 * target state for this power domain during psci state coordination. An 313 * assertion is added to prevent us from accessing the CPU power level. 314 *****************************************************************************/ 315 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl, 316 unsigned int cpu_idx) 317 { 318 assert(pwrlvl > PSCI_CPU_PWR_LVL); 319 320 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && 321 (cpu_idx < psci_plat_core_count)) { 322 return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx]; 323 } else 324 return NULL; 325 } 326 327 #if PSCI_OS_INIT_MODE 328 /****************************************************************************** 329 * Helper function to save a copy of the psci_req_local_pwr_states (prev) for a 330 * CPU (cpu_idx), and update psci_req_local_pwr_states with the new requested 331 * local power states (state_info). 332 *****************************************************************************/ 333 void psci_update_req_local_pwr_states(unsigned int end_pwrlvl, 334 unsigned int cpu_idx, 335 psci_power_state_t *state_info, 336 plat_local_state_t *prev) 337 { 338 unsigned int lvl; 339 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL 340 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL; 341 #else 342 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL; 343 #endif 344 plat_local_state_t req_state; 345 346 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) { 347 /* Save the previous requested local power state */ 348 prev[lvl - 1U] = *psci_get_req_local_pwr_states(lvl, cpu_idx); 349 350 /* Update the new requested local power state */ 351 if (lvl <= end_pwrlvl) { 352 req_state = state_info->pwr_domain_state[lvl]; 353 } else { 354 req_state = state_info->pwr_domain_state[end_pwrlvl]; 355 } 356 psci_set_req_local_pwr_state(lvl, cpu_idx, req_state); 357 } 358 } 359 360 /****************************************************************************** 361 * Helper function to restore the previously saved requested local power states 362 * (prev) for a CPU (cpu_idx) to psci_req_local_pwr_states. 363 *****************************************************************************/ 364 void psci_restore_req_local_pwr_states(unsigned int cpu_idx, 365 plat_local_state_t *prev) 366 { 367 unsigned int lvl; 368 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL 369 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL; 370 #else 371 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL; 372 #endif 373 374 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) { 375 /* Restore the previous requested local power state */ 376 psci_set_req_local_pwr_state(lvl, cpu_idx, prev[lvl - 1U]); 377 } 378 } 379 #endif 380 381 /* 382 * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent 383 * memory. 384 * 385 * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory, 386 * it's accessed by both cached and non-cached participants. To serve the common 387 * minimum, perform a cache flush before read and after write so that non-cached 388 * participants operate on latest data in main memory. 389 * 390 * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent 391 * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent. 392 * In both cases, no cache operations are required. 393 */ 394 395 /* 396 * Retrieve local state of non-CPU power domain node from a non-cached CPU, 397 * after any required cache maintenance operation. 398 */ 399 static plat_local_state_t get_non_cpu_pd_node_local_state( 400 unsigned int parent_idx) 401 { 402 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 403 flush_dcache_range( 404 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 405 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 406 #endif 407 return psci_non_cpu_pd_nodes[parent_idx].local_state; 408 } 409 410 /* 411 * Update local state of non-CPU power domain node from a cached CPU; perform 412 * any required cache maintenance operation afterwards. 413 */ 414 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx, 415 plat_local_state_t state) 416 { 417 psci_non_cpu_pd_nodes[parent_idx].local_state = state; 418 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 419 flush_dcache_range( 420 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 421 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 422 #endif 423 } 424 425 /****************************************************************************** 426 * Helper function to return the current local power state of each power domain 427 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This 428 * function will be called after a cpu is powered on to find the local state 429 * each power domain has emerged from. 430 *****************************************************************************/ 431 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl, 432 psci_power_state_t *target_state) 433 { 434 unsigned int parent_idx, lvl; 435 plat_local_state_t *pd_state = target_state->pwr_domain_state; 436 437 pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state(); 438 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; 439 440 /* Copy the local power state from node to state_info */ 441 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 442 pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx); 443 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 444 } 445 446 /* Set the the higher levels to RUN */ 447 for (; lvl <= PLAT_MAX_PWR_LVL; lvl++) 448 target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 449 } 450 451 /****************************************************************************** 452 * Helper function to set the target local power state that each power domain 453 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will 454 * enter. This function will be called after coordination of requested power 455 * states has been done for each power level. 456 *****************************************************************************/ 457 void psci_set_target_local_pwr_states(unsigned int end_pwrlvl, 458 const psci_power_state_t *target_state) 459 { 460 unsigned int parent_idx, lvl; 461 const plat_local_state_t *pd_state = target_state->pwr_domain_state; 462 463 psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]); 464 465 /* 466 * Need to flush as local_state might be accessed with Data Cache 467 * disabled during power on 468 */ 469 psci_flush_cpu_data(psci_svc_cpu_data.local_state); 470 471 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; 472 473 /* Copy the local_state from state_info */ 474 for (lvl = 1U; lvl <= end_pwrlvl; lvl++) { 475 set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]); 476 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 477 } 478 } 479 480 /******************************************************************************* 481 * PSCI helper function to get the parent nodes corresponding to a cpu_index. 482 ******************************************************************************/ 483 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx, 484 unsigned int end_lvl, 485 unsigned int *node_index) 486 { 487 unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node; 488 unsigned int i; 489 unsigned int *node = node_index; 490 491 for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) { 492 *node = parent_node; 493 node++; 494 parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node; 495 } 496 } 497 498 /****************************************************************************** 499 * This function is invoked post CPU power up and initialization. It sets the 500 * affinity info state, target power state and requested power state for the 501 * current CPU and all its ancestor power domains to RUN. 502 *****************************************************************************/ 503 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl) 504 { 505 unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl; 506 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 507 508 /* Reset the local_state to RUN for the non cpu power domains. */ 509 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 510 set_non_cpu_pd_node_local_state(parent_idx, 511 PSCI_LOCAL_STATE_RUN); 512 psci_set_req_local_pwr_state(lvl, 513 cpu_idx, 514 PSCI_LOCAL_STATE_RUN); 515 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 516 } 517 518 /* Set the affinity info state to ON */ 519 psci_set_aff_info_state(AFF_STATE_ON); 520 521 psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN); 522 psci_flush_cpu_data(psci_svc_cpu_data); 523 } 524 525 /****************************************************************************** 526 * This function is used in platform-coordinated mode. 527 * 528 * This function is passed the local power states requested for each power 529 * domain (state_info) between the current CPU domain and its ancestors until 530 * the target power level (end_pwrlvl). It updates the array of requested power 531 * states with this information. 532 * 533 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it 534 * retrieves the states requested by all the cpus of which the power domain at 535 * that level is an ancestor. It passes this information to the platform to 536 * coordinate and return the target power state. If the target state for a level 537 * is RUN then subsequent levels are not considered. At the CPU level, state 538 * coordination is not required. Hence, the requested and the target states are 539 * the same. 540 * 541 * The 'state_info' is updated with the target state for each level between the 542 * CPU and the 'end_pwrlvl' and returned to the caller. 543 * 544 * This function will only be invoked with data cache enabled and while 545 * powering down a core. 546 *****************************************************************************/ 547 void psci_do_state_coordination(unsigned int end_pwrlvl, 548 psci_power_state_t *state_info) 549 { 550 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos(); 551 unsigned int start_idx; 552 unsigned int ncpus; 553 plat_local_state_t target_state, *req_states; 554 555 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); 556 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 557 558 /* For level 0, the requested state will be equivalent 559 to target state */ 560 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 561 562 /* First update the requested power state */ 563 psci_set_req_local_pwr_state(lvl, cpu_idx, 564 state_info->pwr_domain_state[lvl]); 565 566 /* Get the requested power states for this power level */ 567 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 568 req_states = psci_get_req_local_pwr_states(lvl, start_idx); 569 570 /* 571 * Let the platform coordinate amongst the requested states at 572 * this power level and return the target local power state. 573 */ 574 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 575 target_state = plat_get_target_pwr_state(lvl, 576 req_states, 577 ncpus); 578 579 state_info->pwr_domain_state[lvl] = target_state; 580 581 /* Break early if the negotiated target power state is RUN */ 582 if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0) 583 break; 584 585 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 586 } 587 588 /* 589 * This is for cases when we break out of the above loop early because 590 * the target power state is RUN at a power level < end_pwlvl. 591 * We update the requested power state from state_info and then 592 * set the target state as RUN. 593 */ 594 for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) { 595 psci_set_req_local_pwr_state(lvl, cpu_idx, 596 state_info->pwr_domain_state[lvl]); 597 state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 598 599 } 600 } 601 602 #if PSCI_OS_INIT_MODE 603 /****************************************************************************** 604 * This function is used in OS-initiated mode. 605 * 606 * This function is passed the local power states requested for each power 607 * domain (state_info) between the current CPU domain and its ancestors until 608 * the target power level (end_pwrlvl), and ensures the requested power states 609 * are valid. It updates the array of requested power states with this 610 * information. 611 * 612 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it 613 * retrieves the states requested by all the cpus of which the power domain at 614 * that level is an ancestor. It passes this information to the platform to 615 * coordinate and return the target power state. If the requested state does 616 * not match the target state, the request is denied. 617 * 618 * The 'state_info' is not modified. 619 * 620 * This function will only be invoked with data cache enabled and while 621 * powering down a core. 622 *****************************************************************************/ 623 int psci_validate_state_coordination(unsigned int end_pwrlvl, 624 psci_power_state_t *state_info) 625 { 626 int rc = PSCI_E_SUCCESS; 627 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos(); 628 unsigned int start_idx; 629 unsigned int ncpus; 630 plat_local_state_t target_state, *req_states; 631 plat_local_state_t prev[PLAT_MAX_PWR_LVL]; 632 633 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); 634 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 635 636 /* 637 * Save a copy of the previous requested local power states and update 638 * the new requested local power states. 639 */ 640 psci_update_req_local_pwr_states(end_pwrlvl, cpu_idx, state_info, prev); 641 642 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 643 /* Get the requested power states for this power level */ 644 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 645 req_states = psci_get_req_local_pwr_states(lvl, start_idx); 646 647 /* 648 * Let the platform coordinate amongst the requested states at 649 * this power level and return the target local power state. 650 */ 651 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 652 target_state = plat_get_target_pwr_state(lvl, 653 req_states, 654 ncpus); 655 656 /* 657 * Verify that the requested power state matches the target 658 * local power state. 659 */ 660 if (state_info->pwr_domain_state[lvl] != target_state) { 661 if (target_state == PSCI_LOCAL_STATE_RUN) { 662 rc = PSCI_E_DENIED; 663 } else { 664 rc = PSCI_E_INVALID_PARAMS; 665 } 666 goto exit; 667 } 668 669 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 670 } 671 672 /* 673 * Verify that the current core is the last running core at the 674 * specified power level. 675 */ 676 lvl = state_info->last_at_pwrlvl; 677 if (!psci_is_last_cpu_to_idle_at_pwrlvl(lvl)) { 678 rc = PSCI_E_DENIED; 679 } 680 681 exit: 682 if (rc != PSCI_E_SUCCESS) { 683 /* Restore the previous requested local power states. */ 684 psci_restore_req_local_pwr_states(cpu_idx, prev); 685 return rc; 686 } 687 688 return rc; 689 } 690 #endif 691 692 /****************************************************************************** 693 * This function validates a suspend request by making sure that if a standby 694 * state is requested then no power level is turned off and the highest power 695 * level is placed in a standby/retention state. 696 * 697 * It also ensures that the state level X will enter is not shallower than the 698 * state level X + 1 will enter. 699 * 700 * This validation will be enabled only for DEBUG builds as the platform is 701 * expected to perform these validations as well. 702 *****************************************************************************/ 703 int psci_validate_suspend_req(const psci_power_state_t *state_info, 704 unsigned int is_power_down_state) 705 { 706 unsigned int max_off_lvl, target_lvl, max_retn_lvl; 707 plat_local_state_t state; 708 plat_local_state_type_t req_state_type, deepest_state_type; 709 int i; 710 711 /* Find the target suspend power level */ 712 target_lvl = psci_find_target_suspend_lvl(state_info); 713 if (target_lvl == PSCI_INVALID_PWR_LVL) 714 return PSCI_E_INVALID_PARAMS; 715 716 /* All power domain levels are in a RUN state to begin with */ 717 deepest_state_type = STATE_TYPE_RUN; 718 719 for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) { 720 state = state_info->pwr_domain_state[i]; 721 req_state_type = find_local_state_type(state); 722 723 /* 724 * While traversing from the highest power level to the lowest, 725 * the state requested for lower levels has to be the same or 726 * deeper i.e. equal to or greater than the state at the higher 727 * levels. If this condition is true, then the requested state 728 * becomes the deepest state encountered so far. 729 */ 730 if (req_state_type < deepest_state_type) 731 return PSCI_E_INVALID_PARAMS; 732 deepest_state_type = req_state_type; 733 } 734 735 /* Find the highest off power level */ 736 max_off_lvl = psci_find_max_off_lvl(state_info); 737 738 /* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */ 739 max_retn_lvl = PSCI_INVALID_PWR_LVL; 740 if (target_lvl != max_off_lvl) 741 max_retn_lvl = target_lvl; 742 743 /* 744 * If this is not a request for a power down state then max off level 745 * has to be invalid and max retention level has to be a valid power 746 * level. 747 */ 748 if ((is_power_down_state == 0U) && 749 ((max_off_lvl != PSCI_INVALID_PWR_LVL) || 750 (max_retn_lvl == PSCI_INVALID_PWR_LVL))) 751 return PSCI_E_INVALID_PARAMS; 752 753 return PSCI_E_SUCCESS; 754 } 755 756 /****************************************************************************** 757 * This function finds the highest power level which will be powered down 758 * amongst all the power levels specified in the 'state_info' structure 759 *****************************************************************************/ 760 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info) 761 { 762 int i; 763 764 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 765 if (is_local_state_off(state_info->pwr_domain_state[i]) != 0) 766 return (unsigned int) i; 767 } 768 769 return PSCI_INVALID_PWR_LVL; 770 } 771 772 /****************************************************************************** 773 * This functions finds the level of the highest power domain which will be 774 * placed in a low power state during a suspend operation. 775 *****************************************************************************/ 776 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info) 777 { 778 int i; 779 780 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 781 if (is_local_state_run(state_info->pwr_domain_state[i]) == 0) 782 return (unsigned int) i; 783 } 784 785 return PSCI_INVALID_PWR_LVL; 786 } 787 788 /******************************************************************************* 789 * This function is passed the highest level in the topology tree that the 790 * operation should be applied to and a list of node indexes. It picks up locks 791 * from the node index list in order of increasing power domain level in the 792 * range specified. 793 ******************************************************************************/ 794 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl, 795 const unsigned int *parent_nodes) 796 { 797 unsigned int parent_idx; 798 unsigned int level; 799 800 /* No locking required for level 0. Hence start locking from level 1 */ 801 for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) { 802 parent_idx = parent_nodes[level - 1U]; 803 psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]); 804 } 805 } 806 807 /******************************************************************************* 808 * This function is passed the highest level in the topology tree that the 809 * operation should be applied to and a list of node indexes. It releases the 810 * locks in order of decreasing power domain level in the range specified. 811 ******************************************************************************/ 812 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl, 813 const unsigned int *parent_nodes) 814 { 815 unsigned int parent_idx; 816 unsigned int level; 817 818 /* Unlock top down. No unlocking required for level 0. */ 819 for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) { 820 parent_idx = parent_nodes[level - 1U]; 821 psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]); 822 } 823 } 824 825 /******************************************************************************* 826 * This function determines the full entrypoint information for the requested 827 * PSCI entrypoint on power on/resume and returns it. 828 ******************************************************************************/ 829 #ifdef __aarch64__ 830 static int psci_get_ns_ep_info(entry_point_info_t *ep, 831 uintptr_t entrypoint, 832 u_register_t context_id) 833 { 834 u_register_t ep_attr, sctlr; 835 unsigned int daif, ee, mode; 836 u_register_t ns_scr_el3 = read_scr_el3(); 837 u_register_t ns_sctlr_el1 = read_sctlr_el1(); 838 839 sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 840 read_sctlr_el2() : ns_sctlr_el1; 841 ee = 0; 842 843 ep_attr = NON_SECURE | EP_ST_DISABLE; 844 if ((sctlr & SCTLR_EE_BIT) != 0U) { 845 ep_attr |= EP_EE_BIG; 846 ee = 1; 847 } 848 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 849 850 ep->pc = entrypoint; 851 zeromem(&ep->args, sizeof(ep->args)); 852 ep->args.arg0 = context_id; 853 854 /* 855 * Figure out whether the cpu enters the non-secure address space 856 * in aarch32 or aarch64 857 */ 858 if ((ns_scr_el3 & SCR_RW_BIT) != 0U) { 859 860 /* 861 * Check whether a Thumb entry point has been provided for an 862 * aarch64 EL 863 */ 864 if ((entrypoint & 0x1UL) != 0UL) 865 return PSCI_E_INVALID_ADDRESS; 866 867 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1; 868 869 ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX, 870 DISABLE_ALL_EXCEPTIONS); 871 } else { 872 873 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 874 MODE32_hyp : MODE32_svc; 875 876 /* 877 * TODO: Choose async. exception bits if HYP mode is not 878 * implemented according to the values of SCR.{AW, FW} bits 879 */ 880 daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT; 881 882 ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee, 883 daif); 884 } 885 886 return PSCI_E_SUCCESS; 887 } 888 #else /* !__aarch64__ */ 889 static int psci_get_ns_ep_info(entry_point_info_t *ep, 890 uintptr_t entrypoint, 891 u_register_t context_id) 892 { 893 u_register_t ep_attr; 894 unsigned int aif, ee, mode; 895 u_register_t scr = read_scr(); 896 u_register_t ns_sctlr, sctlr; 897 898 /* Switch to non secure state */ 899 write_scr(scr | SCR_NS_BIT); 900 isb(); 901 ns_sctlr = read_sctlr(); 902 903 sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr; 904 905 /* Return to original state */ 906 write_scr(scr); 907 isb(); 908 ee = 0; 909 910 ep_attr = NON_SECURE | EP_ST_DISABLE; 911 if (sctlr & SCTLR_EE_BIT) { 912 ep_attr |= EP_EE_BIG; 913 ee = 1; 914 } 915 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 916 917 ep->pc = entrypoint; 918 zeromem(&ep->args, sizeof(ep->args)); 919 ep->args.arg0 = context_id; 920 921 mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc; 922 923 /* 924 * TODO: Choose async. exception bits if HYP mode is not 925 * implemented according to the values of SCR.{AW, FW} bits 926 */ 927 aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT; 928 929 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif); 930 931 return PSCI_E_SUCCESS; 932 } 933 934 #endif /* __aarch64__ */ 935 936 /******************************************************************************* 937 * This function validates the entrypoint with the platform layer if the 938 * appropriate pm_ops hook is exported by the platform and returns the 939 * 'entry_point_info'. 940 ******************************************************************************/ 941 int psci_validate_entry_point(entry_point_info_t *ep, 942 uintptr_t entrypoint, 943 u_register_t context_id) 944 { 945 int rc; 946 947 /* Validate the entrypoint using platform psci_ops */ 948 if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) { 949 rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint); 950 if (rc != PSCI_E_SUCCESS) 951 return PSCI_E_INVALID_ADDRESS; 952 } 953 954 /* 955 * Verify and derive the re-entry information for 956 * the non-secure world from the non-secure state from 957 * where this call originated. 958 */ 959 rc = psci_get_ns_ep_info(ep, entrypoint, context_id); 960 return rc; 961 } 962 963 /******************************************************************************* 964 * Generic handler which is called when a cpu is physically powered on. It 965 * traverses the node information and finds the highest power level powered 966 * off and performs generic, architectural, platform setup and state management 967 * to power on that power level and power levels below it. 968 * e.g. For a cpu that's been powered on, it will call the platform specific 969 * code to enable the gic cpu interface and for a cluster it will enable 970 * coherency at the interconnect level in addition to gic cpu interface. 971 ******************************************************************************/ 972 void psci_warmboot_entrypoint(void) 973 { 974 unsigned int end_pwrlvl; 975 unsigned int cpu_idx = plat_my_core_pos(); 976 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 977 psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} }; 978 979 /* Init registers that never change for the lifetime of TF-A */ 980 cm_manage_extensions_el3(); 981 982 /* 983 * Verify that we have been explicitly turned ON or resumed from 984 * suspend. 985 */ 986 if (psci_get_aff_info_state() == AFF_STATE_OFF) { 987 ERROR("Unexpected affinity info state.\n"); 988 panic(); 989 } 990 991 /* 992 * Get the maximum power domain level to traverse to after this cpu 993 * has been physically powered up. 994 */ 995 end_pwrlvl = get_power_on_target_pwrlvl(); 996 997 /* Get the parent nodes */ 998 psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes); 999 1000 /* 1001 * This function acquires the lock corresponding to each power level so 1002 * that by the time all locks are taken, the system topology is snapshot 1003 * and state management can be done safely. 1004 */ 1005 psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes); 1006 1007 psci_get_target_local_pwr_states(end_pwrlvl, &state_info); 1008 1009 #if ENABLE_PSCI_STAT 1010 plat_psci_stat_accounting_stop(&state_info); 1011 #endif 1012 1013 /* 1014 * This CPU could be resuming from suspend or it could have just been 1015 * turned on. To distinguish between these 2 cases, we examine the 1016 * affinity state of the CPU: 1017 * - If the affinity state is ON_PENDING then it has just been 1018 * turned on. 1019 * - Else it is resuming from suspend. 1020 * 1021 * Depending on the type of warm reset identified, choose the right set 1022 * of power management handler and perform the generic, architecture 1023 * and platform specific handling. 1024 */ 1025 if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING) 1026 psci_cpu_on_finish(cpu_idx, &state_info); 1027 else 1028 psci_cpu_suspend_finish(cpu_idx, &state_info); 1029 1030 /* 1031 * Generic management: Now we just need to retrieve the 1032 * information that we had stashed away during the cpu_on 1033 * call to set this cpu on its way. 1034 */ 1035 cm_prepare_el3_exit_ns(); 1036 1037 /* 1038 * Set the requested and target state of this CPU and all the higher 1039 * power domains which are ancestors of this CPU to run. 1040 */ 1041 psci_set_pwr_domains_to_run(end_pwrlvl); 1042 1043 #if ENABLE_PSCI_STAT 1044 /* 1045 * Update PSCI stats. 1046 * Caches are off when writing stats data on the power down path. 1047 * Since caches are now enabled, it's necessary to do cache 1048 * maintenance before reading that same data. 1049 */ 1050 psci_stats_update_pwr_up(end_pwrlvl, &state_info); 1051 #endif 1052 1053 /* 1054 * This loop releases the lock corresponding to each power level 1055 * in the reverse order to which they were acquired. 1056 */ 1057 psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes); 1058 } 1059 1060 /******************************************************************************* 1061 * This function initializes the set of hooks that PSCI invokes as part of power 1062 * management operation. The power management hooks are expected to be provided 1063 * by the SPD, after it finishes all its initialization 1064 ******************************************************************************/ 1065 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm) 1066 { 1067 assert(pm != NULL); 1068 psci_spd_pm = pm; 1069 1070 if (pm->svc_migrate != NULL) 1071 psci_caps |= define_psci_cap(PSCI_MIG_AARCH64); 1072 1073 if (pm->svc_migrate_info != NULL) 1074 psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64) 1075 | define_psci_cap(PSCI_MIG_INFO_TYPE); 1076 } 1077 1078 /******************************************************************************* 1079 * This function invokes the migrate info hook in the spd_pm_ops. It performs 1080 * the necessary return value validation. If the Secure Payload is UP and 1081 * migrate capable, it returns the mpidr of the CPU on which the Secure payload 1082 * is resident through the mpidr parameter. Else the value of the parameter on 1083 * return is undefined. 1084 ******************************************************************************/ 1085 int psci_spd_migrate_info(u_register_t *mpidr) 1086 { 1087 int rc; 1088 1089 if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL)) 1090 return PSCI_E_NOT_SUPPORTED; 1091 1092 rc = psci_spd_pm->svc_migrate_info(mpidr); 1093 1094 assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) || 1095 (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED)); 1096 1097 return rc; 1098 } 1099 1100 1101 /******************************************************************************* 1102 * This function prints the state of all power domains present in the 1103 * system 1104 ******************************************************************************/ 1105 void psci_print_power_domain_map(void) 1106 { 1107 #if LOG_LEVEL >= LOG_LEVEL_INFO 1108 unsigned int idx; 1109 plat_local_state_t state; 1110 plat_local_state_type_t state_type; 1111 1112 /* This array maps to the PSCI_STATE_X definitions in psci.h */ 1113 static const char * const psci_state_type_str[] = { 1114 "ON", 1115 "RETENTION", 1116 "OFF", 1117 }; 1118 1119 INFO("PSCI Power Domain Map:\n"); 1120 for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count); 1121 idx++) { 1122 state_type = find_local_state_type( 1123 psci_non_cpu_pd_nodes[idx].local_state); 1124 INFO(" Domain Node : Level %u, parent_node %u," 1125 " State %s (0x%x)\n", 1126 psci_non_cpu_pd_nodes[idx].level, 1127 psci_non_cpu_pd_nodes[idx].parent_node, 1128 psci_state_type_str[state_type], 1129 psci_non_cpu_pd_nodes[idx].local_state); 1130 } 1131 1132 for (idx = 0; idx < psci_plat_core_count; idx++) { 1133 state = psci_get_cpu_local_state_by_idx(idx); 1134 state_type = find_local_state_type(state); 1135 INFO(" CPU Node : MPID 0x%llx, parent_node %u," 1136 " State %s (0x%x)\n", 1137 (unsigned long long)psci_cpu_pd_nodes[idx].mpidr, 1138 psci_cpu_pd_nodes[idx].parent_node, 1139 psci_state_type_str[state_type], 1140 psci_get_cpu_local_state_by_idx(idx)); 1141 } 1142 #endif 1143 } 1144 1145 /****************************************************************************** 1146 * Return whether any secondaries were powered up with CPU_ON call. A CPU that 1147 * have ever been powered up would have set its MPDIR value to something other 1148 * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to 1149 * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is 1150 * meaningful only when called on the primary CPU during early boot. 1151 *****************************************************************************/ 1152 int psci_secondaries_brought_up(void) 1153 { 1154 unsigned int idx, n_valid = 0U; 1155 1156 for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) { 1157 if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR) 1158 n_valid++; 1159 } 1160 1161 assert(n_valid > 0U); 1162 1163 return (n_valid > 1U) ? 1 : 0; 1164 } 1165 1166 /******************************************************************************* 1167 * Initiate power down sequence, by calling power down operations registered for 1168 * this CPU. 1169 ******************************************************************************/ 1170 void psci_pwrdown_cpu(unsigned int power_level) 1171 { 1172 psci_do_manage_extensions(); 1173 1174 #if HW_ASSISTED_COHERENCY 1175 /* 1176 * With hardware-assisted coherency, the CPU drivers only initiate the 1177 * power down sequence, without performing cache-maintenance operations 1178 * in software. Data caches enabled both before and after this call. 1179 */ 1180 prepare_cpu_pwr_dwn(power_level); 1181 #else 1182 /* 1183 * Without hardware-assisted coherency, the CPU drivers disable data 1184 * caches, then perform cache-maintenance operations in software. 1185 * 1186 * This also calls prepare_cpu_pwr_dwn() to initiate power down 1187 * sequence, but that function will return with data caches disabled. 1188 * We must ensure that the stack memory is flushed out to memory before 1189 * we start popping from it again. 1190 */ 1191 psci_do_pwrdown_cache_maintenance(power_level); 1192 #endif 1193 } 1194 1195 /******************************************************************************* 1196 * This function invokes the callback 'stop_func()' with the 'mpidr' of each 1197 * online PE. Caller can pass suitable method to stop a remote core. 1198 * 1199 * 'wait_ms' is the timeout value in milliseconds for the other cores to 1200 * transition to power down state. Passing '0' makes it non-blocking. 1201 * 1202 * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the 1203 * given timeout. 1204 ******************************************************************************/ 1205 int psci_stop_other_cores(unsigned int wait_ms, 1206 void (*stop_func)(u_register_t mpidr)) 1207 { 1208 unsigned int idx, this_cpu_idx; 1209 1210 this_cpu_idx = plat_my_core_pos(); 1211 1212 /* Invoke stop_func for each core */ 1213 for (idx = 0U; idx < psci_plat_core_count; idx++) { 1214 /* skip current CPU */ 1215 if (idx == this_cpu_idx) { 1216 continue; 1217 } 1218 1219 /* Check if the CPU is ON */ 1220 if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) { 1221 (*stop_func)(psci_cpu_pd_nodes[idx].mpidr); 1222 } 1223 } 1224 1225 /* Need to wait for other cores to shutdown */ 1226 if (wait_ms != 0U) { 1227 while ((wait_ms-- != 0U) && (!psci_is_last_on_cpu())) { 1228 mdelay(1U); 1229 } 1230 1231 if (!psci_is_last_on_cpu()) { 1232 WARN("Failed to stop all cores!\n"); 1233 psci_print_power_domain_map(); 1234 return PSCI_E_DENIED; 1235 } 1236 } 1237 1238 return PSCI_E_SUCCESS; 1239 } 1240 1241 /******************************************************************************* 1242 * This function verifies that all the other cores in the system have been 1243 * turned OFF and the current CPU is the last running CPU in the system. 1244 * Returns true if the current CPU is the last ON CPU or false otherwise. 1245 * 1246 * This API has following differences with psci_is_last_on_cpu 1247 * 1. PSCI states are locked 1248 ******************************************************************************/ 1249 bool psci_is_last_on_cpu_safe(void) 1250 { 1251 unsigned int this_core = plat_my_core_pos(); 1252 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 1253 1254 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes); 1255 1256 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1257 1258 if (!psci_is_last_on_cpu()) { 1259 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1260 return false; 1261 } 1262 1263 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1264 1265 return true; 1266 } 1267 1268 /******************************************************************************* 1269 * This function verifies that all cores in the system have been turned ON. 1270 * Returns true, if all CPUs are ON or false otherwise. 1271 * 1272 * This API has following differences with psci_are_all_cpus_on 1273 * 1. PSCI states are locked 1274 ******************************************************************************/ 1275 bool psci_are_all_cpus_on_safe(void) 1276 { 1277 unsigned int this_core = plat_my_core_pos(); 1278 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 1279 1280 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes); 1281 1282 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1283 1284 if (!psci_are_all_cpus_on()) { 1285 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1286 return false; 1287 } 1288 1289 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1290 1291 return true; 1292 } 1293 1294 /******************************************************************************* 1295 * This function performs architectural feature specific management. 1296 * It ensures the architectural features are disabled during cpu 1297 * power off/suspend operations. 1298 ******************************************************************************/ 1299 void psci_do_manage_extensions(void) 1300 { 1301 /* 1302 * On power down we need to disable statistical profiling extensions 1303 * before exiting coherency. 1304 */ 1305 if (is_feat_spe_supported()) { 1306 spe_stop(); 1307 } 1308 1309 } 1310