xref: /rk3399_ARM-atf/lib/psci/psci_common.c (revision 3b8021058a7537d1cf316aa387a553c515f35437)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <string.h>
9 
10 #include <arch.h>
11 #include <arch_features.h>
12 #include <arch_helpers.h>
13 #include <common/bl_common.h>
14 #include <common/debug.h>
15 #include <context.h>
16 #include <drivers/delay_timer.h>
17 #include <lib/el3_runtime/context_mgmt.h>
18 #include <lib/extensions/spe.h>
19 #include <lib/pmf/pmf.h>
20 #include <lib/runtime_instr.h>
21 #include <lib/utils.h>
22 #include <plat/common/platform.h>
23 
24 #include "psci_private.h"
25 
26 /*
27  * SPD power management operations, expected to be supplied by the registered
28  * SPD on successful SP initialization
29  */
30 const spd_pm_ops_t *psci_spd_pm;
31 
32 /*
33  * PSCI requested local power state map. This array is used to store the local
34  * power states requested by a CPU for power levels from level 1 to
35  * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
36  * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
37  * CPU are the same.
38  *
39  * During state coordination, the platform is passed an array containing the
40  * local states requested for a particular non cpu power domain by each cpu
41  * within the domain.
42  *
43  * TODO: Dense packing of the requested states will cause cache thrashing
44  * when multiple power domains write to it. If we allocate the requested
45  * states at each power level in a cache-line aligned per-domain memory,
46  * the cache thrashing can be avoided.
47  */
48 static plat_local_state_t
49 	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
50 
51 unsigned int psci_plat_core_count;
52 
53 /*******************************************************************************
54  * Arrays that hold the platform's power domain tree information for state
55  * management of power domains.
56  * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
57  * which is an ancestor of a CPU power domain.
58  * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
59  ******************************************************************************/
60 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
61 #if USE_COHERENT_MEM
62 __section(".tzfw_coherent_mem")
63 #endif
64 ;
65 
66 /* Lock for PSCI state coordination */
67 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
68 
69 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
70 
71 /*******************************************************************************
72  * Pointer to functions exported by the platform to complete power mgmt. ops
73  ******************************************************************************/
74 const plat_psci_ops_t *psci_plat_pm_ops;
75 
76 /******************************************************************************
77  * Check that the maximum power level supported by the platform makes sense
78  *****************************************************************************/
79 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
80 	(PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
81 	assert_platform_max_pwrlvl_check);
82 
83 #if PSCI_OS_INIT_MODE
84 /*******************************************************************************
85  * The power state coordination mode used in CPU_SUSPEND.
86  * Defaults to platform-coordinated mode.
87  ******************************************************************************/
88 suspend_mode_t psci_suspend_mode = PLAT_COORD;
89 #endif
90 
91 /*
92  * The plat_local_state used by the platform is one of these types: RUN,
93  * RETENTION and OFF. The platform can define further sub-states for each type
94  * apart from RUN. This categorization is done to verify the sanity of the
95  * psci_power_state passed by the platform and to print debug information. The
96  * categorization is done on the basis of the following conditions:
97  *
98  * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
99  *
100  * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
101  *    STATE_TYPE_RETN.
102  *
103  * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
104  *    STATE_TYPE_OFF.
105  */
106 typedef enum plat_local_state_type {
107 	STATE_TYPE_RUN = 0,
108 	STATE_TYPE_RETN,
109 	STATE_TYPE_OFF
110 } plat_local_state_type_t;
111 
112 /* Function used to categorize plat_local_state. */
113 static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
114 {
115 	if (state != 0U) {
116 		if (state > PLAT_MAX_RET_STATE) {
117 			return STATE_TYPE_OFF;
118 		} else {
119 			return STATE_TYPE_RETN;
120 		}
121 	} else {
122 		return STATE_TYPE_RUN;
123 	}
124 }
125 
126 /******************************************************************************
127  * Check that the maximum retention level supported by the platform is less
128  * than the maximum off level.
129  *****************************************************************************/
130 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
131 		assert_platform_max_off_and_retn_state_check);
132 
133 /******************************************************************************
134  * This function ensures that the power state parameter in a CPU_SUSPEND request
135  * is valid. If so, it returns the requested states for each power level.
136  *****************************************************************************/
137 int psci_validate_power_state(unsigned int power_state,
138 			      psci_power_state_t *state_info)
139 {
140 	/* Check SBZ bits in power state are zero */
141 	if (psci_check_power_state(power_state) != 0U)
142 		return PSCI_E_INVALID_PARAMS;
143 
144 	assert(psci_plat_pm_ops->validate_power_state != NULL);
145 
146 	/* Validate the power_state using platform pm_ops */
147 	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
148 }
149 
150 /******************************************************************************
151  * This function retrieves the `psci_power_state_t` for system suspend from
152  * the platform.
153  *****************************************************************************/
154 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
155 {
156 	/*
157 	 * Assert that the required pm_ops hook is implemented to ensure that
158 	 * the capability detected during psci_setup() is valid.
159 	 */
160 	assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
161 
162 	/*
163 	 * Query the platform for the power_state required for system suspend
164 	 */
165 	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
166 }
167 
168 #if PSCI_OS_INIT_MODE
169 /*******************************************************************************
170  * This function verifies that all the other cores at the 'end_pwrlvl' have been
171  * idled and the current CPU is the last running CPU at the 'end_pwrlvl'.
172  * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
173  * otherwise.
174  ******************************************************************************/
175 static bool psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int my_idx, unsigned int end_pwrlvl)
176 {
177 	unsigned int lvl;
178 	unsigned int parent_idx = 0;
179 	unsigned int cpu_start_idx, ncpus, cpu_idx;
180 	plat_local_state_t local_state;
181 
182 	if (end_pwrlvl == PSCI_CPU_PWR_LVL) {
183 		return true;
184 	}
185 
186 	parent_idx = psci_cpu_pd_nodes[my_idx].parent_node;
187 	for (lvl = PSCI_CPU_PWR_LVL + U(1); lvl < end_pwrlvl; lvl++) {
188 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
189 	}
190 
191 	cpu_start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
192 	ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
193 
194 	for (cpu_idx = cpu_start_idx; cpu_idx < cpu_start_idx + ncpus;
195 			cpu_idx++) {
196 		local_state = psci_get_cpu_local_state_by_idx(cpu_idx);
197 		if (cpu_idx == my_idx) {
198 			assert(is_local_state_run(local_state) != 0);
199 			continue;
200 		}
201 
202 		if (is_local_state_run(local_state) != 0) {
203 			return false;
204 		}
205 	}
206 
207 	return true;
208 }
209 #endif
210 
211 /*******************************************************************************
212  * This function verifies that all the other cores in the system have been
213  * turned OFF and the current CPU is the last running CPU in the system.
214  * Returns true, if the current CPU is the last ON CPU or false otherwise.
215  ******************************************************************************/
216 bool psci_is_last_on_cpu(unsigned int my_idx)
217 {
218 	for (unsigned int cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
219 		if (cpu_idx == my_idx) {
220 			assert(psci_get_aff_info_state() == AFF_STATE_ON);
221 			continue;
222 		}
223 
224 		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) {
225 			VERBOSE("core=%u other than current core=%u %s\n",
226 				cpu_idx, my_idx, "running in the system");
227 			return false;
228 		}
229 	}
230 
231 	return true;
232 }
233 
234 /*******************************************************************************
235  * This function verifies that all cores in the system have been turned ON.
236  * Returns true, if all CPUs are ON or false otherwise.
237  ******************************************************************************/
238 static bool psci_are_all_cpus_on(void)
239 {
240 	unsigned int cpu_idx;
241 
242 	for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
243 		if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_OFF) {
244 			return false;
245 		}
246 	}
247 
248 	return true;
249 }
250 
251 /*******************************************************************************
252  * Routine to return the maximum power level to traverse to after a cpu has
253  * been physically powered up. It is expected to be called immediately after
254  * reset from assembler code.
255  ******************************************************************************/
256 static unsigned int get_power_on_target_pwrlvl(void)
257 {
258 	unsigned int pwrlvl;
259 
260 	/*
261 	 * Assume that this cpu was suspended and retrieve its target power
262 	 * level. If it wasn't, the cpu is off so this will be PLAT_MAX_PWR_LVL.
263 	 */
264 	pwrlvl = psci_get_suspend_pwrlvl();
265 	assert(pwrlvl < PSCI_INVALID_PWR_LVL);
266 	return pwrlvl;
267 }
268 
269 /******************************************************************************
270  * Helper function to update the requested local power state array. This array
271  * does not store the requested state for the CPU power level. Hence an
272  * assertion is added to prevent us from accessing the CPU power level.
273  *****************************************************************************/
274 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
275 					 unsigned int cpu_idx,
276 					 plat_local_state_t req_pwr_state)
277 {
278 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
279 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
280 			(cpu_idx < psci_plat_core_count)) {
281 		psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
282 	}
283 }
284 
285 /******************************************************************************
286  * This function initializes the psci_req_local_pwr_states.
287  *****************************************************************************/
288 void __init psci_init_req_local_pwr_states(void)
289 {
290 	/* Initialize the requested state of all non CPU power domains as OFF */
291 	unsigned int pwrlvl;
292 	unsigned int core;
293 
294 	for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
295 		for (core = 0; core < psci_plat_core_count; core++) {
296 			psci_req_local_pwr_states[pwrlvl][core] =
297 				PLAT_MAX_OFF_STATE;
298 		}
299 	}
300 }
301 
302 /******************************************************************************
303  * Helper function to return a reference to an array containing the local power
304  * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
305  * array will be the number of cpu power domains of which this power domain is
306  * an ancestor. These requested states will be used to determine a suitable
307  * target state for this power domain during psci state coordination. An
308  * assertion is added to prevent us from accessing the CPU power level.
309  *****************************************************************************/
310 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
311 							 unsigned int cpu_idx)
312 {
313 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
314 
315 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
316 			(cpu_idx < psci_plat_core_count)) {
317 		return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
318 	} else
319 		return NULL;
320 }
321 
322 #if PSCI_OS_INIT_MODE
323 /******************************************************************************
324  * Helper function to save a copy of the psci_req_local_pwr_states (prev) for a
325  * CPU (cpu_idx), and update psci_req_local_pwr_states with the new requested
326  * local power states (state_info).
327  *****************************************************************************/
328 void psci_update_req_local_pwr_states(unsigned int end_pwrlvl,
329 				      unsigned int cpu_idx,
330 				      psci_power_state_t *state_info,
331 				      plat_local_state_t *prev)
332 {
333 	unsigned int lvl;
334 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
335 	unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
336 #else
337 	unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
338 #endif
339 	plat_local_state_t req_state;
340 
341 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
342 		/* Save the previous requested local power state */
343 		prev[lvl - 1U] = *psci_get_req_local_pwr_states(lvl, cpu_idx);
344 
345 		/* Update the new requested local power state */
346 		if (lvl <= end_pwrlvl) {
347 			req_state = state_info->pwr_domain_state[lvl];
348 		} else {
349 			req_state = state_info->pwr_domain_state[end_pwrlvl];
350 		}
351 		psci_set_req_local_pwr_state(lvl, cpu_idx, req_state);
352 	}
353 }
354 
355 /******************************************************************************
356  * Helper function to restore the previously saved requested local power states
357  * (prev) for a CPU (cpu_idx) to psci_req_local_pwr_states.
358  *****************************************************************************/
359 void psci_restore_req_local_pwr_states(unsigned int cpu_idx,
360 				       plat_local_state_t *prev)
361 {
362 	unsigned int lvl;
363 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
364 	unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
365 #else
366 	unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
367 #endif
368 
369 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
370 		/* Restore the previous requested local power state */
371 		psci_set_req_local_pwr_state(lvl, cpu_idx, prev[lvl - 1U]);
372 	}
373 }
374 #endif
375 
376 /*
377  * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
378  * memory.
379  *
380  * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
381  * it's accessed by both cached and non-cached participants. To serve the common
382  * minimum, perform a cache flush before read and after write so that non-cached
383  * participants operate on latest data in main memory.
384  *
385  * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
386  * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
387  * In both cases, no cache operations are required.
388  */
389 
390 /*
391  * Retrieve local state of non-CPU power domain node from a non-cached CPU,
392  * after any required cache maintenance operation.
393  */
394 static plat_local_state_t get_non_cpu_pd_node_local_state(
395 		unsigned int parent_idx)
396 {
397 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
398 	flush_dcache_range(
399 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
400 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
401 #endif
402 	return psci_non_cpu_pd_nodes[parent_idx].local_state;
403 }
404 
405 /*
406  * Update local state of non-CPU power domain node from a cached CPU; perform
407  * any required cache maintenance operation afterwards.
408  */
409 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
410 		plat_local_state_t state)
411 {
412 	psci_non_cpu_pd_nodes[parent_idx].local_state = state;
413 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
414 	flush_dcache_range(
415 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
416 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
417 #endif
418 }
419 
420 /******************************************************************************
421  * Helper function to return the current local power state of each power domain
422  * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
423  * function will be called after a cpu is powered on to find the local state
424  * each power domain has emerged from.
425  *****************************************************************************/
426 void psci_get_target_local_pwr_states(unsigned int cpu_idx, unsigned int end_pwrlvl,
427 				      psci_power_state_t *target_state)
428 {
429 	unsigned int parent_idx, lvl;
430 	plat_local_state_t *pd_state = target_state->pwr_domain_state;
431 
432 	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
433 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
434 
435 	/* Copy the local power state from node to state_info */
436 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
437 		pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
438 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
439 	}
440 
441 	/* Set the the higher levels to RUN */
442 	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
443 		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
444 }
445 
446 /******************************************************************************
447  * Helper function to set the target local power state that each power domain
448  * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
449  * enter. This function will be called after coordination of requested power
450  * states has been done for each power level.
451  *****************************************************************************/
452 void psci_set_target_local_pwr_states(unsigned int cpu_idx, unsigned int end_pwrlvl,
453 				      const psci_power_state_t *target_state)
454 {
455 	unsigned int parent_idx, lvl;
456 	const plat_local_state_t *pd_state = target_state->pwr_domain_state;
457 
458 	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
459 
460 	/*
461 	 * Need to flush as local_state might be accessed with Data Cache
462 	 * disabled during power on
463 	 */
464 	psci_flush_cpu_data(psci_svc_cpu_data.local_state);
465 
466 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
467 
468 	/* Copy the local_state from state_info */
469 	for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
470 		set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
471 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
472 	}
473 }
474 
475 /*******************************************************************************
476  * PSCI helper function to get the parent nodes corresponding to a cpu_index.
477  ******************************************************************************/
478 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
479 				      unsigned int end_lvl,
480 				      unsigned int *node_index)
481 {
482 	unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
483 	unsigned int i;
484 	unsigned int *node = node_index;
485 
486 	for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
487 		*node = parent_node;
488 		node++;
489 		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
490 	}
491 }
492 
493 /******************************************************************************
494  * This function is invoked post CPU power up and initialization. It sets the
495  * affinity info state, target power state and requested power state for the
496  * current CPU and all its ancestor power domains to RUN.
497  *****************************************************************************/
498 void psci_set_pwr_domains_to_run(unsigned int cpu_idx, unsigned int end_pwrlvl)
499 {
500 	unsigned int parent_idx, lvl;
501 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
502 
503 	/* Reset the local_state to RUN for the non cpu power domains. */
504 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
505 		set_non_cpu_pd_node_local_state(parent_idx,
506 				PSCI_LOCAL_STATE_RUN);
507 		psci_set_req_local_pwr_state(lvl,
508 					     cpu_idx,
509 					     PSCI_LOCAL_STATE_RUN);
510 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
511 	}
512 
513 	/* Set the affinity info state to ON */
514 	psci_set_aff_info_state(AFF_STATE_ON);
515 
516 	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
517 	psci_flush_cpu_data(psci_svc_cpu_data);
518 }
519 
520 /******************************************************************************
521  * This function is used in platform-coordinated mode.
522  *
523  * This function is passed the local power states requested for each power
524  * domain (state_info) between the current CPU domain and its ancestors until
525  * the target power level (end_pwrlvl). It updates the array of requested power
526  * states with this information.
527  *
528  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
529  * retrieves the states requested by all the cpus of which the power domain at
530  * that level is an ancestor. It passes this information to the platform to
531  * coordinate and return the target power state. If the target state for a level
532  * is RUN then subsequent levels are not considered. At the CPU level, state
533  * coordination is not required. Hence, the requested and the target states are
534  * the same.
535  *
536  * The 'state_info' is updated with the target state for each level between the
537  * CPU and the 'end_pwrlvl' and returned to the caller.
538  *
539  * This function will only be invoked with data cache enabled and while
540  * powering down a core.
541  *****************************************************************************/
542 void psci_do_state_coordination(unsigned int cpu_idx, unsigned int end_pwrlvl,
543 				psci_power_state_t *state_info)
544 {
545 	unsigned int lvl, parent_idx;
546 	unsigned int start_idx;
547 	unsigned int ncpus;
548 	plat_local_state_t target_state, *req_states;
549 
550 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
551 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
552 
553 	/* For level 0, the requested state will be equivalent
554 	   to target state */
555 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
556 
557 		/* First update the requested power state */
558 		psci_set_req_local_pwr_state(lvl, cpu_idx,
559 					     state_info->pwr_domain_state[lvl]);
560 
561 		/* Get the requested power states for this power level */
562 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
563 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
564 
565 		/*
566 		 * Let the platform coordinate amongst the requested states at
567 		 * this power level and return the target local power state.
568 		 */
569 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
570 		target_state = plat_get_target_pwr_state(lvl,
571 							 req_states,
572 							 ncpus);
573 
574 		state_info->pwr_domain_state[lvl] = target_state;
575 
576 		/* Break early if the negotiated target power state is RUN */
577 		if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0)
578 			break;
579 
580 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
581 	}
582 
583 	/*
584 	 * This is for cases when we break out of the above loop early because
585 	 * the target power state is RUN at a power level < end_pwlvl.
586 	 * We update the requested power state from state_info and then
587 	 * set the target state as RUN.
588 	 */
589 	for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
590 		psci_set_req_local_pwr_state(lvl, cpu_idx,
591 					     state_info->pwr_domain_state[lvl]);
592 		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
593 
594 	}
595 }
596 
597 #if PSCI_OS_INIT_MODE
598 /******************************************************************************
599  * This function is used in OS-initiated mode.
600  *
601  * This function is passed the local power states requested for each power
602  * domain (state_info) between the current CPU domain and its ancestors until
603  * the target power level (end_pwrlvl), and ensures the requested power states
604  * are valid. It updates the array of requested power states with this
605  * information.
606  *
607  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
608  * retrieves the states requested by all the cpus of which the power domain at
609  * that level is an ancestor. It passes this information to the platform to
610  * coordinate and return the target power state. If the requested state does
611  * not match the target state, the request is denied.
612  *
613  * The 'state_info' is not modified.
614  *
615  * This function will only be invoked with data cache enabled and while
616  * powering down a core.
617  *****************************************************************************/
618 int psci_validate_state_coordination(unsigned int cpu_idx, unsigned int end_pwrlvl,
619 				     psci_power_state_t *state_info)
620 {
621 	int rc = PSCI_E_SUCCESS;
622 	unsigned int lvl, parent_idx;
623 	unsigned int start_idx;
624 	unsigned int ncpus;
625 	plat_local_state_t target_state, *req_states;
626 	plat_local_state_t prev[PLAT_MAX_PWR_LVL];
627 
628 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
629 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
630 
631 	/*
632 	 * Save a copy of the previous requested local power states and update
633 	 * the new requested local power states.
634 	 */
635 	psci_update_req_local_pwr_states(end_pwrlvl, cpu_idx, state_info, prev);
636 
637 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
638 		/* Get the requested power states for this power level */
639 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
640 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
641 
642 		/*
643 		 * Let the platform coordinate amongst the requested states at
644 		 * this power level and return the target local power state.
645 		 */
646 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
647 		target_state = plat_get_target_pwr_state(lvl,
648 							 req_states,
649 							 ncpus);
650 
651 		/*
652 		 * Verify that the requested power state matches the target
653 		 * local power state.
654 		 */
655 		if (state_info->pwr_domain_state[lvl] != target_state) {
656 			if (target_state == PSCI_LOCAL_STATE_RUN) {
657 				rc = PSCI_E_DENIED;
658 			} else {
659 				rc = PSCI_E_INVALID_PARAMS;
660 			}
661 			goto exit;
662 		}
663 
664 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
665 	}
666 
667 	/*
668 	 * Verify that the current core is the last running core at the
669 	 * specified power level.
670 	 */
671 	lvl = state_info->last_at_pwrlvl;
672 	if (!psci_is_last_cpu_to_idle_at_pwrlvl(cpu_idx, lvl)) {
673 		rc = PSCI_E_DENIED;
674 	}
675 
676 exit:
677 	if (rc != PSCI_E_SUCCESS) {
678 		/* Restore the previous requested local power states. */
679 		psci_restore_req_local_pwr_states(cpu_idx, prev);
680 		return rc;
681 	}
682 
683 	return rc;
684 }
685 #endif
686 
687 /******************************************************************************
688  * This function validates a suspend request by making sure that if a standby
689  * state is requested then no power level is turned off and the highest power
690  * level is placed in a standby/retention state.
691  *
692  * It also ensures that the state level X will enter is not shallower than the
693  * state level X + 1 will enter.
694  *
695  * This validation will be enabled only for DEBUG builds as the platform is
696  * expected to perform these validations as well.
697  *****************************************************************************/
698 int psci_validate_suspend_req(const psci_power_state_t *state_info,
699 			      unsigned int is_power_down_state)
700 {
701 	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
702 	plat_local_state_t state;
703 	plat_local_state_type_t req_state_type, deepest_state_type;
704 	int i;
705 
706 	/* Find the target suspend power level */
707 	target_lvl = psci_find_target_suspend_lvl(state_info);
708 	if (target_lvl == PSCI_INVALID_PWR_LVL)
709 		return PSCI_E_INVALID_PARAMS;
710 
711 	/* All power domain levels are in a RUN state to begin with */
712 	deepest_state_type = STATE_TYPE_RUN;
713 
714 	for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
715 		state = state_info->pwr_domain_state[i];
716 		req_state_type = find_local_state_type(state);
717 
718 		/*
719 		 * While traversing from the highest power level to the lowest,
720 		 * the state requested for lower levels has to be the same or
721 		 * deeper i.e. equal to or greater than the state at the higher
722 		 * levels. If this condition is true, then the requested state
723 		 * becomes the deepest state encountered so far.
724 		 */
725 		if (req_state_type < deepest_state_type)
726 			return PSCI_E_INVALID_PARAMS;
727 		deepest_state_type = req_state_type;
728 	}
729 
730 	/* Find the highest off power level */
731 	max_off_lvl = psci_find_max_off_lvl(state_info);
732 
733 	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
734 	max_retn_lvl = PSCI_INVALID_PWR_LVL;
735 	if (target_lvl != max_off_lvl)
736 		max_retn_lvl = target_lvl;
737 
738 	/*
739 	 * If this is not a request for a power down state then max off level
740 	 * has to be invalid and max retention level has to be a valid power
741 	 * level.
742 	 */
743 	if ((is_power_down_state == 0U) &&
744 			((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
745 			 (max_retn_lvl == PSCI_INVALID_PWR_LVL)))
746 		return PSCI_E_INVALID_PARAMS;
747 
748 	return PSCI_E_SUCCESS;
749 }
750 
751 /******************************************************************************
752  * This function finds the highest power level which will be powered down
753  * amongst all the power levels specified in the 'state_info' structure
754  *****************************************************************************/
755 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
756 {
757 	int i;
758 
759 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
760 		if (is_local_state_off(state_info->pwr_domain_state[i]) != 0)
761 			return (unsigned int) i;
762 	}
763 
764 	return PSCI_INVALID_PWR_LVL;
765 }
766 
767 /******************************************************************************
768  * This functions finds the level of the highest power domain which will be
769  * placed in a low power state during a suspend operation.
770  *****************************************************************************/
771 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
772 {
773 	int i;
774 
775 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
776 		if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
777 			return (unsigned int) i;
778 	}
779 
780 	return PSCI_INVALID_PWR_LVL;
781 }
782 
783 /*******************************************************************************
784  * This function is passed the highest level in the topology tree that the
785  * operation should be applied to and a list of node indexes. It picks up locks
786  * from the node index list in order of increasing power domain level in the
787  * range specified.
788  ******************************************************************************/
789 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
790 				   const unsigned int *parent_nodes)
791 {
792 	unsigned int parent_idx;
793 	unsigned int level;
794 
795 	/* No locking required for level 0. Hence start locking from level 1 */
796 	for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
797 		parent_idx = parent_nodes[level - 1U];
798 		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
799 	}
800 }
801 
802 /*******************************************************************************
803  * This function is passed the highest level in the topology tree that the
804  * operation should be applied to and a list of node indexes. It releases the
805  * locks in order of decreasing power domain level in the range specified.
806  ******************************************************************************/
807 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
808 				   const unsigned int *parent_nodes)
809 {
810 	unsigned int parent_idx;
811 	unsigned int level;
812 
813 	/* Unlock top down. No unlocking required for level 0. */
814 	for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) {
815 		parent_idx = parent_nodes[level - 1U];
816 		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
817 	}
818 }
819 
820 /*******************************************************************************
821  * This function determines the full entrypoint information for the requested
822  * PSCI entrypoint on power on/resume and returns it.
823  ******************************************************************************/
824 #ifdef __aarch64__
825 static int psci_get_ns_ep_info(entry_point_info_t *ep,
826 			       uintptr_t entrypoint,
827 			       u_register_t context_id)
828 {
829 	u_register_t ep_attr, sctlr;
830 	unsigned int daif, ee, mode;
831 	u_register_t ns_scr_el3 = read_scr_el3();
832 	u_register_t ns_sctlr_el1 = read_sctlr_el1();
833 
834 	sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
835 		read_sctlr_el2() : ns_sctlr_el1;
836 	ee = 0;
837 
838 	ep_attr = NON_SECURE | EP_ST_DISABLE;
839 	if ((sctlr & SCTLR_EE_BIT) != 0U) {
840 		ep_attr |= EP_EE_BIG;
841 		ee = 1;
842 	}
843 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
844 
845 	ep->pc = entrypoint;
846 	zeromem(&ep->args, sizeof(ep->args));
847 	ep->args.arg0 = context_id;
848 
849 	/*
850 	 * Figure out whether the cpu enters the non-secure address space
851 	 * in aarch32 or aarch64
852 	 */
853 	if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
854 
855 		/*
856 		 * Check whether a Thumb entry point has been provided for an
857 		 * aarch64 EL
858 		 */
859 		if ((entrypoint & 0x1UL) != 0UL)
860 			return PSCI_E_INVALID_ADDRESS;
861 
862 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
863 
864 		ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX,
865 				   DISABLE_ALL_EXCEPTIONS);
866 	} else {
867 
868 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
869 			MODE32_hyp : MODE32_svc;
870 
871 		/*
872 		 * TODO: Choose async. exception bits if HYP mode is not
873 		 * implemented according to the values of SCR.{AW, FW} bits
874 		 */
875 		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
876 
877 		ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee,
878 				       daif);
879 	}
880 
881 	return PSCI_E_SUCCESS;
882 }
883 #else /* !__aarch64__ */
884 static int psci_get_ns_ep_info(entry_point_info_t *ep,
885 			       uintptr_t entrypoint,
886 			       u_register_t context_id)
887 {
888 	u_register_t ep_attr;
889 	unsigned int aif, ee, mode;
890 	u_register_t scr = read_scr();
891 	u_register_t ns_sctlr, sctlr;
892 
893 	/* Switch to non secure state */
894 	write_scr(scr | SCR_NS_BIT);
895 	isb();
896 	ns_sctlr = read_sctlr();
897 
898 	sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
899 
900 	/* Return to original state */
901 	write_scr(scr);
902 	isb();
903 	ee = 0;
904 
905 	ep_attr = NON_SECURE | EP_ST_DISABLE;
906 	if (sctlr & SCTLR_EE_BIT) {
907 		ep_attr |= EP_EE_BIG;
908 		ee = 1;
909 	}
910 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
911 
912 	ep->pc = entrypoint;
913 	zeromem(&ep->args, sizeof(ep->args));
914 	ep->args.arg0 = context_id;
915 
916 	mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
917 
918 	/*
919 	 * TODO: Choose async. exception bits if HYP mode is not
920 	 * implemented according to the values of SCR.{AW, FW} bits
921 	 */
922 	aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
923 
924 	ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
925 
926 	return PSCI_E_SUCCESS;
927 }
928 
929 #endif /* __aarch64__ */
930 
931 /*******************************************************************************
932  * This function validates the entrypoint with the platform layer if the
933  * appropriate pm_ops hook is exported by the platform and returns the
934  * 'entry_point_info'.
935  ******************************************************************************/
936 int psci_validate_entry_point(entry_point_info_t *ep,
937 			      uintptr_t entrypoint,
938 			      u_register_t context_id)
939 {
940 	int rc;
941 
942 	/* Validate the entrypoint using platform psci_ops */
943 	if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
944 		rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
945 		if (rc != PSCI_E_SUCCESS)
946 			return PSCI_E_INVALID_ADDRESS;
947 	}
948 
949 	/*
950 	 * Verify and derive the re-entry information for
951 	 * the non-secure world from the non-secure state from
952 	 * where this call originated.
953 	 */
954 	rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
955 	return rc;
956 }
957 
958 /*******************************************************************************
959  * Generic handler which is called when a cpu is physically powered on. It
960  * traverses the node information and finds the highest power level powered
961  * off and performs generic, architectural, platform setup and state management
962  * to power on that power level and power levels below it.
963  * e.g. For a cpu that's been powered on, it will call the platform specific
964  * code to enable the gic cpu interface and for a cluster it will enable
965  * coherency at the interconnect level in addition to gic cpu interface.
966  ******************************************************************************/
967 void psci_warmboot_entrypoint(void)
968 {
969 	unsigned int end_pwrlvl;
970 	unsigned int cpu_idx = plat_my_core_pos();
971 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
972 	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
973 
974 	/* Init registers that never change for the lifetime of TF-A */
975 	cm_manage_extensions_el3();
976 
977 	/*
978 	 * Verify that we have been explicitly turned ON or resumed from
979 	 * suspend.
980 	 */
981 	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
982 		ERROR("Unexpected affinity info state.\n");
983 		panic();
984 	}
985 
986 	/*
987 	 * Get the maximum power domain level to traverse to after this cpu
988 	 * has been physically powered up.
989 	 */
990 	end_pwrlvl = get_power_on_target_pwrlvl();
991 
992 	/* Get the parent nodes */
993 	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
994 
995 	/*
996 	 * This function acquires the lock corresponding to each power level so
997 	 * that by the time all locks are taken, the system topology is snapshot
998 	 * and state management can be done safely.
999 	 */
1000 	psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes);
1001 
1002 	psci_get_target_local_pwr_states(cpu_idx, end_pwrlvl, &state_info);
1003 
1004 #if ENABLE_PSCI_STAT
1005 	plat_psci_stat_accounting_stop(&state_info);
1006 #endif
1007 
1008 	/*
1009 	 * This CPU could be resuming from suspend or it could have just been
1010 	 * turned on. To distinguish between these 2 cases, we examine the
1011 	 * affinity state of the CPU:
1012 	 *  - If the affinity state is ON_PENDING then it has just been
1013 	 *    turned on.
1014 	 *  - Else it is resuming from suspend.
1015 	 *
1016 	 * Depending on the type of warm reset identified, choose the right set
1017 	 * of power management handler and perform the generic, architecture
1018 	 * and platform specific handling.
1019 	 */
1020 	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
1021 		psci_cpu_on_finish(cpu_idx, &state_info);
1022 	else
1023 		psci_cpu_suspend_to_powerdown_finish(cpu_idx, &state_info);
1024 
1025 	/*
1026 	 * Generic management: Now we just need to retrieve the
1027 	 * information that we had stashed away during the cpu_on
1028 	 * call to set this cpu on its way.
1029 	 */
1030 	cm_prepare_el3_exit_ns();
1031 
1032 	/*
1033 	 * Set the requested and target state of this CPU and all the higher
1034 	 * power domains which are ancestors of this CPU to run.
1035 	 */
1036 	psci_set_pwr_domains_to_run(cpu_idx, end_pwrlvl);
1037 
1038 #if ENABLE_PSCI_STAT
1039 	psci_stats_update_pwr_up(cpu_idx, end_pwrlvl, &state_info);
1040 #endif
1041 
1042 	/*
1043 	 * This loop releases the lock corresponding to each power level
1044 	 * in the reverse order to which they were acquired.
1045 	 */
1046 	psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes);
1047 }
1048 
1049 /*******************************************************************************
1050  * This function initializes the set of hooks that PSCI invokes as part of power
1051  * management operation. The power management hooks are expected to be provided
1052  * by the SPD, after it finishes all its initialization
1053  ******************************************************************************/
1054 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
1055 {
1056 	assert(pm != NULL);
1057 	psci_spd_pm = pm;
1058 
1059 	if (pm->svc_migrate != NULL)
1060 		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
1061 
1062 	if (pm->svc_migrate_info != NULL)
1063 		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
1064 				| define_psci_cap(PSCI_MIG_INFO_TYPE);
1065 }
1066 
1067 /*******************************************************************************
1068  * This function invokes the migrate info hook in the spd_pm_ops. It performs
1069  * the necessary return value validation. If the Secure Payload is UP and
1070  * migrate capable, it returns the mpidr of the CPU on which the Secure payload
1071  * is resident through the mpidr parameter. Else the value of the parameter on
1072  * return is undefined.
1073  ******************************************************************************/
1074 int psci_spd_migrate_info(u_register_t *mpidr)
1075 {
1076 	int rc;
1077 
1078 	if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
1079 		return PSCI_E_NOT_SUPPORTED;
1080 
1081 	rc = psci_spd_pm->svc_migrate_info(mpidr);
1082 
1083 	assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
1084 	       (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
1085 
1086 	return rc;
1087 }
1088 
1089 
1090 /*******************************************************************************
1091  * This function prints the state of all power domains present in the
1092  * system
1093  ******************************************************************************/
1094 void psci_print_power_domain_map(void)
1095 {
1096 #if LOG_LEVEL >= LOG_LEVEL_INFO
1097 	unsigned int idx;
1098 	plat_local_state_t state;
1099 	plat_local_state_type_t state_type;
1100 
1101 	/* This array maps to the PSCI_STATE_X definitions in psci.h */
1102 	static const char * const psci_state_type_str[] = {
1103 		"ON",
1104 		"RETENTION",
1105 		"OFF",
1106 	};
1107 
1108 	INFO("PSCI Power Domain Map:\n");
1109 	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count);
1110 							idx++) {
1111 		state_type = find_local_state_type(
1112 				psci_non_cpu_pd_nodes[idx].local_state);
1113 		INFO("  Domain Node : Level %u, parent_node %u,"
1114 				" State %s (0x%x)\n",
1115 				psci_non_cpu_pd_nodes[idx].level,
1116 				psci_non_cpu_pd_nodes[idx].parent_node,
1117 				psci_state_type_str[state_type],
1118 				psci_non_cpu_pd_nodes[idx].local_state);
1119 	}
1120 
1121 	for (idx = 0; idx < psci_plat_core_count; idx++) {
1122 		state = psci_get_cpu_local_state_by_idx(idx);
1123 		state_type = find_local_state_type(state);
1124 		INFO("  CPU Node : MPID 0x%llx, parent_node %u,"
1125 				" State %s (0x%x)\n",
1126 				(unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
1127 				psci_cpu_pd_nodes[idx].parent_node,
1128 				psci_state_type_str[state_type],
1129 				psci_get_cpu_local_state_by_idx(idx));
1130 	}
1131 #endif
1132 }
1133 
1134 /******************************************************************************
1135  * Return whether any secondaries were powered up with CPU_ON call. A CPU that
1136  * have ever been powered up would have set its MPDIR value to something other
1137  * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
1138  * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
1139  * meaningful only when called on the primary CPU during early boot.
1140  *****************************************************************************/
1141 int psci_secondaries_brought_up(void)
1142 {
1143 	unsigned int idx, n_valid = 0U;
1144 
1145 	for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
1146 		if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
1147 			n_valid++;
1148 	}
1149 
1150 	assert(n_valid > 0U);
1151 
1152 	return (n_valid > 1U) ? 1 : 0;
1153 }
1154 
1155 /*******************************************************************************
1156  * Initiate power down sequence, by calling power down operations registered for
1157  * this CPU.
1158  ******************************************************************************/
1159 void psci_pwrdown_cpu(unsigned int power_level)
1160 {
1161 #if ENABLE_RUNTIME_INSTRUMENTATION
1162 
1163 	/*
1164 	 * Flush cache line so that even if CPU power down happens
1165 	 * the timestamp update is reflected in memory.
1166 	 */
1167 	PMF_CAPTURE_TIMESTAMP(rt_instr_svc,
1168 		RT_INSTR_ENTER_CFLUSH,
1169 		PMF_CACHE_MAINT);
1170 #endif
1171 
1172 #if HW_ASSISTED_COHERENCY
1173 	/*
1174 	 * With hardware-assisted coherency, the CPU drivers only initiate the
1175 	 * power down sequence, without performing cache-maintenance operations
1176 	 * in software. Data caches enabled both before and after this call.
1177 	 */
1178 	prepare_cpu_pwr_dwn(power_level);
1179 #else
1180 	/*
1181 	 * Without hardware-assisted coherency, the CPU drivers disable data
1182 	 * caches, then perform cache-maintenance operations in software.
1183 	 *
1184 	 * This also calls prepare_cpu_pwr_dwn() to initiate power down
1185 	 * sequence, but that function will return with data caches disabled.
1186 	 * We must ensure that the stack memory is flushed out to memory before
1187 	 * we start popping from it again.
1188 	 */
1189 	psci_do_pwrdown_cache_maintenance(power_level);
1190 #endif
1191 
1192 #if ENABLE_RUNTIME_INSTRUMENTATION
1193 	PMF_CAPTURE_TIMESTAMP(rt_instr_svc,
1194 		RT_INSTR_EXIT_CFLUSH,
1195 		PMF_NO_CACHE_MAINT);
1196 #endif
1197 }
1198 
1199 /*******************************************************************************
1200  * This function invokes the callback 'stop_func()' with the 'mpidr' of each
1201  * online PE. Caller can pass suitable method to stop a remote core.
1202  *
1203  * 'wait_ms' is the timeout value in milliseconds for the other cores to
1204  * transition to power down state. Passing '0' makes it non-blocking.
1205  *
1206  * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the
1207  * given timeout.
1208  ******************************************************************************/
1209 int psci_stop_other_cores(unsigned int this_cpu_idx, unsigned int wait_ms,
1210 				   void (*stop_func)(u_register_t mpidr))
1211 {
1212 	/* Invoke stop_func for each core */
1213 	for (unsigned int idx = 0U; idx < psci_plat_core_count; idx++) {
1214 		/* skip current CPU */
1215 		if (idx == this_cpu_idx) {
1216 			continue;
1217 		}
1218 
1219 		/* Check if the CPU is ON */
1220 		if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) {
1221 			(*stop_func)(psci_cpu_pd_nodes[idx].mpidr);
1222 		}
1223 	}
1224 
1225 	/* Need to wait for other cores to shutdown */
1226 	if (wait_ms != 0U) {
1227 		while ((wait_ms-- != 0U) && (!psci_is_last_on_cpu(this_cpu_idx))) {
1228 			mdelay(1U);
1229 		}
1230 
1231 		if (!psci_is_last_on_cpu(this_cpu_idx)) {
1232 			WARN("Failed to stop all cores!\n");
1233 			psci_print_power_domain_map();
1234 			return PSCI_E_DENIED;
1235 		}
1236 	}
1237 
1238 	return PSCI_E_SUCCESS;
1239 }
1240 
1241 /*******************************************************************************
1242  * This function verifies that all the other cores in the system have been
1243  * turned OFF and the current CPU is the last running CPU in the system.
1244  * Returns true if the current CPU is the last ON CPU or false otherwise.
1245  *
1246  * This API has following differences with psci_is_last_on_cpu
1247  *  1. PSCI states are locked
1248  ******************************************************************************/
1249 bool psci_is_last_on_cpu_safe(unsigned int this_core)
1250 {
1251 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1252 
1253 	psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1254 
1255 	psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1256 
1257 	if (!psci_is_last_on_cpu(this_core)) {
1258 		psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1259 		return false;
1260 	}
1261 
1262 	psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1263 
1264 	return true;
1265 }
1266 
1267 /*******************************************************************************
1268  * This function verifies that all cores in the system have been turned ON.
1269  * Returns true, if all CPUs are ON or false otherwise.
1270  *
1271  * This API has following differences with psci_are_all_cpus_on
1272  *  1. PSCI states are locked
1273  ******************************************************************************/
1274 bool psci_are_all_cpus_on_safe(unsigned int this_core)
1275 {
1276 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1277 
1278 	psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1279 
1280 	psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1281 
1282 	if (!psci_are_all_cpus_on()) {
1283 		psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1284 		return false;
1285 	}
1286 
1287 	psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1288 
1289 	return true;
1290 }
1291