xref: /rk3399_ARM-atf/lib/psci/psci_common.c (revision 152ad112d73402523302f3cb252aee0efc145736)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <string.h>
9 
10 #include <arch.h>
11 #include <arch_features.h>
12 #include <arch_helpers.h>
13 #include <common/bl_common.h>
14 #include <common/debug.h>
15 #include <context.h>
16 #include <drivers/delay_timer.h>
17 #include <lib/el3_runtime/context_mgmt.h>
18 #include <lib/extensions/spe.h>
19 #include <lib/utils.h>
20 #include <plat/common/platform.h>
21 
22 #include "psci_private.h"
23 
24 /*
25  * SPD power management operations, expected to be supplied by the registered
26  * SPD on successful SP initialization
27  */
28 const spd_pm_ops_t *psci_spd_pm;
29 
30 /*
31  * PSCI requested local power state map. This array is used to store the local
32  * power states requested by a CPU for power levels from level 1 to
33  * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
34  * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
35  * CPU are the same.
36  *
37  * During state coordination, the platform is passed an array containing the
38  * local states requested for a particular non cpu power domain by each cpu
39  * within the domain.
40  *
41  * TODO: Dense packing of the requested states will cause cache thrashing
42  * when multiple power domains write to it. If we allocate the requested
43  * states at each power level in a cache-line aligned per-domain memory,
44  * the cache thrashing can be avoided.
45  */
46 static plat_local_state_t
47 	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
48 
49 unsigned int psci_plat_core_count;
50 
51 /*******************************************************************************
52  * Arrays that hold the platform's power domain tree information for state
53  * management of power domains.
54  * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
55  * which is an ancestor of a CPU power domain.
56  * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
57  ******************************************************************************/
58 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
59 #if USE_COHERENT_MEM
60 __section(".tzfw_coherent_mem")
61 #endif
62 ;
63 
64 /* Lock for PSCI state coordination */
65 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
66 
67 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
68 
69 /*******************************************************************************
70  * Pointer to functions exported by the platform to complete power mgmt. ops
71  ******************************************************************************/
72 const plat_psci_ops_t *psci_plat_pm_ops;
73 
74 /******************************************************************************
75  * Check that the maximum power level supported by the platform makes sense
76  *****************************************************************************/
77 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
78 	(PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
79 	assert_platform_max_pwrlvl_check);
80 
81 #if PSCI_OS_INIT_MODE
82 /*******************************************************************************
83  * The power state coordination mode used in CPU_SUSPEND.
84  * Defaults to platform-coordinated mode.
85  ******************************************************************************/
86 suspend_mode_t psci_suspend_mode = PLAT_COORD;
87 #endif
88 
89 /*
90  * The plat_local_state used by the platform is one of these types: RUN,
91  * RETENTION and OFF. The platform can define further sub-states for each type
92  * apart from RUN. This categorization is done to verify the sanity of the
93  * psci_power_state passed by the platform and to print debug information. The
94  * categorization is done on the basis of the following conditions:
95  *
96  * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
97  *
98  * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
99  *    STATE_TYPE_RETN.
100  *
101  * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
102  *    STATE_TYPE_OFF.
103  */
104 typedef enum plat_local_state_type {
105 	STATE_TYPE_RUN = 0,
106 	STATE_TYPE_RETN,
107 	STATE_TYPE_OFF
108 } plat_local_state_type_t;
109 
110 /* Function used to categorize plat_local_state. */
111 static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
112 {
113 	if (state != 0U) {
114 		if (state > PLAT_MAX_RET_STATE) {
115 			return STATE_TYPE_OFF;
116 		} else {
117 			return STATE_TYPE_RETN;
118 		}
119 	} else {
120 		return STATE_TYPE_RUN;
121 	}
122 }
123 
124 /******************************************************************************
125  * Check that the maximum retention level supported by the platform is less
126  * than the maximum off level.
127  *****************************************************************************/
128 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
129 		assert_platform_max_off_and_retn_state_check);
130 
131 /******************************************************************************
132  * This function ensures that the power state parameter in a CPU_SUSPEND request
133  * is valid. If so, it returns the requested states for each power level.
134  *****************************************************************************/
135 int psci_validate_power_state(unsigned int power_state,
136 			      psci_power_state_t *state_info)
137 {
138 	/* Check SBZ bits in power state are zero */
139 	if (psci_check_power_state(power_state) != 0U)
140 		return PSCI_E_INVALID_PARAMS;
141 
142 	assert(psci_plat_pm_ops->validate_power_state != NULL);
143 
144 	/* Validate the power_state using platform pm_ops */
145 	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
146 }
147 
148 /******************************************************************************
149  * This function retrieves the `psci_power_state_t` for system suspend from
150  * the platform.
151  *****************************************************************************/
152 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
153 {
154 	/*
155 	 * Assert that the required pm_ops hook is implemented to ensure that
156 	 * the capability detected during psci_setup() is valid.
157 	 */
158 	assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
159 
160 	/*
161 	 * Query the platform for the power_state required for system suspend
162 	 */
163 	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
164 }
165 
166 #if PSCI_OS_INIT_MODE
167 /*******************************************************************************
168  * This function verifies that all the other cores at the 'end_pwrlvl' have been
169  * idled and the current CPU is the last running CPU at the 'end_pwrlvl'.
170  * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
171  * otherwise.
172  ******************************************************************************/
173 static bool psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int end_pwrlvl)
174 {
175 	unsigned int my_idx, lvl;
176 	unsigned int parent_idx = 0;
177 	unsigned int cpu_start_idx, ncpus, cpu_idx;
178 	plat_local_state_t local_state;
179 
180 	if (end_pwrlvl == PSCI_CPU_PWR_LVL) {
181 		return true;
182 	}
183 
184 	my_idx = plat_my_core_pos();
185 
186 	for (lvl = PSCI_CPU_PWR_LVL; lvl <= end_pwrlvl; lvl++) {
187 		parent_idx = psci_cpu_pd_nodes[my_idx].parent_node;
188 	}
189 
190 	cpu_start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
191 	ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
192 
193 	for (cpu_idx = cpu_start_idx; cpu_idx < cpu_start_idx + ncpus;
194 			cpu_idx++) {
195 		local_state = psci_get_cpu_local_state_by_idx(cpu_idx);
196 		if (cpu_idx == my_idx) {
197 			assert(is_local_state_run(local_state) != 0);
198 			continue;
199 		}
200 
201 		if (is_local_state_run(local_state) != 0) {
202 			return false;
203 		}
204 	}
205 
206 	return true;
207 }
208 #endif
209 
210 /*******************************************************************************
211  * This function verifies that all the other cores in the system have been
212  * turned OFF and the current CPU is the last running CPU in the system.
213  * Returns true, if the current CPU is the last ON CPU or false otherwise.
214  ******************************************************************************/
215 bool psci_is_last_on_cpu(void)
216 {
217 	unsigned int cpu_idx, my_idx = plat_my_core_pos();
218 
219 	for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
220 		if (cpu_idx == my_idx) {
221 			assert(psci_get_aff_info_state() == AFF_STATE_ON);
222 			continue;
223 		}
224 
225 		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) {
226 			VERBOSE("core=%u other than current core=%u %s\n",
227 				cpu_idx, my_idx, "running in the system");
228 			return false;
229 		}
230 	}
231 
232 	return true;
233 }
234 
235 /*******************************************************************************
236  * This function verifies that all cores in the system have been turned ON.
237  * Returns true, if all CPUs are ON or false otherwise.
238  ******************************************************************************/
239 static bool psci_are_all_cpus_on(void)
240 {
241 	unsigned int cpu_idx;
242 
243 	for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
244 		if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_OFF) {
245 			return false;
246 		}
247 	}
248 
249 	return true;
250 }
251 
252 /*******************************************************************************
253  * Routine to return the maximum power level to traverse to after a cpu has
254  * been physically powered up. It is expected to be called immediately after
255  * reset from assembler code.
256  ******************************************************************************/
257 static unsigned int get_power_on_target_pwrlvl(void)
258 {
259 	unsigned int pwrlvl;
260 
261 	/*
262 	 * Assume that this cpu was suspended and retrieve its target power
263 	 * level. If it is invalid then it could only have been turned off
264 	 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
265 	 * cpu can be turned off to.
266 	 */
267 	pwrlvl = psci_get_suspend_pwrlvl();
268 	if (pwrlvl == PSCI_INVALID_PWR_LVL)
269 		pwrlvl = PLAT_MAX_PWR_LVL;
270 	assert(pwrlvl < PSCI_INVALID_PWR_LVL);
271 	return pwrlvl;
272 }
273 
274 /******************************************************************************
275  * Helper function to update the requested local power state array. This array
276  * does not store the requested state for the CPU power level. Hence an
277  * assertion is added to prevent us from accessing the CPU power level.
278  *****************************************************************************/
279 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
280 					 unsigned int cpu_idx,
281 					 plat_local_state_t req_pwr_state)
282 {
283 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
284 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
285 			(cpu_idx < psci_plat_core_count)) {
286 		psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
287 	}
288 }
289 
290 /******************************************************************************
291  * This function initializes the psci_req_local_pwr_states.
292  *****************************************************************************/
293 void __init psci_init_req_local_pwr_states(void)
294 {
295 	/* Initialize the requested state of all non CPU power domains as OFF */
296 	unsigned int pwrlvl;
297 	unsigned int core;
298 
299 	for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
300 		for (core = 0; core < psci_plat_core_count; core++) {
301 			psci_req_local_pwr_states[pwrlvl][core] =
302 				PLAT_MAX_OFF_STATE;
303 		}
304 	}
305 }
306 
307 /******************************************************************************
308  * Helper function to return a reference to an array containing the local power
309  * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
310  * array will be the number of cpu power domains of which this power domain is
311  * an ancestor. These requested states will be used to determine a suitable
312  * target state for this power domain during psci state coordination. An
313  * assertion is added to prevent us from accessing the CPU power level.
314  *****************************************************************************/
315 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
316 							 unsigned int cpu_idx)
317 {
318 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
319 
320 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
321 			(cpu_idx < psci_plat_core_count)) {
322 		return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
323 	} else
324 		return NULL;
325 }
326 
327 #if PSCI_OS_INIT_MODE
328 /******************************************************************************
329  * Helper function to save a copy of the psci_req_local_pwr_states (prev) for a
330  * CPU (cpu_idx), and update psci_req_local_pwr_states with the new requested
331  * local power states (state_info).
332  *****************************************************************************/
333 void psci_update_req_local_pwr_states(unsigned int end_pwrlvl,
334 				      unsigned int cpu_idx,
335 				      psci_power_state_t *state_info,
336 				      plat_local_state_t *prev)
337 {
338 	unsigned int lvl;
339 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
340 	unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
341 #else
342 	unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
343 #endif
344 	plat_local_state_t req_state;
345 
346 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
347 		/* Save the previous requested local power state */
348 		prev[lvl - 1U] = *psci_get_req_local_pwr_states(lvl, cpu_idx);
349 
350 		/* Update the new requested local power state */
351 		if (lvl <= end_pwrlvl) {
352 			req_state = state_info->pwr_domain_state[lvl];
353 		} else {
354 			req_state = state_info->pwr_domain_state[end_pwrlvl];
355 		}
356 		psci_set_req_local_pwr_state(lvl, cpu_idx, req_state);
357 	}
358 }
359 
360 /******************************************************************************
361  * Helper function to restore the previously saved requested local power states
362  * (prev) for a CPU (cpu_idx) to psci_req_local_pwr_states.
363  *****************************************************************************/
364 void psci_restore_req_local_pwr_states(unsigned int cpu_idx,
365 				       plat_local_state_t *prev)
366 {
367 	unsigned int lvl;
368 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
369 	unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
370 #else
371 	unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
372 #endif
373 
374 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
375 		/* Restore the previous requested local power state */
376 		psci_set_req_local_pwr_state(lvl, cpu_idx, prev[lvl - 1U]);
377 	}
378 }
379 #endif
380 
381 /*
382  * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
383  * memory.
384  *
385  * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
386  * it's accessed by both cached and non-cached participants. To serve the common
387  * minimum, perform a cache flush before read and after write so that non-cached
388  * participants operate on latest data in main memory.
389  *
390  * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
391  * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
392  * In both cases, no cache operations are required.
393  */
394 
395 /*
396  * Retrieve local state of non-CPU power domain node from a non-cached CPU,
397  * after any required cache maintenance operation.
398  */
399 static plat_local_state_t get_non_cpu_pd_node_local_state(
400 		unsigned int parent_idx)
401 {
402 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
403 	flush_dcache_range(
404 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
405 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
406 #endif
407 	return psci_non_cpu_pd_nodes[parent_idx].local_state;
408 }
409 
410 /*
411  * Update local state of non-CPU power domain node from a cached CPU; perform
412  * any required cache maintenance operation afterwards.
413  */
414 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
415 		plat_local_state_t state)
416 {
417 	psci_non_cpu_pd_nodes[parent_idx].local_state = state;
418 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
419 	flush_dcache_range(
420 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
421 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
422 #endif
423 }
424 
425 /******************************************************************************
426  * Helper function to return the current local power state of each power domain
427  * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
428  * function will be called after a cpu is powered on to find the local state
429  * each power domain has emerged from.
430  *****************************************************************************/
431 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
432 				      psci_power_state_t *target_state)
433 {
434 	unsigned int parent_idx, lvl;
435 	plat_local_state_t *pd_state = target_state->pwr_domain_state;
436 
437 	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
438 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
439 
440 	/* Copy the local power state from node to state_info */
441 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
442 		pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
443 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
444 	}
445 
446 	/* Set the the higher levels to RUN */
447 	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
448 		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
449 }
450 
451 /******************************************************************************
452  * Helper function to set the target local power state that each power domain
453  * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
454  * enter. This function will be called after coordination of requested power
455  * states has been done for each power level.
456  *****************************************************************************/
457 void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
458 				      const psci_power_state_t *target_state)
459 {
460 	unsigned int parent_idx, lvl;
461 	const plat_local_state_t *pd_state = target_state->pwr_domain_state;
462 
463 	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
464 
465 	/*
466 	 * Need to flush as local_state might be accessed with Data Cache
467 	 * disabled during power on
468 	 */
469 	psci_flush_cpu_data(psci_svc_cpu_data.local_state);
470 
471 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
472 
473 	/* Copy the local_state from state_info */
474 	for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
475 		set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
476 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
477 	}
478 }
479 
480 /*******************************************************************************
481  * PSCI helper function to get the parent nodes corresponding to a cpu_index.
482  ******************************************************************************/
483 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
484 				      unsigned int end_lvl,
485 				      unsigned int *node_index)
486 {
487 	unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
488 	unsigned int i;
489 	unsigned int *node = node_index;
490 
491 	for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
492 		*node = parent_node;
493 		node++;
494 		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
495 	}
496 }
497 
498 /******************************************************************************
499  * This function is invoked post CPU power up and initialization. It sets the
500  * affinity info state, target power state and requested power state for the
501  * current CPU and all its ancestor power domains to RUN.
502  *****************************************************************************/
503 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
504 {
505 	unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
506 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
507 
508 	/* Reset the local_state to RUN for the non cpu power domains. */
509 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
510 		set_non_cpu_pd_node_local_state(parent_idx,
511 				PSCI_LOCAL_STATE_RUN);
512 		psci_set_req_local_pwr_state(lvl,
513 					     cpu_idx,
514 					     PSCI_LOCAL_STATE_RUN);
515 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
516 	}
517 
518 	/* Set the affinity info state to ON */
519 	psci_set_aff_info_state(AFF_STATE_ON);
520 
521 	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
522 	psci_flush_cpu_data(psci_svc_cpu_data);
523 }
524 
525 /******************************************************************************
526  * This function is used in platform-coordinated mode.
527  *
528  * This function is passed the local power states requested for each power
529  * domain (state_info) between the current CPU domain and its ancestors until
530  * the target power level (end_pwrlvl). It updates the array of requested power
531  * states with this information.
532  *
533  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
534  * retrieves the states requested by all the cpus of which the power domain at
535  * that level is an ancestor. It passes this information to the platform to
536  * coordinate and return the target power state. If the target state for a level
537  * is RUN then subsequent levels are not considered. At the CPU level, state
538  * coordination is not required. Hence, the requested and the target states are
539  * the same.
540  *
541  * The 'state_info' is updated with the target state for each level between the
542  * CPU and the 'end_pwrlvl' and returned to the caller.
543  *
544  * This function will only be invoked with data cache enabled and while
545  * powering down a core.
546  *****************************************************************************/
547 void psci_do_state_coordination(unsigned int end_pwrlvl,
548 				psci_power_state_t *state_info)
549 {
550 	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
551 	unsigned int start_idx;
552 	unsigned int ncpus;
553 	plat_local_state_t target_state, *req_states;
554 
555 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
556 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
557 
558 	/* For level 0, the requested state will be equivalent
559 	   to target state */
560 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
561 
562 		/* First update the requested power state */
563 		psci_set_req_local_pwr_state(lvl, cpu_idx,
564 					     state_info->pwr_domain_state[lvl]);
565 
566 		/* Get the requested power states for this power level */
567 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
568 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
569 
570 		/*
571 		 * Let the platform coordinate amongst the requested states at
572 		 * this power level and return the target local power state.
573 		 */
574 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
575 		target_state = plat_get_target_pwr_state(lvl,
576 							 req_states,
577 							 ncpus);
578 
579 		state_info->pwr_domain_state[lvl] = target_state;
580 
581 		/* Break early if the negotiated target power state is RUN */
582 		if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0)
583 			break;
584 
585 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
586 	}
587 
588 	/*
589 	 * This is for cases when we break out of the above loop early because
590 	 * the target power state is RUN at a power level < end_pwlvl.
591 	 * We update the requested power state from state_info and then
592 	 * set the target state as RUN.
593 	 */
594 	for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
595 		psci_set_req_local_pwr_state(lvl, cpu_idx,
596 					     state_info->pwr_domain_state[lvl]);
597 		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
598 
599 	}
600 }
601 
602 #if PSCI_OS_INIT_MODE
603 /******************************************************************************
604  * This function is used in OS-initiated mode.
605  *
606  * This function is passed the local power states requested for each power
607  * domain (state_info) between the current CPU domain and its ancestors until
608  * the target power level (end_pwrlvl), and ensures the requested power states
609  * are valid. It updates the array of requested power states with this
610  * information.
611  *
612  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
613  * retrieves the states requested by all the cpus of which the power domain at
614  * that level is an ancestor. It passes this information to the platform to
615  * coordinate and return the target power state. If the requested state does
616  * not match the target state, the request is denied.
617  *
618  * The 'state_info' is not modified.
619  *
620  * This function will only be invoked with data cache enabled and while
621  * powering down a core.
622  *****************************************************************************/
623 int psci_validate_state_coordination(unsigned int end_pwrlvl,
624 				     psci_power_state_t *state_info)
625 {
626 	int rc = PSCI_E_SUCCESS;
627 	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
628 	unsigned int start_idx;
629 	unsigned int ncpus;
630 	plat_local_state_t target_state, *req_states;
631 	plat_local_state_t prev[PLAT_MAX_PWR_LVL];
632 
633 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
634 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
635 
636 	/*
637 	 * Save a copy of the previous requested local power states and update
638 	 * the new requested local power states.
639 	 */
640 	psci_update_req_local_pwr_states(end_pwrlvl, cpu_idx, state_info, prev);
641 
642 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
643 		/* Get the requested power states for this power level */
644 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
645 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
646 
647 		/*
648 		 * Let the platform coordinate amongst the requested states at
649 		 * this power level and return the target local power state.
650 		 */
651 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
652 		target_state = plat_get_target_pwr_state(lvl,
653 							 req_states,
654 							 ncpus);
655 
656 		/*
657 		 * Verify that the requested power state matches the target
658 		 * local power state.
659 		 */
660 		if (state_info->pwr_domain_state[lvl] != target_state) {
661 			if (target_state == PSCI_LOCAL_STATE_RUN) {
662 				rc = PSCI_E_DENIED;
663 			} else {
664 				rc = PSCI_E_INVALID_PARAMS;
665 			}
666 			goto exit;
667 		}
668 	}
669 
670 	/*
671 	 * Verify that the current core is the last running core at the
672 	 * specified power level.
673 	 */
674 	lvl = state_info->last_at_pwrlvl;
675 	if (!psci_is_last_cpu_to_idle_at_pwrlvl(lvl)) {
676 		rc = PSCI_E_DENIED;
677 	}
678 
679 exit:
680 	if (rc != PSCI_E_SUCCESS) {
681 		/* Restore the previous requested local power states. */
682 		psci_restore_req_local_pwr_states(cpu_idx, prev);
683 		return rc;
684 	}
685 
686 	return rc;
687 }
688 #endif
689 
690 /******************************************************************************
691  * This function validates a suspend request by making sure that if a standby
692  * state is requested then no power level is turned off and the highest power
693  * level is placed in a standby/retention state.
694  *
695  * It also ensures that the state level X will enter is not shallower than the
696  * state level X + 1 will enter.
697  *
698  * This validation will be enabled only for DEBUG builds as the platform is
699  * expected to perform these validations as well.
700  *****************************************************************************/
701 int psci_validate_suspend_req(const psci_power_state_t *state_info,
702 			      unsigned int is_power_down_state)
703 {
704 	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
705 	plat_local_state_t state;
706 	plat_local_state_type_t req_state_type, deepest_state_type;
707 	int i;
708 
709 	/* Find the target suspend power level */
710 	target_lvl = psci_find_target_suspend_lvl(state_info);
711 	if (target_lvl == PSCI_INVALID_PWR_LVL)
712 		return PSCI_E_INVALID_PARAMS;
713 
714 	/* All power domain levels are in a RUN state to begin with */
715 	deepest_state_type = STATE_TYPE_RUN;
716 
717 	for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
718 		state = state_info->pwr_domain_state[i];
719 		req_state_type = find_local_state_type(state);
720 
721 		/*
722 		 * While traversing from the highest power level to the lowest,
723 		 * the state requested for lower levels has to be the same or
724 		 * deeper i.e. equal to or greater than the state at the higher
725 		 * levels. If this condition is true, then the requested state
726 		 * becomes the deepest state encountered so far.
727 		 */
728 		if (req_state_type < deepest_state_type)
729 			return PSCI_E_INVALID_PARAMS;
730 		deepest_state_type = req_state_type;
731 	}
732 
733 	/* Find the highest off power level */
734 	max_off_lvl = psci_find_max_off_lvl(state_info);
735 
736 	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
737 	max_retn_lvl = PSCI_INVALID_PWR_LVL;
738 	if (target_lvl != max_off_lvl)
739 		max_retn_lvl = target_lvl;
740 
741 	/*
742 	 * If this is not a request for a power down state then max off level
743 	 * has to be invalid and max retention level has to be a valid power
744 	 * level.
745 	 */
746 	if ((is_power_down_state == 0U) &&
747 			((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
748 			 (max_retn_lvl == PSCI_INVALID_PWR_LVL)))
749 		return PSCI_E_INVALID_PARAMS;
750 
751 	return PSCI_E_SUCCESS;
752 }
753 
754 /******************************************************************************
755  * This function finds the highest power level which will be powered down
756  * amongst all the power levels specified in the 'state_info' structure
757  *****************************************************************************/
758 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
759 {
760 	int i;
761 
762 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
763 		if (is_local_state_off(state_info->pwr_domain_state[i]) != 0)
764 			return (unsigned int) i;
765 	}
766 
767 	return PSCI_INVALID_PWR_LVL;
768 }
769 
770 /******************************************************************************
771  * This functions finds the level of the highest power domain which will be
772  * placed in a low power state during a suspend operation.
773  *****************************************************************************/
774 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
775 {
776 	int i;
777 
778 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
779 		if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
780 			return (unsigned int) i;
781 	}
782 
783 	return PSCI_INVALID_PWR_LVL;
784 }
785 
786 /*******************************************************************************
787  * This function is passed the highest level in the topology tree that the
788  * operation should be applied to and a list of node indexes. It picks up locks
789  * from the node index list in order of increasing power domain level in the
790  * range specified.
791  ******************************************************************************/
792 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
793 				   const unsigned int *parent_nodes)
794 {
795 	unsigned int parent_idx;
796 	unsigned int level;
797 
798 	/* No locking required for level 0. Hence start locking from level 1 */
799 	for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
800 		parent_idx = parent_nodes[level - 1U];
801 		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
802 	}
803 }
804 
805 /*******************************************************************************
806  * This function is passed the highest level in the topology tree that the
807  * operation should be applied to and a list of node indexes. It releases the
808  * locks in order of decreasing power domain level in the range specified.
809  ******************************************************************************/
810 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
811 				   const unsigned int *parent_nodes)
812 {
813 	unsigned int parent_idx;
814 	unsigned int level;
815 
816 	/* Unlock top down. No unlocking required for level 0. */
817 	for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) {
818 		parent_idx = parent_nodes[level - 1U];
819 		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
820 	}
821 }
822 
823 /*******************************************************************************
824  * This function determines the full entrypoint information for the requested
825  * PSCI entrypoint on power on/resume and returns it.
826  ******************************************************************************/
827 #ifdef __aarch64__
828 static int psci_get_ns_ep_info(entry_point_info_t *ep,
829 			       uintptr_t entrypoint,
830 			       u_register_t context_id)
831 {
832 	u_register_t ep_attr, sctlr;
833 	unsigned int daif, ee, mode;
834 	u_register_t ns_scr_el3 = read_scr_el3();
835 	u_register_t ns_sctlr_el1 = read_sctlr_el1();
836 
837 	sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
838 		read_sctlr_el2() : ns_sctlr_el1;
839 	ee = 0;
840 
841 	ep_attr = NON_SECURE | EP_ST_DISABLE;
842 	if ((sctlr & SCTLR_EE_BIT) != 0U) {
843 		ep_attr |= EP_EE_BIG;
844 		ee = 1;
845 	}
846 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
847 
848 	ep->pc = entrypoint;
849 	zeromem(&ep->args, sizeof(ep->args));
850 	ep->args.arg0 = context_id;
851 
852 	/*
853 	 * Figure out whether the cpu enters the non-secure address space
854 	 * in aarch32 or aarch64
855 	 */
856 	if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
857 
858 		/*
859 		 * Check whether a Thumb entry point has been provided for an
860 		 * aarch64 EL
861 		 */
862 		if ((entrypoint & 0x1UL) != 0UL)
863 			return PSCI_E_INVALID_ADDRESS;
864 
865 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
866 
867 		ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX,
868 				   DISABLE_ALL_EXCEPTIONS);
869 	} else {
870 
871 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
872 			MODE32_hyp : MODE32_svc;
873 
874 		/*
875 		 * TODO: Choose async. exception bits if HYP mode is not
876 		 * implemented according to the values of SCR.{AW, FW} bits
877 		 */
878 		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
879 
880 		ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee,
881 				       daif);
882 	}
883 
884 	return PSCI_E_SUCCESS;
885 }
886 #else /* !__aarch64__ */
887 static int psci_get_ns_ep_info(entry_point_info_t *ep,
888 			       uintptr_t entrypoint,
889 			       u_register_t context_id)
890 {
891 	u_register_t ep_attr;
892 	unsigned int aif, ee, mode;
893 	u_register_t scr = read_scr();
894 	u_register_t ns_sctlr, sctlr;
895 
896 	/* Switch to non secure state */
897 	write_scr(scr | SCR_NS_BIT);
898 	isb();
899 	ns_sctlr = read_sctlr();
900 
901 	sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
902 
903 	/* Return to original state */
904 	write_scr(scr);
905 	isb();
906 	ee = 0;
907 
908 	ep_attr = NON_SECURE | EP_ST_DISABLE;
909 	if (sctlr & SCTLR_EE_BIT) {
910 		ep_attr |= EP_EE_BIG;
911 		ee = 1;
912 	}
913 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
914 
915 	ep->pc = entrypoint;
916 	zeromem(&ep->args, sizeof(ep->args));
917 	ep->args.arg0 = context_id;
918 
919 	mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
920 
921 	/*
922 	 * TODO: Choose async. exception bits if HYP mode is not
923 	 * implemented according to the values of SCR.{AW, FW} bits
924 	 */
925 	aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
926 
927 	ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
928 
929 	return PSCI_E_SUCCESS;
930 }
931 
932 #endif /* __aarch64__ */
933 
934 /*******************************************************************************
935  * This function validates the entrypoint with the platform layer if the
936  * appropriate pm_ops hook is exported by the platform and returns the
937  * 'entry_point_info'.
938  ******************************************************************************/
939 int psci_validate_entry_point(entry_point_info_t *ep,
940 			      uintptr_t entrypoint,
941 			      u_register_t context_id)
942 {
943 	int rc;
944 
945 	/* Validate the entrypoint using platform psci_ops */
946 	if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
947 		rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
948 		if (rc != PSCI_E_SUCCESS)
949 			return PSCI_E_INVALID_ADDRESS;
950 	}
951 
952 	/*
953 	 * Verify and derive the re-entry information for
954 	 * the non-secure world from the non-secure state from
955 	 * where this call originated.
956 	 */
957 	rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
958 	return rc;
959 }
960 
961 /*******************************************************************************
962  * Generic handler which is called when a cpu is physically powered on. It
963  * traverses the node information and finds the highest power level powered
964  * off and performs generic, architectural, platform setup and state management
965  * to power on that power level and power levels below it.
966  * e.g. For a cpu that's been powered on, it will call the platform specific
967  * code to enable the gic cpu interface and for a cluster it will enable
968  * coherency at the interconnect level in addition to gic cpu interface.
969  ******************************************************************************/
970 void psci_warmboot_entrypoint(void)
971 {
972 	unsigned int end_pwrlvl;
973 	unsigned int cpu_idx = plat_my_core_pos();
974 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
975 	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
976 
977 	/* Init registers that never change for the lifetime of TF-A */
978 	cm_manage_extensions_el3();
979 
980 	/*
981 	 * Verify that we have been explicitly turned ON or resumed from
982 	 * suspend.
983 	 */
984 	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
985 		ERROR("Unexpected affinity info state.\n");
986 		panic();
987 	}
988 
989 	/*
990 	 * Get the maximum power domain level to traverse to after this cpu
991 	 * has been physically powered up.
992 	 */
993 	end_pwrlvl = get_power_on_target_pwrlvl();
994 
995 	/* Get the parent nodes */
996 	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
997 
998 	/*
999 	 * This function acquires the lock corresponding to each power level so
1000 	 * that by the time all locks are taken, the system topology is snapshot
1001 	 * and state management can be done safely.
1002 	 */
1003 	psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes);
1004 
1005 	psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
1006 
1007 #if ENABLE_PSCI_STAT
1008 	plat_psci_stat_accounting_stop(&state_info);
1009 #endif
1010 
1011 	/*
1012 	 * This CPU could be resuming from suspend or it could have just been
1013 	 * turned on. To distinguish between these 2 cases, we examine the
1014 	 * affinity state of the CPU:
1015 	 *  - If the affinity state is ON_PENDING then it has just been
1016 	 *    turned on.
1017 	 *  - Else it is resuming from suspend.
1018 	 *
1019 	 * Depending on the type of warm reset identified, choose the right set
1020 	 * of power management handler and perform the generic, architecture
1021 	 * and platform specific handling.
1022 	 */
1023 	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
1024 		psci_cpu_on_finish(cpu_idx, &state_info);
1025 	else
1026 		psci_cpu_suspend_finish(cpu_idx, &state_info);
1027 
1028 	/*
1029 	 * Generic management: Now we just need to retrieve the
1030 	 * information that we had stashed away during the cpu_on
1031 	 * call to set this cpu on its way.
1032 	 */
1033 	cm_prepare_el3_exit_ns();
1034 
1035 	/*
1036 	 * Set the requested and target state of this CPU and all the higher
1037 	 * power domains which are ancestors of this CPU to run.
1038 	 */
1039 	psci_set_pwr_domains_to_run(end_pwrlvl);
1040 
1041 #if ENABLE_PSCI_STAT
1042 	/*
1043 	 * Update PSCI stats.
1044 	 * Caches are off when writing stats data on the power down path.
1045 	 * Since caches are now enabled, it's necessary to do cache
1046 	 * maintenance before reading that same data.
1047 	 */
1048 	psci_stats_update_pwr_up(end_pwrlvl, &state_info);
1049 #endif
1050 
1051 	/*
1052 	 * This loop releases the lock corresponding to each power level
1053 	 * in the reverse order to which they were acquired.
1054 	 */
1055 	psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes);
1056 }
1057 
1058 /*******************************************************************************
1059  * This function initializes the set of hooks that PSCI invokes as part of power
1060  * management operation. The power management hooks are expected to be provided
1061  * by the SPD, after it finishes all its initialization
1062  ******************************************************************************/
1063 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
1064 {
1065 	assert(pm != NULL);
1066 	psci_spd_pm = pm;
1067 
1068 	if (pm->svc_migrate != NULL)
1069 		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
1070 
1071 	if (pm->svc_migrate_info != NULL)
1072 		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
1073 				| define_psci_cap(PSCI_MIG_INFO_TYPE);
1074 }
1075 
1076 /*******************************************************************************
1077  * This function invokes the migrate info hook in the spd_pm_ops. It performs
1078  * the necessary return value validation. If the Secure Payload is UP and
1079  * migrate capable, it returns the mpidr of the CPU on which the Secure payload
1080  * is resident through the mpidr parameter. Else the value of the parameter on
1081  * return is undefined.
1082  ******************************************************************************/
1083 int psci_spd_migrate_info(u_register_t *mpidr)
1084 {
1085 	int rc;
1086 
1087 	if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
1088 		return PSCI_E_NOT_SUPPORTED;
1089 
1090 	rc = psci_spd_pm->svc_migrate_info(mpidr);
1091 
1092 	assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
1093 	       (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
1094 
1095 	return rc;
1096 }
1097 
1098 
1099 /*******************************************************************************
1100  * This function prints the state of all power domains present in the
1101  * system
1102  ******************************************************************************/
1103 void psci_print_power_domain_map(void)
1104 {
1105 #if LOG_LEVEL >= LOG_LEVEL_INFO
1106 	unsigned int idx;
1107 	plat_local_state_t state;
1108 	plat_local_state_type_t state_type;
1109 
1110 	/* This array maps to the PSCI_STATE_X definitions in psci.h */
1111 	static const char * const psci_state_type_str[] = {
1112 		"ON",
1113 		"RETENTION",
1114 		"OFF",
1115 	};
1116 
1117 	INFO("PSCI Power Domain Map:\n");
1118 	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count);
1119 							idx++) {
1120 		state_type = find_local_state_type(
1121 				psci_non_cpu_pd_nodes[idx].local_state);
1122 		INFO("  Domain Node : Level %u, parent_node %u,"
1123 				" State %s (0x%x)\n",
1124 				psci_non_cpu_pd_nodes[idx].level,
1125 				psci_non_cpu_pd_nodes[idx].parent_node,
1126 				psci_state_type_str[state_type],
1127 				psci_non_cpu_pd_nodes[idx].local_state);
1128 	}
1129 
1130 	for (idx = 0; idx < psci_plat_core_count; idx++) {
1131 		state = psci_get_cpu_local_state_by_idx(idx);
1132 		state_type = find_local_state_type(state);
1133 		INFO("  CPU Node : MPID 0x%llx, parent_node %u,"
1134 				" State %s (0x%x)\n",
1135 				(unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
1136 				psci_cpu_pd_nodes[idx].parent_node,
1137 				psci_state_type_str[state_type],
1138 				psci_get_cpu_local_state_by_idx(idx));
1139 	}
1140 #endif
1141 }
1142 
1143 /******************************************************************************
1144  * Return whether any secondaries were powered up with CPU_ON call. A CPU that
1145  * have ever been powered up would have set its MPDIR value to something other
1146  * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
1147  * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
1148  * meaningful only when called on the primary CPU during early boot.
1149  *****************************************************************************/
1150 int psci_secondaries_brought_up(void)
1151 {
1152 	unsigned int idx, n_valid = 0U;
1153 
1154 	for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
1155 		if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
1156 			n_valid++;
1157 	}
1158 
1159 	assert(n_valid > 0U);
1160 
1161 	return (n_valid > 1U) ? 1 : 0;
1162 }
1163 
1164 /*******************************************************************************
1165  * Initiate power down sequence, by calling power down operations registered for
1166  * this CPU.
1167  ******************************************************************************/
1168 void psci_pwrdown_cpu(unsigned int power_level)
1169 {
1170 	psci_do_manage_extensions();
1171 
1172 #if HW_ASSISTED_COHERENCY
1173 	/*
1174 	 * With hardware-assisted coherency, the CPU drivers only initiate the
1175 	 * power down sequence, without performing cache-maintenance operations
1176 	 * in software. Data caches enabled both before and after this call.
1177 	 */
1178 	prepare_cpu_pwr_dwn(power_level);
1179 #else
1180 	/*
1181 	 * Without hardware-assisted coherency, the CPU drivers disable data
1182 	 * caches, then perform cache-maintenance operations in software.
1183 	 *
1184 	 * This also calls prepare_cpu_pwr_dwn() to initiate power down
1185 	 * sequence, but that function will return with data caches disabled.
1186 	 * We must ensure that the stack memory is flushed out to memory before
1187 	 * we start popping from it again.
1188 	 */
1189 	psci_do_pwrdown_cache_maintenance(power_level);
1190 #endif
1191 }
1192 
1193 /*******************************************************************************
1194  * This function invokes the callback 'stop_func()' with the 'mpidr' of each
1195  * online PE. Caller can pass suitable method to stop a remote core.
1196  *
1197  * 'wait_ms' is the timeout value in milliseconds for the other cores to
1198  * transition to power down state. Passing '0' makes it non-blocking.
1199  *
1200  * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the
1201  * given timeout.
1202  ******************************************************************************/
1203 int psci_stop_other_cores(unsigned int wait_ms,
1204 				   void (*stop_func)(u_register_t mpidr))
1205 {
1206 	unsigned int idx, this_cpu_idx;
1207 
1208 	this_cpu_idx = plat_my_core_pos();
1209 
1210 	/* Invoke stop_func for each core */
1211 	for (idx = 0U; idx < psci_plat_core_count; idx++) {
1212 		/* skip current CPU */
1213 		if (idx == this_cpu_idx) {
1214 			continue;
1215 		}
1216 
1217 		/* Check if the CPU is ON */
1218 		if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) {
1219 			(*stop_func)(psci_cpu_pd_nodes[idx].mpidr);
1220 		}
1221 	}
1222 
1223 	/* Need to wait for other cores to shutdown */
1224 	if (wait_ms != 0U) {
1225 		while ((wait_ms-- != 0U) && (!psci_is_last_on_cpu())) {
1226 			mdelay(1U);
1227 		}
1228 
1229 		if (!psci_is_last_on_cpu()) {
1230 			WARN("Failed to stop all cores!\n");
1231 			psci_print_power_domain_map();
1232 			return PSCI_E_DENIED;
1233 		}
1234 	}
1235 
1236 	return PSCI_E_SUCCESS;
1237 }
1238 
1239 /*******************************************************************************
1240  * This function verifies that all the other cores in the system have been
1241  * turned OFF and the current CPU is the last running CPU in the system.
1242  * Returns true if the current CPU is the last ON CPU or false otherwise.
1243  *
1244  * This API has following differences with psci_is_last_on_cpu
1245  *  1. PSCI states are locked
1246  ******************************************************************************/
1247 bool psci_is_last_on_cpu_safe(void)
1248 {
1249 	unsigned int this_core = plat_my_core_pos();
1250 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1251 
1252 	psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1253 
1254 	psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1255 
1256 	if (!psci_is_last_on_cpu()) {
1257 		psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1258 		return false;
1259 	}
1260 
1261 	psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1262 
1263 	return true;
1264 }
1265 
1266 /*******************************************************************************
1267  * This function verifies that all cores in the system have been turned ON.
1268  * Returns true, if all CPUs are ON or false otherwise.
1269  *
1270  * This API has following differences with psci_are_all_cpus_on
1271  *  1. PSCI states are locked
1272  ******************************************************************************/
1273 bool psci_are_all_cpus_on_safe(void)
1274 {
1275 	unsigned int this_core = plat_my_core_pos();
1276 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1277 
1278 	psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1279 
1280 	psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1281 
1282 	if (!psci_are_all_cpus_on()) {
1283 		psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1284 		return false;
1285 	}
1286 
1287 	psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1288 
1289 	return true;
1290 }
1291 
1292 /*******************************************************************************
1293  * This function performs architectural feature specific management.
1294  * It ensures the architectural features are disabled during cpu
1295  * power off/suspend operations.
1296  ******************************************************************************/
1297 void psci_do_manage_extensions(void)
1298 {
1299 	/*
1300 	 * On power down we need to disable statistical profiling extensions
1301 	 * before exiting coherency.
1302 	 */
1303 	if (is_feat_spe_supported()) {
1304 		spe_disable();
1305 	}
1306 
1307 }
1308