xref: /rk3399_ARM-atf/lib/psci/psci_common.c (revision 10ecd58093a34e95e2dfad65b1180610f29397cc)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <string.h>
9 
10 #include <arch.h>
11 #include <arch_features.h>
12 #include <arch_helpers.h>
13 #include <common/bl_common.h>
14 #include <common/debug.h>
15 #include <context.h>
16 #include <drivers/delay_timer.h>
17 #include <lib/el3_runtime/context_mgmt.h>
18 #include <lib/extensions/spe.h>
19 #include <lib/pmf/pmf.h>
20 #include <lib/runtime_instr.h>
21 #include <lib/utils.h>
22 #include <plat/common/platform.h>
23 
24 #include "psci_private.h"
25 
26 /*
27  * SPD power management operations, expected to be supplied by the registered
28  * SPD on successful SP initialization
29  */
30 const spd_pm_ops_t *psci_spd_pm;
31 
32 /*
33  * PSCI requested local power state map. This array is used to store the local
34  * power states requested by a CPU for power levels from level 1 to
35  * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
36  * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
37  * CPU are the same.
38  *
39  * During state coordination, the platform is passed an array containing the
40  * local states requested for a particular non cpu power domain by each cpu
41  * within the domain.
42  *
43  * TODO: Dense packing of the requested states will cause cache thrashing
44  * when multiple power domains write to it. If we allocate the requested
45  * states at each power level in a cache-line aligned per-domain memory,
46  * the cache thrashing can be avoided.
47  */
48 static plat_local_state_t
49 	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
50 
51 unsigned int psci_plat_core_count;
52 
53 /*******************************************************************************
54  * Arrays that hold the platform's power domain tree information for state
55  * management of power domains.
56  * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
57  * which is an ancestor of a CPU power domain.
58  * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
59  ******************************************************************************/
60 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
61 #if USE_COHERENT_MEM
62 __section(".tzfw_coherent_mem")
63 #endif
64 ;
65 
66 /* Lock for PSCI state coordination */
67 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
68 
69 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
70 
71 /*******************************************************************************
72  * Pointer to functions exported by the platform to complete power mgmt. ops
73  ******************************************************************************/
74 const plat_psci_ops_t *psci_plat_pm_ops;
75 
76 /******************************************************************************
77  * Check that the maximum power level supported by the platform makes sense
78  *****************************************************************************/
79 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
80 	(PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
81 	assert_platform_max_pwrlvl_check);
82 
83 #if PSCI_OS_INIT_MODE
84 /*******************************************************************************
85  * The power state coordination mode used in CPU_SUSPEND.
86  * Defaults to platform-coordinated mode.
87  ******************************************************************************/
88 suspend_mode_t psci_suspend_mode = PLAT_COORD;
89 #endif
90 
91 /*
92  * The plat_local_state used by the platform is one of these types: RUN,
93  * RETENTION and OFF. The platform can define further sub-states for each type
94  * apart from RUN. This categorization is done to verify the sanity of the
95  * psci_power_state passed by the platform and to print debug information. The
96  * categorization is done on the basis of the following conditions:
97  *
98  * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
99  *
100  * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
101  *    STATE_TYPE_RETN.
102  *
103  * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
104  *    STATE_TYPE_OFF.
105  */
106 typedef enum plat_local_state_type {
107 	STATE_TYPE_RUN = 0,
108 	STATE_TYPE_RETN,
109 	STATE_TYPE_OFF
110 } plat_local_state_type_t;
111 
112 /* Function used to categorize plat_local_state. */
113 static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
114 {
115 	if (state != 0U) {
116 		if (state > PLAT_MAX_RET_STATE) {
117 			return STATE_TYPE_OFF;
118 		} else {
119 			return STATE_TYPE_RETN;
120 		}
121 	} else {
122 		return STATE_TYPE_RUN;
123 	}
124 }
125 
126 /******************************************************************************
127  * Check that the maximum retention level supported by the platform is less
128  * than the maximum off level.
129  *****************************************************************************/
130 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
131 		assert_platform_max_off_and_retn_state_check);
132 
133 /******************************************************************************
134  * This function ensures that the power state parameter in a CPU_SUSPEND request
135  * is valid. If so, it returns the requested states for each power level.
136  *****************************************************************************/
137 int psci_validate_power_state(unsigned int power_state,
138 			      psci_power_state_t *state_info)
139 {
140 	/* Check SBZ bits in power state are zero */
141 	if (psci_check_power_state(power_state) != 0U) {
142 		return PSCI_E_INVALID_PARAMS;
143 	}
144 	assert(psci_plat_pm_ops->validate_power_state != NULL);
145 
146 	/* Validate the power_state using platform pm_ops */
147 	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
148 }
149 
150 /******************************************************************************
151  * This function retrieves the `psci_power_state_t` for system suspend from
152  * the platform.
153  *****************************************************************************/
154 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
155 {
156 	/*
157 	 * Assert that the required pm_ops hook is implemented to ensure that
158 	 * the capability detected during psci_setup() is valid.
159 	 */
160 	assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
161 
162 	/*
163 	 * Query the platform for the power_state required for system suspend
164 	 */
165 	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
166 }
167 
168 #if PSCI_OS_INIT_MODE
169 /*******************************************************************************
170  * This function verifies that all the other cores at the 'end_pwrlvl' have been
171  * idled and the current CPU is the last running CPU at the 'end_pwrlvl'.
172  * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
173  * otherwise.
174  ******************************************************************************/
175 static bool psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int my_idx, unsigned int end_pwrlvl)
176 {
177 	unsigned int lvl;
178 	unsigned int parent_idx = 0;
179 	unsigned int cpu_start_idx, ncpus, cpu_idx;
180 	plat_local_state_t local_state;
181 
182 	if (end_pwrlvl == PSCI_CPU_PWR_LVL) {
183 		return true;
184 	}
185 
186 	parent_idx = psci_cpu_pd_nodes[my_idx].parent_node;
187 	for (lvl = PSCI_CPU_PWR_LVL + U(1); lvl < end_pwrlvl; lvl++) {
188 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
189 	}
190 
191 	cpu_start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
192 	ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
193 
194 	for (cpu_idx = cpu_start_idx; cpu_idx < cpu_start_idx + ncpus;
195 			cpu_idx++) {
196 		local_state = psci_get_cpu_local_state_by_idx(cpu_idx);
197 		if (cpu_idx == my_idx) {
198 			assert(is_local_state_run(local_state) != 0);
199 			continue;
200 		}
201 
202 		if (is_local_state_run(local_state) != 0) {
203 			return false;
204 		}
205 	}
206 
207 	return true;
208 }
209 #endif
210 
211 /*******************************************************************************
212  * This function verifies that all the other cores in the system have been
213  * turned OFF and the current CPU is the last running CPU in the system.
214  * Returns true, if the current CPU is the last ON CPU or false otherwise.
215  ******************************************************************************/
216 bool psci_is_last_on_cpu(unsigned int my_idx)
217 {
218 	for (unsigned int cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
219 		if (cpu_idx == my_idx) {
220 			assert(psci_get_aff_info_state() == AFF_STATE_ON);
221 			continue;
222 		}
223 
224 		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) {
225 			VERBOSE("core=%u other than current core=%u %s\n",
226 				cpu_idx, my_idx, "running in the system");
227 			return false;
228 		}
229 	}
230 
231 	return true;
232 }
233 
234 /*******************************************************************************
235  * This function verifies that all cores in the system have been turned ON.
236  * Returns true, if all CPUs are ON or false otherwise.
237  ******************************************************************************/
238 static bool psci_are_all_cpus_on(void)
239 {
240 	unsigned int cpu_idx;
241 
242 	for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
243 		if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_OFF) {
244 			return false;
245 		}
246 	}
247 
248 	return true;
249 }
250 
251 /*******************************************************************************
252  * Routine to return the maximum power level to traverse to after a cpu has
253  * been physically powered up. It is expected to be called immediately after
254  * reset from assembler code.
255  ******************************************************************************/
256 static unsigned int get_power_on_target_pwrlvl(void)
257 {
258 	unsigned int pwrlvl;
259 
260 	/*
261 	 * Assume that this cpu was suspended and retrieve its target power
262 	 * level. If it wasn't, the cpu is off so this will be PLAT_MAX_PWR_LVL.
263 	 */
264 	pwrlvl = psci_get_suspend_pwrlvl();
265 	assert(pwrlvl < PSCI_INVALID_PWR_LVL);
266 	return pwrlvl;
267 }
268 
269 /******************************************************************************
270  * Helper function to update the requested local power state array. This array
271  * does not store the requested state for the CPU power level. Hence an
272  * assertion is added to prevent us from accessing the CPU power level.
273  *****************************************************************************/
274 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
275 					 unsigned int cpu_idx,
276 					 plat_local_state_t req_pwr_state)
277 {
278 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
279 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
280 			(cpu_idx < psci_plat_core_count)) {
281 		psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
282 	}
283 }
284 
285 /******************************************************************************
286  * This function initializes the psci_req_local_pwr_states.
287  *****************************************************************************/
288 void __init psci_init_req_local_pwr_states(void)
289 {
290 	/* Initialize the requested state of all non CPU power domains as OFF */
291 	unsigned int pwrlvl;
292 	unsigned int core;
293 
294 	for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
295 		for (core = 0; core < psci_plat_core_count; core++) {
296 			psci_req_local_pwr_states[pwrlvl][core] =
297 				PLAT_MAX_OFF_STATE;
298 		}
299 	}
300 }
301 
302 /******************************************************************************
303  * Helper function to return a reference to an array containing the local power
304  * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
305  * array will be the number of cpu power domains of which this power domain is
306  * an ancestor. These requested states will be used to determine a suitable
307  * target state for this power domain during psci state coordination. An
308  * assertion is added to prevent us from accessing the CPU power level.
309  *****************************************************************************/
310 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
311 							 unsigned int cpu_idx)
312 {
313 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
314 
315 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
316 			(cpu_idx < psci_plat_core_count)) {
317 		return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
318 	} else
319 		return NULL;
320 }
321 
322 #if PSCI_OS_INIT_MODE
323 /******************************************************************************
324  * Helper function to save a copy of the psci_req_local_pwr_states (prev) for a
325  * CPU (cpu_idx), and update psci_req_local_pwr_states with the new requested
326  * local power states (state_info).
327  *****************************************************************************/
328 void psci_update_req_local_pwr_states(unsigned int end_pwrlvl,
329 				      unsigned int cpu_idx,
330 				      psci_power_state_t *state_info,
331 				      plat_local_state_t *prev)
332 {
333 	unsigned int lvl;
334 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
335 	unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
336 #else
337 	unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
338 #endif
339 	plat_local_state_t req_state;
340 
341 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
342 		/* Save the previous requested local power state */
343 		prev[lvl - 1U] = *psci_get_req_local_pwr_states(lvl, cpu_idx);
344 
345 		/* Update the new requested local power state */
346 		if (lvl <= end_pwrlvl) {
347 			req_state = state_info->pwr_domain_state[lvl];
348 		} else {
349 			req_state = state_info->pwr_domain_state[end_pwrlvl];
350 		}
351 		psci_set_req_local_pwr_state(lvl, cpu_idx, req_state);
352 	}
353 }
354 
355 /******************************************************************************
356  * Helper function to restore the previously saved requested local power states
357  * (prev) for a CPU (cpu_idx) to psci_req_local_pwr_states.
358  *****************************************************************************/
359 void psci_restore_req_local_pwr_states(unsigned int cpu_idx,
360 				       plat_local_state_t *prev)
361 {
362 	unsigned int lvl;
363 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
364 	unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
365 #else
366 	unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
367 #endif
368 
369 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
370 		/* Restore the previous requested local power state */
371 		psci_set_req_local_pwr_state(lvl, cpu_idx, prev[lvl - 1U]);
372 	}
373 }
374 #endif
375 
376 /*
377  * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
378  * memory.
379  *
380  * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
381  * it's accessed by both cached and non-cached participants. To serve the common
382  * minimum, perform a cache flush before read and after write so that non-cached
383  * participants operate on latest data in main memory.
384  *
385  * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
386  * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
387  * In both cases, no cache operations are required.
388  */
389 
390 /*
391  * Retrieve local state of non-CPU power domain node from a non-cached CPU,
392  * after any required cache maintenance operation.
393  */
394 static plat_local_state_t get_non_cpu_pd_node_local_state(
395 		unsigned int parent_idx)
396 {
397 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
398 	flush_dcache_range(
399 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
400 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
401 #endif
402 	return psci_non_cpu_pd_nodes[parent_idx].local_state;
403 }
404 
405 /*
406  * Update local state of non-CPU power domain node from a cached CPU; perform
407  * any required cache maintenance operation afterwards.
408  */
409 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
410 		plat_local_state_t state)
411 {
412 	psci_non_cpu_pd_nodes[parent_idx].local_state = state;
413 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
414 	flush_dcache_range(
415 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
416 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
417 #endif
418 }
419 
420 /******************************************************************************
421  * Helper function to return the current local power state of each power domain
422  * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
423  * function will be called after a cpu is powered on to find the local state
424  * each power domain has emerged from.
425  *****************************************************************************/
426 void psci_get_target_local_pwr_states(unsigned int cpu_idx, unsigned int end_pwrlvl,
427 				      psci_power_state_t *target_state)
428 {
429 	unsigned int parent_idx, lvl;
430 	plat_local_state_t *pd_state = target_state->pwr_domain_state;
431 
432 	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
433 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
434 
435 	/* Copy the local power state from node to state_info */
436 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
437 		pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
438 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
439 	}
440 
441 	/* Set the the higher levels to RUN */
442 	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++) {
443 		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
444 	}
445 }
446 
447 /******************************************************************************
448  * Helper function to set the target local power state that each power domain
449  * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
450  * enter. This function will be called after coordination of requested power
451  * states has been done for each power level.
452  *****************************************************************************/
453 void psci_set_target_local_pwr_states(unsigned int cpu_idx, unsigned int end_pwrlvl,
454 				      const psci_power_state_t *target_state)
455 {
456 	unsigned int parent_idx, lvl;
457 	const plat_local_state_t *pd_state = target_state->pwr_domain_state;
458 
459 	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
460 
461 	/*
462 	 * Need to flush as local_state might be accessed with Data Cache
463 	 * disabled during power on
464 	 */
465 	psci_flush_cpu_data(psci_svc_cpu_data.local_state);
466 
467 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
468 
469 	/* Copy the local_state from state_info */
470 	for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
471 		set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
472 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
473 	}
474 }
475 
476 /*******************************************************************************
477  * PSCI helper function to get the parent nodes corresponding to a cpu_index.
478  ******************************************************************************/
479 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
480 				      unsigned int end_lvl,
481 				      unsigned int *node_index)
482 {
483 	unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
484 	unsigned int i;
485 	unsigned int *node = node_index;
486 
487 	for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
488 		*node = parent_node;
489 		node++;
490 		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
491 	}
492 }
493 
494 /******************************************************************************
495  * This function is invoked post CPU power up and initialization. It sets the
496  * affinity info state, target power state and requested power state for the
497  * current CPU and all its ancestor power domains to RUN.
498  *****************************************************************************/
499 void psci_set_pwr_domains_to_run(unsigned int cpu_idx, unsigned int end_pwrlvl)
500 {
501 	unsigned int parent_idx, lvl;
502 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
503 
504 	/* Reset the local_state to RUN for the non cpu power domains. */
505 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
506 		set_non_cpu_pd_node_local_state(parent_idx,
507 				PSCI_LOCAL_STATE_RUN);
508 		psci_set_req_local_pwr_state(lvl,
509 					     cpu_idx,
510 					     PSCI_LOCAL_STATE_RUN);
511 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
512 	}
513 
514 	/* Set the affinity info state to ON */
515 	psci_set_aff_info_state(AFF_STATE_ON);
516 
517 	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
518 	psci_flush_cpu_data(psci_svc_cpu_data);
519 }
520 
521 /******************************************************************************
522  * This function is used in platform-coordinated mode.
523  *
524  * This function is passed the local power states requested for each power
525  * domain (state_info) between the current CPU domain and its ancestors until
526  * the target power level (end_pwrlvl). It updates the array of requested power
527  * states with this information.
528  *
529  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
530  * retrieves the states requested by all the cpus of which the power domain at
531  * that level is an ancestor. It passes this information to the platform to
532  * coordinate and return the target power state. If the target state for a level
533  * is RUN then subsequent levels are not considered. At the CPU level, state
534  * coordination is not required. Hence, the requested and the target states are
535  * the same.
536  *
537  * The 'state_info' is updated with the target state for each level between the
538  * CPU and the 'end_pwrlvl' and returned to the caller.
539  *
540  * This function will only be invoked with data cache enabled and while
541  * powering down a core.
542  *****************************************************************************/
543 void psci_do_state_coordination(unsigned int cpu_idx, unsigned int end_pwrlvl,
544 				psci_power_state_t *state_info)
545 {
546 	unsigned int lvl, parent_idx;
547 	unsigned int start_idx;
548 	unsigned int ncpus;
549 	plat_local_state_t target_state;
550 
551 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
552 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
553 
554 	/* For level 0, the requested state will be equivalent
555 	   to target state */
556 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
557 
558 		/* First update the requested power state */
559 		psci_set_req_local_pwr_state(lvl, cpu_idx,
560 					     state_info->pwr_domain_state[lvl]);
561 
562 		/* Get the requested power states for this power level */
563 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
564 		plat_local_state_t const *req_states = psci_get_req_local_pwr_states(lvl,
565 										start_idx);
566 
567 		/*
568 		 * Let the platform coordinate amongst the requested states at
569 		 * this power level and return the target local power state.
570 		 */
571 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
572 		target_state = plat_get_target_pwr_state(lvl,
573 							 req_states,
574 							 ncpus);
575 
576 		state_info->pwr_domain_state[lvl] = target_state;
577 
578 		/* Break early if the negotiated target power state is RUN */
579 		if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0) {
580 			break;
581 		}
582 
583 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
584 	}
585 
586 	/*
587 	 * This is for cases when we break out of the above loop early because
588 	 * the target power state is RUN at a power level < end_pwlvl.
589 	 * We update the requested power state from state_info and then
590 	 * set the target state as RUN.
591 	 */
592 	for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
593 		psci_set_req_local_pwr_state(lvl, cpu_idx,
594 					     state_info->pwr_domain_state[lvl]);
595 		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
596 
597 	}
598 }
599 
600 #if PSCI_OS_INIT_MODE
601 /******************************************************************************
602  * This function is used in OS-initiated mode.
603  *
604  * This function is passed the local power states requested for each power
605  * domain (state_info) between the current CPU domain and its ancestors until
606  * the target power level (end_pwrlvl), and ensures the requested power states
607  * are valid. It updates the array of requested power states with this
608  * information.
609  *
610  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
611  * retrieves the states requested by all the cpus of which the power domain at
612  * that level is an ancestor. It passes this information to the platform to
613  * coordinate and return the target power state. If the requested state does
614  * not match the target state, the request is denied.
615  *
616  * The 'state_info' is not modified.
617  *
618  * This function will only be invoked with data cache enabled and while
619  * powering down a core.
620  *****************************************************************************/
621 int psci_validate_state_coordination(unsigned int cpu_idx, unsigned int end_pwrlvl,
622 				     psci_power_state_t *state_info)
623 {
624 	int rc = PSCI_E_SUCCESS;
625 	unsigned int lvl, parent_idx;
626 	unsigned int start_idx;
627 	unsigned int ncpus;
628 	plat_local_state_t target_state, *req_states;
629 	plat_local_state_t prev[PLAT_MAX_PWR_LVL];
630 
631 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
632 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
633 
634 	/*
635 	 * Save a copy of the previous requested local power states and update
636 	 * the new requested local power states.
637 	 */
638 	psci_update_req_local_pwr_states(end_pwrlvl, cpu_idx, state_info, prev);
639 
640 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
641 		/* Get the requested power states for this power level */
642 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
643 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
644 
645 		/*
646 		 * Let the platform coordinate amongst the requested states at
647 		 * this power level and return the target local power state.
648 		 */
649 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
650 		target_state = plat_get_target_pwr_state(lvl,
651 							 req_states,
652 							 ncpus);
653 
654 		/*
655 		 * Verify that the requested power state matches the target
656 		 * local power state.
657 		 */
658 		if (state_info->pwr_domain_state[lvl] != target_state) {
659 			if (target_state == PSCI_LOCAL_STATE_RUN) {
660 				rc = PSCI_E_DENIED;
661 			} else {
662 				rc = PSCI_E_INVALID_PARAMS;
663 			}
664 			goto exit;
665 		}
666 
667 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
668 	}
669 
670 	/*
671 	 * Verify that the current core is the last running core at the
672 	 * specified power level.
673 	 */
674 	lvl = state_info->last_at_pwrlvl;
675 	if (!psci_is_last_cpu_to_idle_at_pwrlvl(cpu_idx, lvl)) {
676 		rc = PSCI_E_DENIED;
677 	}
678 
679 exit:
680 	if (rc != PSCI_E_SUCCESS) {
681 		/* Restore the previous requested local power states. */
682 		psci_restore_req_local_pwr_states(cpu_idx, prev);
683 		return rc;
684 	}
685 
686 	return rc;
687 }
688 #endif
689 
690 /******************************************************************************
691  * This function validates a suspend request by making sure that if a standby
692  * state is requested then no power level is turned off and the highest power
693  * level is placed in a standby/retention state.
694  *
695  * It also ensures that the state level X will enter is not shallower than the
696  * state level X + 1 will enter.
697  *
698  * This validation will be enabled only for DEBUG builds as the platform is
699  * expected to perform these validations as well.
700  *****************************************************************************/
701 int psci_validate_suspend_req(const psci_power_state_t *state_info,
702 			      unsigned int is_power_down_state)
703 {
704 	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
705 	plat_local_state_t state;
706 	plat_local_state_type_t req_state_type, deepest_state_type;
707 	int i;
708 
709 	/* Find the target suspend power level */
710 	target_lvl = psci_find_target_suspend_lvl(state_info);
711 	if (target_lvl == PSCI_INVALID_PWR_LVL)
712 		return PSCI_E_INVALID_PARAMS;
713 
714 	/* All power domain levels are in a RUN state to begin with */
715 	deepest_state_type = STATE_TYPE_RUN;
716 
717 	for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
718 		state = state_info->pwr_domain_state[i];
719 		req_state_type = find_local_state_type(state);
720 
721 		/*
722 		 * While traversing from the highest power level to the lowest,
723 		 * the state requested for lower levels has to be the same or
724 		 * deeper i.e. equal to or greater than the state at the higher
725 		 * levels. If this condition is true, then the requested state
726 		 * becomes the deepest state encountered so far.
727 		 */
728 		if (req_state_type < deepest_state_type)
729 			return PSCI_E_INVALID_PARAMS;
730 		deepest_state_type = req_state_type;
731 	}
732 
733 	/* Find the highest off power level */
734 	max_off_lvl = psci_find_max_off_lvl(state_info);
735 
736 	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
737 	max_retn_lvl = PSCI_INVALID_PWR_LVL;
738 	if (target_lvl != max_off_lvl)
739 		max_retn_lvl = target_lvl;
740 
741 	/*
742 	 * If this is not a request for a power down state then max off level
743 	 * has to be invalid and max retention level has to be a valid power
744 	 * level.
745 	 */
746 	if ((is_power_down_state == 0U) &&
747 			((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
748 			 (max_retn_lvl == PSCI_INVALID_PWR_LVL)))
749 		return PSCI_E_INVALID_PARAMS;
750 
751 	return PSCI_E_SUCCESS;
752 }
753 
754 /******************************************************************************
755  * This function finds the highest power level which will be powered down
756  * amongst all the power levels specified in the 'state_info' structure
757  *****************************************************************************/
758 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
759 {
760 	int i;
761 
762 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
763 		if (is_local_state_off(state_info->pwr_domain_state[i]) != 0) {
764 			return (unsigned int) i;
765 		}
766 	}
767 
768 	return PSCI_INVALID_PWR_LVL;
769 }
770 
771 /******************************************************************************
772  * This functions finds the level of the highest power domain which will be
773  * placed in a low power state during a suspend operation.
774  *****************************************************************************/
775 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
776 {
777 	int i;
778 
779 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
780 		if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
781 			return (unsigned int) i;
782 	}
783 
784 	return PSCI_INVALID_PWR_LVL;
785 }
786 
787 /*******************************************************************************
788  * This function is passed the highest level in the topology tree that the
789  * operation should be applied to and a list of node indexes. It picks up locks
790  * from the node index list in order of increasing power domain level in the
791  * range specified.
792  ******************************************************************************/
793 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
794 				   const unsigned int *parent_nodes)
795 {
796 	unsigned int parent_idx;
797 	unsigned int level;
798 
799 	/* No locking required for level 0. Hence start locking from level 1 */
800 	for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
801 		parent_idx = parent_nodes[level - 1U];
802 		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
803 	}
804 }
805 
806 /*******************************************************************************
807  * This function is passed the highest level in the topology tree that the
808  * operation should be applied to and a list of node indexes. It releases the
809  * locks in order of decreasing power domain level in the range specified.
810  ******************************************************************************/
811 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
812 				   const unsigned int *parent_nodes)
813 {
814 	unsigned int parent_idx;
815 	unsigned int level;
816 
817 	/* Unlock top down. No unlocking required for level 0. */
818 	for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) {
819 		parent_idx = parent_nodes[level - 1U];
820 		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
821 	}
822 }
823 
824 /*******************************************************************************
825  * This function determines the full entrypoint information for the requested
826  * PSCI entrypoint on power on/resume and returns it.
827  ******************************************************************************/
828 #ifdef __aarch64__
829 static int psci_get_ns_ep_info(entry_point_info_t *ep,
830 			       uintptr_t entrypoint,
831 			       u_register_t context_id)
832 {
833 	u_register_t ep_attr, sctlr;
834 	unsigned int daif, ee, mode;
835 	u_register_t ns_scr_el3 = read_scr_el3();
836 	u_register_t ns_sctlr_el1 = read_sctlr_el1();
837 
838 	sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
839 		read_sctlr_el2() : ns_sctlr_el1;
840 	ee = 0;
841 
842 	ep_attr = NON_SECURE | EP_ST_DISABLE;
843 	if ((sctlr & SCTLR_EE_BIT) != 0U) {
844 		ep_attr |= EP_EE_BIG;
845 		ee = 1;
846 	}
847 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
848 
849 	ep->pc = entrypoint;
850 	zeromem(&ep->args, sizeof(ep->args));
851 	ep->args.arg0 = context_id;
852 
853 	/*
854 	 * Figure out whether the cpu enters the non-secure address space
855 	 * in aarch32 or aarch64
856 	 */
857 	if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
858 
859 		/*
860 		 * Check whether a Thumb entry point has been provided for an
861 		 * aarch64 EL
862 		 */
863 		if ((entrypoint & 0x1UL) != 0UL)
864 			return PSCI_E_INVALID_ADDRESS;
865 
866 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
867 
868 		ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX,
869 				   DISABLE_ALL_EXCEPTIONS);
870 	} else {
871 
872 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
873 			MODE32_hyp : MODE32_svc;
874 
875 		/*
876 		 * TODO: Choose async. exception bits if HYP mode is not
877 		 * implemented according to the values of SCR.{AW, FW} bits
878 		 */
879 		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
880 
881 		ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee,
882 				       daif);
883 	}
884 
885 	return PSCI_E_SUCCESS;
886 }
887 #else /* !__aarch64__ */
888 static int psci_get_ns_ep_info(entry_point_info_t *ep,
889 			       uintptr_t entrypoint,
890 			       u_register_t context_id)
891 {
892 	u_register_t ep_attr;
893 	unsigned int aif, ee, mode;
894 	u_register_t scr = read_scr();
895 	u_register_t ns_sctlr, sctlr;
896 
897 	/* Switch to non secure state */
898 	write_scr(scr | SCR_NS_BIT);
899 	isb();
900 	ns_sctlr = read_sctlr();
901 
902 	sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
903 
904 	/* Return to original state */
905 	write_scr(scr);
906 	isb();
907 	ee = 0;
908 
909 	ep_attr = NON_SECURE | EP_ST_DISABLE;
910 	if (sctlr & SCTLR_EE_BIT) {
911 		ep_attr |= EP_EE_BIG;
912 		ee = 1;
913 	}
914 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
915 
916 	ep->pc = entrypoint;
917 	zeromem(&ep->args, sizeof(ep->args));
918 	ep->args.arg0 = context_id;
919 
920 	mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
921 
922 	/*
923 	 * TODO: Choose async. exception bits if HYP mode is not
924 	 * implemented according to the values of SCR.{AW, FW} bits
925 	 */
926 	aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
927 
928 	ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
929 
930 	return PSCI_E_SUCCESS;
931 }
932 
933 #endif /* __aarch64__ */
934 
935 /*******************************************************************************
936  * This function validates the entrypoint with the platform layer if the
937  * appropriate pm_ops hook is exported by the platform and returns the
938  * 'entry_point_info'.
939  ******************************************************************************/
940 int psci_validate_entry_point(entry_point_info_t *ep,
941 			      uintptr_t entrypoint,
942 			      u_register_t context_id)
943 {
944 	int rc;
945 
946 	/* Validate the entrypoint using platform psci_ops */
947 	if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
948 		rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
949 		if (rc != PSCI_E_SUCCESS) {
950 			return PSCI_E_INVALID_ADDRESS;
951 		}
952 	}
953 
954 	/*
955 	 * Verify and derive the re-entry information for
956 	 * the non-secure world from the non-secure state from
957 	 * where this call originated.
958 	 */
959 	rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
960 	return rc;
961 }
962 
963 /*******************************************************************************
964  * Generic handler which is called when a cpu is physically powered on. It
965  * traverses the node information and finds the highest power level powered
966  * off and performs generic, architectural, platform setup and state management
967  * to power on that power level and power levels below it.
968  * e.g. For a cpu that's been powered on, it will call the platform specific
969  * code to enable the gic cpu interface and for a cluster it will enable
970  * coherency at the interconnect level in addition to gic cpu interface.
971  ******************************************************************************/
972 void psci_warmboot_entrypoint(void)
973 {
974 	unsigned int end_pwrlvl;
975 	unsigned int cpu_idx = plat_my_core_pos();
976 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
977 	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
978 
979 	/* Init registers that never change for the lifetime of TF-A */
980 	cm_manage_extensions_el3(cpu_idx);
981 
982 	/*
983 	 * Verify that we have been explicitly turned ON or resumed from
984 	 * suspend.
985 	 */
986 	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
987 		ERROR("Unexpected affinity info state.\n");
988 		panic();
989 	}
990 
991 	/*
992 	 * Get the maximum power domain level to traverse to after this cpu
993 	 * has been physically powered up.
994 	 */
995 	end_pwrlvl = get_power_on_target_pwrlvl();
996 
997 	/* Get the parent nodes */
998 	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
999 
1000 	/*
1001 	 * This function acquires the lock corresponding to each power level so
1002 	 * that by the time all locks are taken, the system topology is snapshot
1003 	 * and state management can be done safely.
1004 	 */
1005 	psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes);
1006 
1007 	psci_get_target_local_pwr_states(cpu_idx, end_pwrlvl, &state_info);
1008 
1009 #if ENABLE_PSCI_STAT
1010 	plat_psci_stat_accounting_stop(&state_info);
1011 #endif
1012 
1013 	/*
1014 	 * This CPU could be resuming from suspend or it could have just been
1015 	 * turned on. To distinguish between these 2 cases, we examine the
1016 	 * affinity state of the CPU:
1017 	 *  - If the affinity state is ON_PENDING then it has just been
1018 	 *    turned on.
1019 	 *  - Else it is resuming from suspend.
1020 	 *
1021 	 * Depending on the type of warm reset identified, choose the right set
1022 	 * of power management handler and perform the generic, architecture
1023 	 * and platform specific handling.
1024 	 */
1025 	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING) {
1026 		psci_cpu_on_finish(cpu_idx, &state_info);
1027 	} else {
1028 		unsigned int max_off_lvl = psci_find_max_off_lvl(&state_info);
1029 
1030 		assert(max_off_lvl != PSCI_INVALID_PWR_LVL);
1031 		psci_cpu_suspend_to_powerdown_finish(cpu_idx, max_off_lvl, &state_info);
1032 	}
1033 
1034 	/*
1035 	 * Generic management: Now we just need to retrieve the
1036 	 * information that we had stashed away during the cpu_on
1037 	 * call to set this cpu on its way.
1038 	 */
1039 	cm_prepare_el3_exit_ns();
1040 
1041 	/*
1042 	 * Set the requested and target state of this CPU and all the higher
1043 	 * power domains which are ancestors of this CPU to run.
1044 	 */
1045 	psci_set_pwr_domains_to_run(cpu_idx, end_pwrlvl);
1046 
1047 #if ENABLE_PSCI_STAT
1048 	psci_stats_update_pwr_up(cpu_idx, end_pwrlvl, &state_info);
1049 #endif
1050 
1051 	/*
1052 	 * This loop releases the lock corresponding to each power level
1053 	 * in the reverse order to which they were acquired.
1054 	 */
1055 	psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes);
1056 }
1057 
1058 /*******************************************************************************
1059  * This function initializes the set of hooks that PSCI invokes as part of power
1060  * management operation. The power management hooks are expected to be provided
1061  * by the SPD, after it finishes all its initialization
1062  ******************************************************************************/
1063 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
1064 {
1065 	assert(pm != NULL);
1066 	psci_spd_pm = pm;
1067 
1068 	if (pm->svc_migrate != NULL)
1069 		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
1070 
1071 	if (pm->svc_migrate_info != NULL)
1072 		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
1073 				| define_psci_cap(PSCI_MIG_INFO_TYPE);
1074 }
1075 
1076 /*******************************************************************************
1077  * This function invokes the migrate info hook in the spd_pm_ops. It performs
1078  * the necessary return value validation. If the Secure Payload is UP and
1079  * migrate capable, it returns the mpidr of the CPU on which the Secure payload
1080  * is resident through the mpidr parameter. Else the value of the parameter on
1081  * return is undefined.
1082  ******************************************************************************/
1083 int psci_spd_migrate_info(u_register_t *mpidr)
1084 {
1085 	int rc;
1086 
1087 	if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
1088 		return PSCI_E_NOT_SUPPORTED;
1089 
1090 	rc = psci_spd_pm->svc_migrate_info(mpidr);
1091 
1092 	assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
1093 	       (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
1094 
1095 	return rc;
1096 }
1097 
1098 
1099 /*******************************************************************************
1100  * This function prints the state of all power domains present in the
1101  * system
1102  ******************************************************************************/
1103 void psci_print_power_domain_map(void)
1104 {
1105 #if LOG_LEVEL >= LOG_LEVEL_INFO
1106 	unsigned int idx;
1107 	plat_local_state_t state;
1108 	plat_local_state_type_t state_type;
1109 
1110 	/* This array maps to the PSCI_STATE_X definitions in psci.h */
1111 	static const char * const psci_state_type_str[] = {
1112 		"ON",
1113 		"RETENTION",
1114 		"OFF",
1115 	};
1116 
1117 	INFO("PSCI Power Domain Map:\n");
1118 	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count);
1119 							idx++) {
1120 		state_type = find_local_state_type(
1121 				psci_non_cpu_pd_nodes[idx].local_state);
1122 		INFO("  Domain Node : Level %u, parent_node %u,"
1123 				" State %s (0x%x)\n",
1124 				psci_non_cpu_pd_nodes[idx].level,
1125 				psci_non_cpu_pd_nodes[idx].parent_node,
1126 				psci_state_type_str[state_type],
1127 				psci_non_cpu_pd_nodes[idx].local_state);
1128 	}
1129 
1130 	for (idx = 0; idx < psci_plat_core_count; idx++) {
1131 		state = psci_get_cpu_local_state_by_idx(idx);
1132 		state_type = find_local_state_type(state);
1133 		INFO("  CPU Node : MPID 0x%llx, parent_node %u,"
1134 				" State %s (0x%x)\n",
1135 				(unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
1136 				psci_cpu_pd_nodes[idx].parent_node,
1137 				psci_state_type_str[state_type],
1138 				psci_get_cpu_local_state_by_idx(idx));
1139 	}
1140 #endif
1141 }
1142 
1143 /******************************************************************************
1144  * Return whether any secondaries were powered up with CPU_ON call. A CPU that
1145  * have ever been powered up would have set its MPDIR value to something other
1146  * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
1147  * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
1148  * meaningful only when called on the primary CPU during early boot.
1149  *****************************************************************************/
1150 int psci_secondaries_brought_up(void)
1151 {
1152 	unsigned int idx, n_valid = 0U;
1153 
1154 	for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
1155 		if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
1156 			n_valid++;
1157 	}
1158 
1159 	assert(n_valid > 0U);
1160 
1161 	return (n_valid > 1U) ? 1 : 0;
1162 }
1163 
1164 /*******************************************************************************
1165  * Initiate power down sequence, by calling power down operations registered for
1166  * this CPU.
1167  ******************************************************************************/
1168 void psci_pwrdown_cpu_start(unsigned int power_level)
1169 {
1170 #if ENABLE_RUNTIME_INSTRUMENTATION
1171 
1172 	/*
1173 	 * Flush cache line so that even if CPU power down happens
1174 	 * the timestamp update is reflected in memory.
1175 	 */
1176 	PMF_CAPTURE_TIMESTAMP(rt_instr_svc,
1177 		RT_INSTR_ENTER_CFLUSH,
1178 		PMF_CACHE_MAINT);
1179 #endif
1180 
1181 #if HW_ASSISTED_COHERENCY
1182 	/*
1183 	 * With hardware-assisted coherency, the CPU drivers only initiate the
1184 	 * power down sequence, without performing cache-maintenance operations
1185 	 * in software. Data caches enabled both before and after this call.
1186 	 */
1187 	prepare_cpu_pwr_dwn(power_level);
1188 #else
1189 	/*
1190 	 * Without hardware-assisted coherency, the CPU drivers disable data
1191 	 * caches, then perform cache-maintenance operations in software.
1192 	 *
1193 	 * This also calls prepare_cpu_pwr_dwn() to initiate power down
1194 	 * sequence, but that function will return with data caches disabled.
1195 	 * We must ensure that the stack memory is flushed out to memory before
1196 	 * we start popping from it again.
1197 	 */
1198 	psci_do_pwrdown_cache_maintenance(power_level);
1199 #endif
1200 
1201 #if ENABLE_RUNTIME_INSTRUMENTATION
1202 	PMF_CAPTURE_TIMESTAMP(rt_instr_svc,
1203 		RT_INSTR_EXIT_CFLUSH,
1204 		PMF_NO_CACHE_MAINT);
1205 #endif
1206 }
1207 
1208 /*******************************************************************************
1209  * Finish a terminal power down sequence, ending with a wfi. In case of wakeup
1210  * will retry the sleep and panic if it persists.
1211  ******************************************************************************/
1212 void __dead2 psci_pwrdown_cpu_end_terminal(void)
1213 {
1214 #if ERRATA_SME_POWER_DOWN
1215 	/*
1216 	 * force SME off to not get power down rejected. Getting here is
1217 	 * terminal so we don't care if we lose context because of another
1218 	 * wakeup
1219 	 */
1220 	if (is_feat_sme_supported()) {
1221 		write_svcr(0);
1222 		isb();
1223 	}
1224 #endif /* ERRATA_SME_POWER_DOWN */
1225 
1226 	/*
1227 	 * Execute a wfi which, in most cases, will allow the power controller
1228 	 * to physically power down this cpu. Under some circumstances that may
1229 	 * be denied. Hopefully this is transient, retrying a few times should
1230 	 * power down.
1231 	 */
1232 	for (int i = 0; i < 32; i++)
1233 		psci_power_down_wfi();
1234 
1235 	/* Wake up wasn't transient. System is probably in a bad state. */
1236 	ERROR("Could not power off CPU.\n");
1237 	panic();
1238 }
1239 
1240 /*******************************************************************************
1241  * Finish a non-terminal power down sequence, ending with a wfi. In case of
1242  * wakeup will unwind any CPU specific actions and return.
1243  ******************************************************************************/
1244 
1245 void psci_pwrdown_cpu_end_wakeup(unsigned int power_level)
1246 {
1247 	/*
1248 	 * Usually, will be terminal. In some circumstances the powerdown will
1249 	 * be denied and we'll need to unwind
1250 	 */
1251 	psci_power_down_wfi();
1252 
1253 	/*
1254 	 * Waking up does not require hardware-assisted coherency, but that is
1255 	 * the case for every core that can wake up. Untangling the cache
1256 	 * coherency code from powerdown is a non-trivial effort which isn't
1257 	 * needed for our purposes.
1258 	 */
1259 #if !FEAT_PABANDON
1260 	ERROR("Systems without FEAT_PABANDON shouldn't wake up.\n");
1261 	panic();
1262 #else /* FEAT_PABANDON */
1263 
1264 	/*
1265 	 * Begin unwinding. Everything can be shared with CPU_ON and co later,
1266 	 * except the CPU specific bit. Cores that have hardware-assisted
1267 	 * coherency don't have much to do so just calling the hook again is
1268 	 * the simplest way to achieve this
1269 	 */
1270 	prepare_cpu_pwr_dwn(power_level);
1271 #endif /* FEAT_PABANDON */
1272 }
1273 
1274 /*******************************************************************************
1275  * This function invokes the callback 'stop_func()' with the 'mpidr' of each
1276  * online PE. Caller can pass suitable method to stop a remote core.
1277  *
1278  * 'wait_ms' is the timeout value in milliseconds for the other cores to
1279  * transition to power down state. Passing '0' makes it non-blocking.
1280  *
1281  * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the
1282  * given timeout.
1283  ******************************************************************************/
1284 int psci_stop_other_cores(unsigned int this_cpu_idx, unsigned int wait_ms,
1285 				   void (*stop_func)(u_register_t mpidr))
1286 {
1287 	/* Invoke stop_func for each core */
1288 	for (unsigned int idx = 0U; idx < psci_plat_core_count; idx++) {
1289 		/* skip current CPU */
1290 		if (idx == this_cpu_idx) {
1291 			continue;
1292 		}
1293 
1294 		/* Check if the CPU is ON */
1295 		if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) {
1296 			(*stop_func)(psci_cpu_pd_nodes[idx].mpidr);
1297 		}
1298 	}
1299 
1300 	/* Need to wait for other cores to shutdown */
1301 	if (wait_ms != 0U) {
1302 		for (uint32_t delay_ms = wait_ms; ((delay_ms != 0U) &&
1303 					(!psci_is_last_on_cpu(this_cpu_idx))); delay_ms--) {
1304 			mdelay(1U);
1305 		}
1306 
1307 		if (!psci_is_last_on_cpu(this_cpu_idx)) {
1308 			WARN("Failed to stop all cores!\n");
1309 			psci_print_power_domain_map();
1310 			return PSCI_E_DENIED;
1311 		}
1312 	}
1313 
1314 	return PSCI_E_SUCCESS;
1315 }
1316 
1317 /*******************************************************************************
1318  * This function verifies that all the other cores in the system have been
1319  * turned OFF and the current CPU is the last running CPU in the system.
1320  * Returns true if the current CPU is the last ON CPU or false otherwise.
1321  *
1322  * This API has following differences with psci_is_last_on_cpu
1323  *  1. PSCI states are locked
1324  ******************************************************************************/
1325 bool psci_is_last_on_cpu_safe(unsigned int this_core)
1326 {
1327 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1328 
1329 	psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1330 
1331 	psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1332 
1333 	if (!psci_is_last_on_cpu(this_core)) {
1334 		psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1335 		return false;
1336 	}
1337 
1338 	psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1339 
1340 	return true;
1341 }
1342 
1343 /*******************************************************************************
1344  * This function verifies that all cores in the system have been turned ON.
1345  * Returns true, if all CPUs are ON or false otherwise.
1346  *
1347  * This API has following differences with psci_are_all_cpus_on
1348  *  1. PSCI states are locked
1349  ******************************************************************************/
1350 bool psci_are_all_cpus_on_safe(unsigned int this_core)
1351 {
1352 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1353 
1354 	psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1355 
1356 	psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1357 
1358 	if (!psci_are_all_cpus_on()) {
1359 		psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1360 		return false;
1361 	}
1362 
1363 	psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1364 
1365 	return true;
1366 }
1367