xref: /rk3399_ARM-atf/lib/psci/psci_common.c (revision 108e4df7f167bccc2c9ccef87bdd62d15c3aa74b)
1 /*
2  * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <arch.h>
32 #include <arch_helpers.h>
33 #include <assert.h>
34 #include <bl_common.h>
35 #include <context.h>
36 #include <context_mgmt.h>
37 #include <debug.h>
38 #include <platform.h>
39 #include <string.h>
40 #include <utils.h>
41 #include "psci_private.h"
42 
43 /*
44  * SPD power management operations, expected to be supplied by the registered
45  * SPD on successful SP initialization
46  */
47 const spd_pm_ops_t *psci_spd_pm;
48 
49 /*
50  * PSCI requested local power state map. This array is used to store the local
51  * power states requested by a CPU for power levels from level 1 to
52  * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
53  * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
54  * CPU are the same.
55  *
56  * During state coordination, the platform is passed an array containing the
57  * local states requested for a particular non cpu power domain by each cpu
58  * within the domain.
59  *
60  * TODO: Dense packing of the requested states will cause cache thrashing
61  * when multiple power domains write to it. If we allocate the requested
62  * states at each power level in a cache-line aligned per-domain memory,
63  * the cache thrashing can be avoided.
64  */
65 static plat_local_state_t
66 	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
67 
68 
69 /*******************************************************************************
70  * Arrays that hold the platform's power domain tree information for state
71  * management of power domains.
72  * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
73  * which is an ancestor of a CPU power domain.
74  * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
75  ******************************************************************************/
76 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
77 #if USE_COHERENT_MEM
78 __section("tzfw_coherent_mem")
79 #endif
80 ;
81 
82 DEFINE_BAKERY_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
83 
84 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
85 
86 /*******************************************************************************
87  * Pointer to functions exported by the platform to complete power mgmt. ops
88  ******************************************************************************/
89 const plat_psci_ops_t *psci_plat_pm_ops;
90 
91 /******************************************************************************
92  * Check that the maximum power level supported by the platform makes sense
93  *****************************************************************************/
94 CASSERT(PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL && \
95 		PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL, \
96 		assert_platform_max_pwrlvl_check);
97 
98 /*
99  * The plat_local_state used by the platform is one of these types: RUN,
100  * RETENTION and OFF. The platform can define further sub-states for each type
101  * apart from RUN. This categorization is done to verify the sanity of the
102  * psci_power_state passed by the platform and to print debug information. The
103  * categorization is done on the basis of the following conditions:
104  *
105  * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
106  *
107  * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
108  *    STATE_TYPE_RETN.
109  *
110  * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
111  *    STATE_TYPE_OFF.
112  */
113 typedef enum plat_local_state_type {
114 	STATE_TYPE_RUN = 0,
115 	STATE_TYPE_RETN,
116 	STATE_TYPE_OFF
117 } plat_local_state_type_t;
118 
119 /* The macro used to categorize plat_local_state. */
120 #define find_local_state_type(plat_local_state)					\
121 		((plat_local_state) ? ((plat_local_state > PLAT_MAX_RET_STATE)	\
122 		? STATE_TYPE_OFF : STATE_TYPE_RETN)				\
123 		: STATE_TYPE_RUN)
124 
125 /******************************************************************************
126  * Check that the maximum retention level supported by the platform is less
127  * than the maximum off level.
128  *****************************************************************************/
129 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, \
130 		assert_platform_max_off_and_retn_state_check);
131 
132 /******************************************************************************
133  * This function ensures that the power state parameter in a CPU_SUSPEND request
134  * is valid. If so, it returns the requested states for each power level.
135  *****************************************************************************/
136 int psci_validate_power_state(unsigned int power_state,
137 			      psci_power_state_t *state_info)
138 {
139 	/* Check SBZ bits in power state are zero */
140 	if (psci_check_power_state(power_state))
141 		return PSCI_E_INVALID_PARAMS;
142 
143 	assert(psci_plat_pm_ops->validate_power_state);
144 
145 	/* Validate the power_state using platform pm_ops */
146 	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
147 }
148 
149 /******************************************************************************
150  * This function retrieves the `psci_power_state_t` for system suspend from
151  * the platform.
152  *****************************************************************************/
153 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
154 {
155 	/*
156 	 * Assert that the required pm_ops hook is implemented to ensure that
157 	 * the capability detected during psci_setup() is valid.
158 	 */
159 	assert(psci_plat_pm_ops->get_sys_suspend_power_state);
160 
161 	/*
162 	 * Query the platform for the power_state required for system suspend
163 	 */
164 	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
165 }
166 
167 /*******************************************************************************
168  * This function verifies that the all the other cores in the system have been
169  * turned OFF and the current CPU is the last running CPU in the system.
170  * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
171  * otherwise.
172  ******************************************************************************/
173 unsigned int psci_is_last_on_cpu(void)
174 {
175 	unsigned int cpu_idx, my_idx = plat_my_core_pos();
176 
177 	for (cpu_idx = 0; cpu_idx < PLATFORM_CORE_COUNT; cpu_idx++) {
178 		if (cpu_idx == my_idx) {
179 			assert(psci_get_aff_info_state() == AFF_STATE_ON);
180 			continue;
181 		}
182 
183 		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF)
184 			return 0;
185 	}
186 
187 	return 1;
188 }
189 
190 /*******************************************************************************
191  * Routine to return the maximum power level to traverse to after a cpu has
192  * been physically powered up. It is expected to be called immediately after
193  * reset from assembler code.
194  ******************************************************************************/
195 static unsigned int get_power_on_target_pwrlvl(void)
196 {
197 	unsigned int pwrlvl;
198 
199 	/*
200 	 * Assume that this cpu was suspended and retrieve its target power
201 	 * level. If it is invalid then it could only have been turned off
202 	 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
203 	 * cpu can be turned off to.
204 	 */
205 	pwrlvl = psci_get_suspend_pwrlvl();
206 	if (pwrlvl == PSCI_INVALID_PWR_LVL)
207 		pwrlvl = PLAT_MAX_PWR_LVL;
208 	return pwrlvl;
209 }
210 
211 /******************************************************************************
212  * Helper function to update the requested local power state array. This array
213  * does not store the requested state for the CPU power level. Hence an
214  * assertion is added to prevent us from accessing the wrong index.
215  *****************************************************************************/
216 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
217 					 unsigned int cpu_idx,
218 					 plat_local_state_t req_pwr_state)
219 {
220 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
221 	psci_req_local_pwr_states[pwrlvl - 1][cpu_idx] = req_pwr_state;
222 }
223 
224 /******************************************************************************
225  * This function initializes the psci_req_local_pwr_states.
226  *****************************************************************************/
227 void psci_init_req_local_pwr_states(void)
228 {
229 	/* Initialize the requested state of all non CPU power domains as OFF */
230 	memset(&psci_req_local_pwr_states, PLAT_MAX_OFF_STATE,
231 			sizeof(psci_req_local_pwr_states));
232 }
233 
234 /******************************************************************************
235  * Helper function to return a reference to an array containing the local power
236  * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
237  * array will be the number of cpu power domains of which this power domain is
238  * an ancestor. These requested states will be used to determine a suitable
239  * target state for this power domain during psci state coordination. An
240  * assertion is added to prevent us from accessing the CPU power level.
241  *****************************************************************************/
242 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
243 							 unsigned int cpu_idx)
244 {
245 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
246 
247 	return &psci_req_local_pwr_states[pwrlvl - 1][cpu_idx];
248 }
249 
250 /******************************************************************************
251  * Helper function to return the current local power state of each power domain
252  * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
253  * function will be called after a cpu is powered on to find the local state
254  * each power domain has emerged from.
255  *****************************************************************************/
256 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
257 				      psci_power_state_t *target_state)
258 {
259 	unsigned int parent_idx, lvl;
260 	plat_local_state_t *pd_state = target_state->pwr_domain_state;
261 
262 	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
263 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
264 
265 	/* Copy the local power state from node to state_info */
266 	for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
267 #if !USE_COHERENT_MEM
268 		/*
269 		 * If using normal memory for psci_non_cpu_pd_nodes, we need
270 		 * to flush before reading the local power state as another
271 		 * cpu in the same power domain could have updated it and this
272 		 * code runs before caches are enabled.
273 		 */
274 		flush_dcache_range(
275 				(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
276 				sizeof(psci_non_cpu_pd_nodes[parent_idx]));
277 #endif
278 		pd_state[lvl] =	psci_non_cpu_pd_nodes[parent_idx].local_state;
279 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
280 	}
281 
282 	/* Set the the higher levels to RUN */
283 	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
284 		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
285 }
286 
287 /******************************************************************************
288  * Helper function to set the target local power state that each power domain
289  * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
290  * enter. This function will be called after coordination of requested power
291  * states has been done for each power level.
292  *****************************************************************************/
293 static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
294 					const psci_power_state_t *target_state)
295 {
296 	unsigned int parent_idx, lvl;
297 	const plat_local_state_t *pd_state = target_state->pwr_domain_state;
298 
299 	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
300 
301 	/*
302 	 * Need to flush as local_state will be accessed with Data Cache
303 	 * disabled during power on
304 	 */
305 	flush_cpu_data(psci_svc_cpu_data.local_state);
306 
307 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
308 
309 	/* Copy the local_state from state_info */
310 	for (lvl = 1; lvl <= end_pwrlvl; lvl++) {
311 		psci_non_cpu_pd_nodes[parent_idx].local_state =	pd_state[lvl];
312 #if !USE_COHERENT_MEM
313 		flush_dcache_range(
314 				(uintptr_t)&psci_non_cpu_pd_nodes[parent_idx],
315 				sizeof(psci_non_cpu_pd_nodes[parent_idx]));
316 #endif
317 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
318 	}
319 }
320 
321 
322 /*******************************************************************************
323  * PSCI helper function to get the parent nodes corresponding to a cpu_index.
324  ******************************************************************************/
325 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
326 				      unsigned int end_lvl,
327 				      unsigned int node_index[])
328 {
329 	unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
330 	int i;
331 
332 	for (i = PSCI_CPU_PWR_LVL + 1; i <= end_lvl; i++) {
333 		*node_index++ = parent_node;
334 		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
335 	}
336 }
337 
338 /******************************************************************************
339  * This function is invoked post CPU power up and initialization. It sets the
340  * affinity info state, target power state and requested power state for the
341  * current CPU and all its ancestor power domains to RUN.
342  *****************************************************************************/
343 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
344 {
345 	unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
346 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
347 
348 	/* Reset the local_state to RUN for the non cpu power domains. */
349 	for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
350 		psci_non_cpu_pd_nodes[parent_idx].local_state =
351 				PSCI_LOCAL_STATE_RUN;
352 #if !USE_COHERENT_MEM
353 		flush_dcache_range(
354 				(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
355 				sizeof(psci_non_cpu_pd_nodes[parent_idx]));
356 #endif
357 		psci_set_req_local_pwr_state(lvl,
358 					     cpu_idx,
359 					     PSCI_LOCAL_STATE_RUN);
360 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
361 	}
362 
363 	/* Set the affinity info state to ON */
364 	psci_set_aff_info_state(AFF_STATE_ON);
365 
366 	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
367 	flush_cpu_data(psci_svc_cpu_data);
368 }
369 
370 /******************************************************************************
371  * This function is passed the local power states requested for each power
372  * domain (state_info) between the current CPU domain and its ancestors until
373  * the target power level (end_pwrlvl). It updates the array of requested power
374  * states with this information.
375  *
376  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
377  * retrieves the states requested by all the cpus of which the power domain at
378  * that level is an ancestor. It passes this information to the platform to
379  * coordinate and return the target power state. If the target state for a level
380  * is RUN then subsequent levels are not considered. At the CPU level, state
381  * coordination is not required. Hence, the requested and the target states are
382  * the same.
383  *
384  * The 'state_info' is updated with the target state for each level between the
385  * CPU and the 'end_pwrlvl' and returned to the caller.
386  *
387  * This function will only be invoked with data cache enabled and while
388  * powering down a core.
389  *****************************************************************************/
390 void psci_do_state_coordination(unsigned int end_pwrlvl,
391 				psci_power_state_t *state_info)
392 {
393 	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
394 	unsigned int start_idx, ncpus;
395 	plat_local_state_t target_state, *req_states;
396 
397 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
398 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
399 
400 	/* For level 0, the requested state will be equivalent
401 	   to target state */
402 	for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
403 
404 		/* First update the requested power state */
405 		psci_set_req_local_pwr_state(lvl, cpu_idx,
406 					     state_info->pwr_domain_state[lvl]);
407 
408 		/* Get the requested power states for this power level */
409 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
410 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
411 
412 		/*
413 		 * Let the platform coordinate amongst the requested states at
414 		 * this power level and return the target local power state.
415 		 */
416 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
417 		target_state = plat_get_target_pwr_state(lvl,
418 							 req_states,
419 							 ncpus);
420 
421 		state_info->pwr_domain_state[lvl] = target_state;
422 
423 		/* Break early if the negotiated target power state is RUN */
424 		if (is_local_state_run(state_info->pwr_domain_state[lvl]))
425 			break;
426 
427 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
428 	}
429 
430 	/*
431 	 * This is for cases when we break out of the above loop early because
432 	 * the target power state is RUN at a power level < end_pwlvl.
433 	 * We update the requested power state from state_info and then
434 	 * set the target state as RUN.
435 	 */
436 	for (lvl = lvl + 1; lvl <= end_pwrlvl; lvl++) {
437 		psci_set_req_local_pwr_state(lvl, cpu_idx,
438 					     state_info->pwr_domain_state[lvl]);
439 		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
440 
441 	}
442 
443 	/* Update the target state in the power domain nodes */
444 	psci_set_target_local_pwr_states(end_pwrlvl, state_info);
445 }
446 
447 /******************************************************************************
448  * This function validates a suspend request by making sure that if a standby
449  * state is requested then no power level is turned off and the highest power
450  * level is placed in a standby/retention state.
451  *
452  * It also ensures that the state level X will enter is not shallower than the
453  * state level X + 1 will enter.
454  *
455  * This validation will be enabled only for DEBUG builds as the platform is
456  * expected to perform these validations as well.
457  *****************************************************************************/
458 int psci_validate_suspend_req(const psci_power_state_t *state_info,
459 			      unsigned int is_power_down_state)
460 {
461 	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
462 	plat_local_state_t state;
463 	plat_local_state_type_t req_state_type, deepest_state_type;
464 	int i;
465 
466 	/* Find the target suspend power level */
467 	target_lvl = psci_find_target_suspend_lvl(state_info);
468 	if (target_lvl == PSCI_INVALID_PWR_LVL)
469 		return PSCI_E_INVALID_PARAMS;
470 
471 	/* All power domain levels are in a RUN state to begin with */
472 	deepest_state_type = STATE_TYPE_RUN;
473 
474 	for (i = target_lvl; i >= PSCI_CPU_PWR_LVL; i--) {
475 		state = state_info->pwr_domain_state[i];
476 		req_state_type = find_local_state_type(state);
477 
478 		/*
479 		 * While traversing from the highest power level to the lowest,
480 		 * the state requested for lower levels has to be the same or
481 		 * deeper i.e. equal to or greater than the state at the higher
482 		 * levels. If this condition is true, then the requested state
483 		 * becomes the deepest state encountered so far.
484 		 */
485 		if (req_state_type < deepest_state_type)
486 			return PSCI_E_INVALID_PARAMS;
487 		deepest_state_type = req_state_type;
488 	}
489 
490 	/* Find the highest off power level */
491 	max_off_lvl = psci_find_max_off_lvl(state_info);
492 
493 	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
494 	max_retn_lvl = PSCI_INVALID_PWR_LVL;
495 	if (target_lvl != max_off_lvl)
496 		max_retn_lvl = target_lvl;
497 
498 	/*
499 	 * If this is not a request for a power down state then max off level
500 	 * has to be invalid and max retention level has to be a valid power
501 	 * level.
502 	 */
503 	if (!is_power_down_state && (max_off_lvl != PSCI_INVALID_PWR_LVL ||
504 				    max_retn_lvl == PSCI_INVALID_PWR_LVL))
505 		return PSCI_E_INVALID_PARAMS;
506 
507 	return PSCI_E_SUCCESS;
508 }
509 
510 /******************************************************************************
511  * This function finds the highest power level which will be powered down
512  * amongst all the power levels specified in the 'state_info' structure
513  *****************************************************************************/
514 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
515 {
516 	int i;
517 
518 	for (i = PLAT_MAX_PWR_LVL; i >= PSCI_CPU_PWR_LVL; i--) {
519 		if (is_local_state_off(state_info->pwr_domain_state[i]))
520 			return i;
521 	}
522 
523 	return PSCI_INVALID_PWR_LVL;
524 }
525 
526 /******************************************************************************
527  * This functions finds the level of the highest power domain which will be
528  * placed in a low power state during a suspend operation.
529  *****************************************************************************/
530 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
531 {
532 	int i;
533 
534 	for (i = PLAT_MAX_PWR_LVL; i >= PSCI_CPU_PWR_LVL; i--) {
535 		if (!is_local_state_run(state_info->pwr_domain_state[i]))
536 			return i;
537 	}
538 
539 	return PSCI_INVALID_PWR_LVL;
540 }
541 
542 /*******************************************************************************
543  * This function is passed a cpu_index and the highest level in the topology
544  * tree that the operation should be applied to. It picks up locks in order of
545  * increasing power domain level in the range specified.
546  ******************************************************************************/
547 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
548 				   unsigned int cpu_idx)
549 {
550 	unsigned int parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
551 	unsigned int level;
552 
553 	/* No locking required for level 0. Hence start locking from level 1 */
554 	for (level = PSCI_CPU_PWR_LVL + 1; level <= end_pwrlvl; level++) {
555 		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
556 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
557 	}
558 }
559 
560 /*******************************************************************************
561  * This function is passed a cpu_index and the highest level in the topology
562  * tree that the operation should be applied to. It releases the locks in order
563  * of decreasing power domain level in the range specified.
564  ******************************************************************************/
565 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
566 				   unsigned int cpu_idx)
567 {
568 	unsigned int parent_idx, parent_nodes[PLAT_MAX_PWR_LVL] = {0};
569 	int level;
570 
571 	/* Get the parent nodes */
572 	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
573 
574 	/* Unlock top down. No unlocking required for level 0. */
575 	for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1; level--) {
576 		parent_idx = parent_nodes[level - 1];
577 		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
578 	}
579 }
580 
581 /*******************************************************************************
582  * Simple routine to determine whether a mpidr is valid or not.
583  ******************************************************************************/
584 int psci_validate_mpidr(u_register_t mpidr)
585 {
586 	if (plat_core_pos_by_mpidr(mpidr) < 0)
587 		return PSCI_E_INVALID_PARAMS;
588 
589 	return PSCI_E_SUCCESS;
590 }
591 
592 /*******************************************************************************
593  * This function determines the full entrypoint information for the requested
594  * PSCI entrypoint on power on/resume and returns it.
595  ******************************************************************************/
596 #ifdef AARCH32
597 static int psci_get_ns_ep_info(entry_point_info_t *ep,
598 			       uintptr_t entrypoint,
599 			       u_register_t context_id)
600 {
601 	u_register_t ep_attr;
602 	unsigned int aif, ee, mode;
603 	u_register_t scr = read_scr();
604 	u_register_t ns_sctlr, sctlr;
605 
606 	/* Switch to non secure state */
607 	write_scr(scr | SCR_NS_BIT);
608 	isb();
609 	ns_sctlr = read_sctlr();
610 
611 	sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
612 
613 	/* Return to original state */
614 	write_scr(scr);
615 	isb();
616 	ee = 0;
617 
618 	ep_attr = NON_SECURE | EP_ST_DISABLE;
619 	if (sctlr & SCTLR_EE_BIT) {
620 		ep_attr |= EP_EE_BIG;
621 		ee = 1;
622 	}
623 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
624 
625 	ep->pc = entrypoint;
626 	zeromem(&ep->args, sizeof(ep->args));
627 	ep->args.arg0 = context_id;
628 
629 	mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
630 
631 	/*
632 	 * TODO: Choose async. exception bits if HYP mode is not
633 	 * implemented according to the values of SCR.{AW, FW} bits
634 	 */
635 	aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
636 
637 	ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
638 
639 	return PSCI_E_SUCCESS;
640 }
641 
642 #else
643 static int psci_get_ns_ep_info(entry_point_info_t *ep,
644 			       uintptr_t entrypoint,
645 			       u_register_t context_id)
646 {
647 	u_register_t ep_attr, sctlr;
648 	unsigned int daif, ee, mode;
649 	u_register_t ns_scr_el3 = read_scr_el3();
650 	u_register_t ns_sctlr_el1 = read_sctlr_el1();
651 
652 	sctlr = ns_scr_el3 & SCR_HCE_BIT ? read_sctlr_el2() : ns_sctlr_el1;
653 	ee = 0;
654 
655 	ep_attr = NON_SECURE | EP_ST_DISABLE;
656 	if (sctlr & SCTLR_EE_BIT) {
657 		ep_attr |= EP_EE_BIG;
658 		ee = 1;
659 	}
660 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
661 
662 	ep->pc = entrypoint;
663 	zeromem(&ep->args, sizeof(ep->args));
664 	ep->args.arg0 = context_id;
665 
666 	/*
667 	 * Figure out whether the cpu enters the non-secure address space
668 	 * in aarch32 or aarch64
669 	 */
670 	if (ns_scr_el3 & SCR_RW_BIT) {
671 
672 		/*
673 		 * Check whether a Thumb entry point has been provided for an
674 		 * aarch64 EL
675 		 */
676 		if (entrypoint & 0x1)
677 			return PSCI_E_INVALID_ADDRESS;
678 
679 		mode = ns_scr_el3 & SCR_HCE_BIT ? MODE_EL2 : MODE_EL1;
680 
681 		ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
682 	} else {
683 
684 		mode = ns_scr_el3 & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
685 
686 		/*
687 		 * TODO: Choose async. exception bits if HYP mode is not
688 		 * implemented according to the values of SCR.{AW, FW} bits
689 		 */
690 		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
691 
692 		ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
693 	}
694 
695 	return PSCI_E_SUCCESS;
696 }
697 #endif
698 
699 /*******************************************************************************
700  * This function validates the entrypoint with the platform layer if the
701  * appropriate pm_ops hook is exported by the platform and returns the
702  * 'entry_point_info'.
703  ******************************************************************************/
704 int psci_validate_entry_point(entry_point_info_t *ep,
705 			      uintptr_t entrypoint,
706 			      u_register_t context_id)
707 {
708 	int rc;
709 
710 	/* Validate the entrypoint using platform psci_ops */
711 	if (psci_plat_pm_ops->validate_ns_entrypoint) {
712 		rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
713 		if (rc != PSCI_E_SUCCESS)
714 			return PSCI_E_INVALID_ADDRESS;
715 	}
716 
717 	/*
718 	 * Verify and derive the re-entry information for
719 	 * the non-secure world from the non-secure state from
720 	 * where this call originated.
721 	 */
722 	rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
723 	return rc;
724 }
725 
726 /*******************************************************************************
727  * Generic handler which is called when a cpu is physically powered on. It
728  * traverses the node information and finds the highest power level powered
729  * off and performs generic, architectural, platform setup and state management
730  * to power on that power level and power levels below it.
731  * e.g. For a cpu that's been powered on, it will call the platform specific
732  * code to enable the gic cpu interface and for a cluster it will enable
733  * coherency at the interconnect level in addition to gic cpu interface.
734  ******************************************************************************/
735 void psci_warmboot_entrypoint(void)
736 {
737 	unsigned int end_pwrlvl, cpu_idx = plat_my_core_pos();
738 	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
739 
740 	/*
741 	 * Verify that we have been explicitly turned ON or resumed from
742 	 * suspend.
743 	 */
744 	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
745 		ERROR("Unexpected affinity info state");
746 		panic();
747 	}
748 
749 	/*
750 	 * Get the maximum power domain level to traverse to after this cpu
751 	 * has been physically powered up.
752 	 */
753 	end_pwrlvl = get_power_on_target_pwrlvl();
754 
755 	/*
756 	 * This function acquires the lock corresponding to each power level so
757 	 * that by the time all locks are taken, the system topology is snapshot
758 	 * and state management can be done safely.
759 	 */
760 	psci_acquire_pwr_domain_locks(end_pwrlvl,
761 				      cpu_idx);
762 
763 #if ENABLE_PSCI_STAT
764 	plat_psci_stat_accounting_stop(&state_info);
765 #endif
766 
767 	psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
768 
769 	/*
770 	 * This CPU could be resuming from suspend or it could have just been
771 	 * turned on. To distinguish between these 2 cases, we examine the
772 	 * affinity state of the CPU:
773 	 *  - If the affinity state is ON_PENDING then it has just been
774 	 *    turned on.
775 	 *  - Else it is resuming from suspend.
776 	 *
777 	 * Depending on the type of warm reset identified, choose the right set
778 	 * of power management handler and perform the generic, architecture
779 	 * and platform specific handling.
780 	 */
781 	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
782 		psci_cpu_on_finish(cpu_idx, &state_info);
783 	else
784 		psci_cpu_suspend_finish(cpu_idx, &state_info);
785 
786 	/*
787 	 * Set the requested and target state of this CPU and all the higher
788 	 * power domains which are ancestors of this CPU to run.
789 	 */
790 	psci_set_pwr_domains_to_run(end_pwrlvl);
791 
792 #if ENABLE_PSCI_STAT
793 	/*
794 	 * Update PSCI stats.
795 	 * Caches are off when writing stats data on the power down path.
796 	 * Since caches are now enabled, it's necessary to do cache
797 	 * maintenance before reading that same data.
798 	 */
799 	psci_stats_update_pwr_up(end_pwrlvl, &state_info);
800 #endif
801 
802 	/*
803 	 * This loop releases the lock corresponding to each power level
804 	 * in the reverse order to which they were acquired.
805 	 */
806 	psci_release_pwr_domain_locks(end_pwrlvl,
807 				      cpu_idx);
808 }
809 
810 /*******************************************************************************
811  * This function initializes the set of hooks that PSCI invokes as part of power
812  * management operation. The power management hooks are expected to be provided
813  * by the SPD, after it finishes all its initialization
814  ******************************************************************************/
815 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
816 {
817 	assert(pm);
818 	psci_spd_pm = pm;
819 
820 	if (pm->svc_migrate)
821 		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
822 
823 	if (pm->svc_migrate_info)
824 		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
825 				| define_psci_cap(PSCI_MIG_INFO_TYPE);
826 }
827 
828 /*******************************************************************************
829  * This function invokes the migrate info hook in the spd_pm_ops. It performs
830  * the necessary return value validation. If the Secure Payload is UP and
831  * migrate capable, it returns the mpidr of the CPU on which the Secure payload
832  * is resident through the mpidr parameter. Else the value of the parameter on
833  * return is undefined.
834  ******************************************************************************/
835 int psci_spd_migrate_info(u_register_t *mpidr)
836 {
837 	int rc;
838 
839 	if (!psci_spd_pm || !psci_spd_pm->svc_migrate_info)
840 		return PSCI_E_NOT_SUPPORTED;
841 
842 	rc = psci_spd_pm->svc_migrate_info(mpidr);
843 
844 	assert(rc == PSCI_TOS_UP_MIG_CAP || rc == PSCI_TOS_NOT_UP_MIG_CAP \
845 		|| rc == PSCI_TOS_NOT_PRESENT_MP || rc == PSCI_E_NOT_SUPPORTED);
846 
847 	return rc;
848 }
849 
850 
851 /*******************************************************************************
852  * This function prints the state of all power domains present in the
853  * system
854  ******************************************************************************/
855 void psci_print_power_domain_map(void)
856 {
857 #if LOG_LEVEL >= LOG_LEVEL_INFO
858 	unsigned int idx;
859 	plat_local_state_t state;
860 	plat_local_state_type_t state_type;
861 
862 	/* This array maps to the PSCI_STATE_X definitions in psci.h */
863 	static const char * const psci_state_type_str[] = {
864 		"ON",
865 		"RETENTION",
866 		"OFF",
867 	};
868 
869 	INFO("PSCI Power Domain Map:\n");
870 	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - PLATFORM_CORE_COUNT);
871 							idx++) {
872 		state_type = find_local_state_type(
873 				psci_non_cpu_pd_nodes[idx].local_state);
874 		INFO("  Domain Node : Level %u, parent_node %d,"
875 				" State %s (0x%x)\n",
876 				psci_non_cpu_pd_nodes[idx].level,
877 				psci_non_cpu_pd_nodes[idx].parent_node,
878 				psci_state_type_str[state_type],
879 				psci_non_cpu_pd_nodes[idx].local_state);
880 	}
881 
882 	for (idx = 0; idx < PLATFORM_CORE_COUNT; idx++) {
883 		state = psci_get_cpu_local_state_by_idx(idx);
884 		state_type = find_local_state_type(state);
885 		INFO("  CPU Node : MPID 0x%llx, parent_node %d,"
886 				" State %s (0x%x)\n",
887 				(unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
888 				psci_cpu_pd_nodes[idx].parent_node,
889 				psci_state_type_str[state_type],
890 				psci_get_cpu_local_state_by_idx(idx));
891 	}
892 #endif
893 }
894 
895 #if ENABLE_PLAT_COMPAT
896 /*******************************************************************************
897  * PSCI Compatibility helper function to return the 'power_state' parameter of
898  * the PSCI CPU SUSPEND request for the current CPU. Returns PSCI_INVALID_DATA
899  * if not invoked within CPU_SUSPEND for the current CPU.
900  ******************************************************************************/
901 int psci_get_suspend_powerstate(void)
902 {
903 	/* Sanity check to verify that CPU is within CPU_SUSPEND */
904 	if (psci_get_aff_info_state() == AFF_STATE_ON &&
905 		!is_local_state_run(psci_get_cpu_local_state()))
906 		return psci_power_state_compat[plat_my_core_pos()];
907 
908 	return PSCI_INVALID_DATA;
909 }
910 
911 /*******************************************************************************
912  * PSCI Compatibility helper function to return the state id of the current
913  * cpu encoded in the 'power_state' parameter. Returns PSCI_INVALID_DATA
914  * if not invoked within CPU_SUSPEND for the current CPU.
915  ******************************************************************************/
916 int psci_get_suspend_stateid(void)
917 {
918 	unsigned int power_state;
919 	power_state = psci_get_suspend_powerstate();
920 	if (power_state != PSCI_INVALID_DATA)
921 		return psci_get_pstate_id(power_state);
922 
923 	return PSCI_INVALID_DATA;
924 }
925 
926 /*******************************************************************************
927  * PSCI Compatibility helper function to return the state id encoded in the
928  * 'power_state' parameter of the CPU specified by 'mpidr'. Returns
929  * PSCI_INVALID_DATA if the CPU is not in CPU_SUSPEND.
930  ******************************************************************************/
931 int psci_get_suspend_stateid_by_mpidr(unsigned long mpidr)
932 {
933 	int cpu_idx = plat_core_pos_by_mpidr(mpidr);
934 
935 	if (cpu_idx == -1)
936 		return PSCI_INVALID_DATA;
937 
938 	/* Sanity check to verify that the CPU is in CPU_SUSPEND */
939 	if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_ON &&
940 		!is_local_state_run(psci_get_cpu_local_state_by_idx(cpu_idx)))
941 		return psci_get_pstate_id(psci_power_state_compat[cpu_idx]);
942 
943 	return PSCI_INVALID_DATA;
944 }
945 
946 /*******************************************************************************
947  * This function returns highest affinity level which is in OFF
948  * state. The affinity instance with which the level is associated is
949  * determined by the caller.
950  ******************************************************************************/
951 unsigned int psci_get_max_phys_off_afflvl(void)
952 {
953 	psci_power_state_t state_info;
954 
955 	zeromem(&state_info, sizeof(state_info));
956 	psci_get_target_local_pwr_states(PLAT_MAX_PWR_LVL, &state_info);
957 
958 	return psci_find_target_suspend_lvl(&state_info);
959 }
960 
961 /*******************************************************************************
962  * PSCI Compatibility helper function to return target affinity level requested
963  * for the CPU_SUSPEND. This function assumes affinity levels correspond to
964  * power domain levels on the platform.
965  ******************************************************************************/
966 int psci_get_suspend_afflvl(void)
967 {
968 	return psci_get_suspend_pwrlvl();
969 }
970 
971 #endif
972