1 /* 2 * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 #include <string.h> 9 10 #include <arch.h> 11 #include <arch_features.h> 12 #include <arch_helpers.h> 13 #include <common/bl_common.h> 14 #include <common/debug.h> 15 #include <context.h> 16 #include <drivers/delay_timer.h> 17 #include <lib/el3_runtime/context_mgmt.h> 18 #include <lib/extensions/spe.h> 19 #include <lib/utils.h> 20 #include <plat/common/platform.h> 21 22 #include "psci_private.h" 23 24 /* 25 * SPD power management operations, expected to be supplied by the registered 26 * SPD on successful SP initialization 27 */ 28 const spd_pm_ops_t *psci_spd_pm; 29 30 /* 31 * PSCI requested local power state map. This array is used to store the local 32 * power states requested by a CPU for power levels from level 1 to 33 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power 34 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a 35 * CPU are the same. 36 * 37 * During state coordination, the platform is passed an array containing the 38 * local states requested for a particular non cpu power domain by each cpu 39 * within the domain. 40 * 41 * TODO: Dense packing of the requested states will cause cache thrashing 42 * when multiple power domains write to it. If we allocate the requested 43 * states at each power level in a cache-line aligned per-domain memory, 44 * the cache thrashing can be avoided. 45 */ 46 static plat_local_state_t 47 psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT]; 48 49 unsigned int psci_plat_core_count; 50 51 /******************************************************************************* 52 * Arrays that hold the platform's power domain tree information for state 53 * management of power domains. 54 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain 55 * which is an ancestor of a CPU power domain. 56 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain 57 ******************************************************************************/ 58 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS] 59 #if USE_COHERENT_MEM 60 __section(".tzfw_coherent_mem") 61 #endif 62 ; 63 64 /* Lock for PSCI state coordination */ 65 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]); 66 67 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT]; 68 69 /******************************************************************************* 70 * Pointer to functions exported by the platform to complete power mgmt. ops 71 ******************************************************************************/ 72 const plat_psci_ops_t *psci_plat_pm_ops; 73 74 /****************************************************************************** 75 * Check that the maximum power level supported by the platform makes sense 76 *****************************************************************************/ 77 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) && 78 (PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL), 79 assert_platform_max_pwrlvl_check); 80 81 #if PSCI_OS_INIT_MODE 82 /******************************************************************************* 83 * The power state coordination mode used in CPU_SUSPEND. 84 * Defaults to platform-coordinated mode. 85 ******************************************************************************/ 86 suspend_mode_t psci_suspend_mode = PLAT_COORD; 87 #endif 88 89 /* 90 * The plat_local_state used by the platform is one of these types: RUN, 91 * RETENTION and OFF. The platform can define further sub-states for each type 92 * apart from RUN. This categorization is done to verify the sanity of the 93 * psci_power_state passed by the platform and to print debug information. The 94 * categorization is done on the basis of the following conditions: 95 * 96 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN. 97 * 98 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is 99 * STATE_TYPE_RETN. 100 * 101 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is 102 * STATE_TYPE_OFF. 103 */ 104 typedef enum plat_local_state_type { 105 STATE_TYPE_RUN = 0, 106 STATE_TYPE_RETN, 107 STATE_TYPE_OFF 108 } plat_local_state_type_t; 109 110 /* Function used to categorize plat_local_state. */ 111 static plat_local_state_type_t find_local_state_type(plat_local_state_t state) 112 { 113 if (state != 0U) { 114 if (state > PLAT_MAX_RET_STATE) { 115 return STATE_TYPE_OFF; 116 } else { 117 return STATE_TYPE_RETN; 118 } 119 } else { 120 return STATE_TYPE_RUN; 121 } 122 } 123 124 /****************************************************************************** 125 * Check that the maximum retention level supported by the platform is less 126 * than the maximum off level. 127 *****************************************************************************/ 128 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE, 129 assert_platform_max_off_and_retn_state_check); 130 131 /****************************************************************************** 132 * This function ensures that the power state parameter in a CPU_SUSPEND request 133 * is valid. If so, it returns the requested states for each power level. 134 *****************************************************************************/ 135 int psci_validate_power_state(unsigned int power_state, 136 psci_power_state_t *state_info) 137 { 138 /* Check SBZ bits in power state are zero */ 139 if (psci_check_power_state(power_state) != 0U) 140 return PSCI_E_INVALID_PARAMS; 141 142 assert(psci_plat_pm_ops->validate_power_state != NULL); 143 144 /* Validate the power_state using platform pm_ops */ 145 return psci_plat_pm_ops->validate_power_state(power_state, state_info); 146 } 147 148 /****************************************************************************** 149 * This function retrieves the `psci_power_state_t` for system suspend from 150 * the platform. 151 *****************************************************************************/ 152 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info) 153 { 154 /* 155 * Assert that the required pm_ops hook is implemented to ensure that 156 * the capability detected during psci_setup() is valid. 157 */ 158 assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL); 159 160 /* 161 * Query the platform for the power_state required for system suspend 162 */ 163 psci_plat_pm_ops->get_sys_suspend_power_state(state_info); 164 } 165 166 #if PSCI_OS_INIT_MODE 167 /******************************************************************************* 168 * This function verifies that all the other cores at the 'end_pwrlvl' have been 169 * idled and the current CPU is the last running CPU at the 'end_pwrlvl'. 170 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false) 171 * otherwise. 172 ******************************************************************************/ 173 static bool psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int end_pwrlvl) 174 { 175 unsigned int my_idx, lvl; 176 unsigned int parent_idx = 0; 177 unsigned int cpu_start_idx, ncpus, cpu_idx; 178 plat_local_state_t local_state; 179 180 if (end_pwrlvl == PSCI_CPU_PWR_LVL) { 181 return true; 182 } 183 184 my_idx = plat_my_core_pos(); 185 parent_idx = psci_cpu_pd_nodes[my_idx].parent_node; 186 for (lvl = PSCI_CPU_PWR_LVL + U(1); lvl < end_pwrlvl; lvl++) { 187 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 188 } 189 190 cpu_start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 191 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 192 193 for (cpu_idx = cpu_start_idx; cpu_idx < cpu_start_idx + ncpus; 194 cpu_idx++) { 195 local_state = psci_get_cpu_local_state_by_idx(cpu_idx); 196 if (cpu_idx == my_idx) { 197 assert(is_local_state_run(local_state) != 0); 198 continue; 199 } 200 201 if (is_local_state_run(local_state) != 0) { 202 return false; 203 } 204 } 205 206 return true; 207 } 208 #endif 209 210 /******************************************************************************* 211 * This function verifies that all the other cores in the system have been 212 * turned OFF and the current CPU is the last running CPU in the system. 213 * Returns true, if the current CPU is the last ON CPU or false otherwise. 214 ******************************************************************************/ 215 bool psci_is_last_on_cpu(void) 216 { 217 unsigned int cpu_idx, my_idx = plat_my_core_pos(); 218 219 for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) { 220 if (cpu_idx == my_idx) { 221 assert(psci_get_aff_info_state() == AFF_STATE_ON); 222 continue; 223 } 224 225 if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) { 226 VERBOSE("core=%u other than current core=%u %s\n", 227 cpu_idx, my_idx, "running in the system"); 228 return false; 229 } 230 } 231 232 return true; 233 } 234 235 /******************************************************************************* 236 * This function verifies that all cores in the system have been turned ON. 237 * Returns true, if all CPUs are ON or false otherwise. 238 ******************************************************************************/ 239 static bool psci_are_all_cpus_on(void) 240 { 241 unsigned int cpu_idx; 242 243 for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) { 244 if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_OFF) { 245 return false; 246 } 247 } 248 249 return true; 250 } 251 252 /******************************************************************************* 253 * Routine to return the maximum power level to traverse to after a cpu has 254 * been physically powered up. It is expected to be called immediately after 255 * reset from assembler code. 256 ******************************************************************************/ 257 static unsigned int get_power_on_target_pwrlvl(void) 258 { 259 unsigned int pwrlvl; 260 261 /* 262 * Assume that this cpu was suspended and retrieve its target power 263 * level. If it wasn't, the cpu is off so this will be PLAT_MAX_PWR_LVL. 264 */ 265 pwrlvl = psci_get_suspend_pwrlvl(); 266 assert(pwrlvl < PSCI_INVALID_PWR_LVL); 267 return pwrlvl; 268 } 269 270 /****************************************************************************** 271 * Helper function to update the requested local power state array. This array 272 * does not store the requested state for the CPU power level. Hence an 273 * assertion is added to prevent us from accessing the CPU power level. 274 *****************************************************************************/ 275 static void psci_set_req_local_pwr_state(unsigned int pwrlvl, 276 unsigned int cpu_idx, 277 plat_local_state_t req_pwr_state) 278 { 279 assert(pwrlvl > PSCI_CPU_PWR_LVL); 280 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && 281 (cpu_idx < psci_plat_core_count)) { 282 psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state; 283 } 284 } 285 286 /****************************************************************************** 287 * This function initializes the psci_req_local_pwr_states. 288 *****************************************************************************/ 289 void __init psci_init_req_local_pwr_states(void) 290 { 291 /* Initialize the requested state of all non CPU power domains as OFF */ 292 unsigned int pwrlvl; 293 unsigned int core; 294 295 for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) { 296 for (core = 0; core < psci_plat_core_count; core++) { 297 psci_req_local_pwr_states[pwrlvl][core] = 298 PLAT_MAX_OFF_STATE; 299 } 300 } 301 } 302 303 /****************************************************************************** 304 * Helper function to return a reference to an array containing the local power 305 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the 306 * array will be the number of cpu power domains of which this power domain is 307 * an ancestor. These requested states will be used to determine a suitable 308 * target state for this power domain during psci state coordination. An 309 * assertion is added to prevent us from accessing the CPU power level. 310 *****************************************************************************/ 311 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl, 312 unsigned int cpu_idx) 313 { 314 assert(pwrlvl > PSCI_CPU_PWR_LVL); 315 316 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) && 317 (cpu_idx < psci_plat_core_count)) { 318 return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx]; 319 } else 320 return NULL; 321 } 322 323 #if PSCI_OS_INIT_MODE 324 /****************************************************************************** 325 * Helper function to save a copy of the psci_req_local_pwr_states (prev) for a 326 * CPU (cpu_idx), and update psci_req_local_pwr_states with the new requested 327 * local power states (state_info). 328 *****************************************************************************/ 329 void psci_update_req_local_pwr_states(unsigned int end_pwrlvl, 330 unsigned int cpu_idx, 331 psci_power_state_t *state_info, 332 plat_local_state_t *prev) 333 { 334 unsigned int lvl; 335 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL 336 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL; 337 #else 338 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL; 339 #endif 340 plat_local_state_t req_state; 341 342 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) { 343 /* Save the previous requested local power state */ 344 prev[lvl - 1U] = *psci_get_req_local_pwr_states(lvl, cpu_idx); 345 346 /* Update the new requested local power state */ 347 if (lvl <= end_pwrlvl) { 348 req_state = state_info->pwr_domain_state[lvl]; 349 } else { 350 req_state = state_info->pwr_domain_state[end_pwrlvl]; 351 } 352 psci_set_req_local_pwr_state(lvl, cpu_idx, req_state); 353 } 354 } 355 356 /****************************************************************************** 357 * Helper function to restore the previously saved requested local power states 358 * (prev) for a CPU (cpu_idx) to psci_req_local_pwr_states. 359 *****************************************************************************/ 360 void psci_restore_req_local_pwr_states(unsigned int cpu_idx, 361 plat_local_state_t *prev) 362 { 363 unsigned int lvl; 364 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL 365 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL; 366 #else 367 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL; 368 #endif 369 370 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) { 371 /* Restore the previous requested local power state */ 372 psci_set_req_local_pwr_state(lvl, cpu_idx, prev[lvl - 1U]); 373 } 374 } 375 #endif 376 377 /* 378 * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent 379 * memory. 380 * 381 * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory, 382 * it's accessed by both cached and non-cached participants. To serve the common 383 * minimum, perform a cache flush before read and after write so that non-cached 384 * participants operate on latest data in main memory. 385 * 386 * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent 387 * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent. 388 * In both cases, no cache operations are required. 389 */ 390 391 /* 392 * Retrieve local state of non-CPU power domain node from a non-cached CPU, 393 * after any required cache maintenance operation. 394 */ 395 static plat_local_state_t get_non_cpu_pd_node_local_state( 396 unsigned int parent_idx) 397 { 398 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 399 flush_dcache_range( 400 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 401 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 402 #endif 403 return psci_non_cpu_pd_nodes[parent_idx].local_state; 404 } 405 406 /* 407 * Update local state of non-CPU power domain node from a cached CPU; perform 408 * any required cache maintenance operation afterwards. 409 */ 410 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx, 411 plat_local_state_t state) 412 { 413 psci_non_cpu_pd_nodes[parent_idx].local_state = state; 414 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY) 415 flush_dcache_range( 416 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx], 417 sizeof(psci_non_cpu_pd_nodes[parent_idx])); 418 #endif 419 } 420 421 /****************************************************************************** 422 * Helper function to return the current local power state of each power domain 423 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This 424 * function will be called after a cpu is powered on to find the local state 425 * each power domain has emerged from. 426 *****************************************************************************/ 427 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl, 428 psci_power_state_t *target_state) 429 { 430 unsigned int parent_idx, lvl; 431 plat_local_state_t *pd_state = target_state->pwr_domain_state; 432 433 pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state(); 434 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; 435 436 /* Copy the local power state from node to state_info */ 437 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 438 pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx); 439 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 440 } 441 442 /* Set the the higher levels to RUN */ 443 for (; lvl <= PLAT_MAX_PWR_LVL; lvl++) 444 target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 445 } 446 447 /****************************************************************************** 448 * Helper function to set the target local power state that each power domain 449 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will 450 * enter. This function will be called after coordination of requested power 451 * states has been done for each power level. 452 *****************************************************************************/ 453 void psci_set_target_local_pwr_states(unsigned int end_pwrlvl, 454 const psci_power_state_t *target_state) 455 { 456 unsigned int parent_idx, lvl; 457 const plat_local_state_t *pd_state = target_state->pwr_domain_state; 458 459 psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]); 460 461 /* 462 * Need to flush as local_state might be accessed with Data Cache 463 * disabled during power on 464 */ 465 psci_flush_cpu_data(psci_svc_cpu_data.local_state); 466 467 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node; 468 469 /* Copy the local_state from state_info */ 470 for (lvl = 1U; lvl <= end_pwrlvl; lvl++) { 471 set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]); 472 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 473 } 474 } 475 476 /******************************************************************************* 477 * PSCI helper function to get the parent nodes corresponding to a cpu_index. 478 ******************************************************************************/ 479 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx, 480 unsigned int end_lvl, 481 unsigned int *node_index) 482 { 483 unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node; 484 unsigned int i; 485 unsigned int *node = node_index; 486 487 for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) { 488 *node = parent_node; 489 node++; 490 parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node; 491 } 492 } 493 494 /****************************************************************************** 495 * This function is invoked post CPU power up and initialization. It sets the 496 * affinity info state, target power state and requested power state for the 497 * current CPU and all its ancestor power domains to RUN. 498 *****************************************************************************/ 499 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl) 500 { 501 unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl; 502 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 503 504 /* Reset the local_state to RUN for the non cpu power domains. */ 505 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 506 set_non_cpu_pd_node_local_state(parent_idx, 507 PSCI_LOCAL_STATE_RUN); 508 psci_set_req_local_pwr_state(lvl, 509 cpu_idx, 510 PSCI_LOCAL_STATE_RUN); 511 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 512 } 513 514 /* Set the affinity info state to ON */ 515 psci_set_aff_info_state(AFF_STATE_ON); 516 517 psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN); 518 psci_flush_cpu_data(psci_svc_cpu_data); 519 } 520 521 /****************************************************************************** 522 * This function is used in platform-coordinated mode. 523 * 524 * This function is passed the local power states requested for each power 525 * domain (state_info) between the current CPU domain and its ancestors until 526 * the target power level (end_pwrlvl). It updates the array of requested power 527 * states with this information. 528 * 529 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it 530 * retrieves the states requested by all the cpus of which the power domain at 531 * that level is an ancestor. It passes this information to the platform to 532 * coordinate and return the target power state. If the target state for a level 533 * is RUN then subsequent levels are not considered. At the CPU level, state 534 * coordination is not required. Hence, the requested and the target states are 535 * the same. 536 * 537 * The 'state_info' is updated with the target state for each level between the 538 * CPU and the 'end_pwrlvl' and returned to the caller. 539 * 540 * This function will only be invoked with data cache enabled and while 541 * powering down a core. 542 *****************************************************************************/ 543 void psci_do_state_coordination(unsigned int end_pwrlvl, 544 psci_power_state_t *state_info) 545 { 546 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos(); 547 unsigned int start_idx; 548 unsigned int ncpus; 549 plat_local_state_t target_state, *req_states; 550 551 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); 552 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 553 554 /* For level 0, the requested state will be equivalent 555 to target state */ 556 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 557 558 /* First update the requested power state */ 559 psci_set_req_local_pwr_state(lvl, cpu_idx, 560 state_info->pwr_domain_state[lvl]); 561 562 /* Get the requested power states for this power level */ 563 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 564 req_states = psci_get_req_local_pwr_states(lvl, start_idx); 565 566 /* 567 * Let the platform coordinate amongst the requested states at 568 * this power level and return the target local power state. 569 */ 570 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 571 target_state = plat_get_target_pwr_state(lvl, 572 req_states, 573 ncpus); 574 575 state_info->pwr_domain_state[lvl] = target_state; 576 577 /* Break early if the negotiated target power state is RUN */ 578 if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0) 579 break; 580 581 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 582 } 583 584 /* 585 * This is for cases when we break out of the above loop early because 586 * the target power state is RUN at a power level < end_pwlvl. 587 * We update the requested power state from state_info and then 588 * set the target state as RUN. 589 */ 590 for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) { 591 psci_set_req_local_pwr_state(lvl, cpu_idx, 592 state_info->pwr_domain_state[lvl]); 593 state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN; 594 595 } 596 } 597 598 #if PSCI_OS_INIT_MODE 599 /****************************************************************************** 600 * This function is used in OS-initiated mode. 601 * 602 * This function is passed the local power states requested for each power 603 * domain (state_info) between the current CPU domain and its ancestors until 604 * the target power level (end_pwrlvl), and ensures the requested power states 605 * are valid. It updates the array of requested power states with this 606 * information. 607 * 608 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it 609 * retrieves the states requested by all the cpus of which the power domain at 610 * that level is an ancestor. It passes this information to the platform to 611 * coordinate and return the target power state. If the requested state does 612 * not match the target state, the request is denied. 613 * 614 * The 'state_info' is not modified. 615 * 616 * This function will only be invoked with data cache enabled and while 617 * powering down a core. 618 *****************************************************************************/ 619 int psci_validate_state_coordination(unsigned int end_pwrlvl, 620 psci_power_state_t *state_info) 621 { 622 int rc = PSCI_E_SUCCESS; 623 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos(); 624 unsigned int start_idx; 625 unsigned int ncpus; 626 plat_local_state_t target_state, *req_states; 627 plat_local_state_t prev[PLAT_MAX_PWR_LVL]; 628 629 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL); 630 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node; 631 632 /* 633 * Save a copy of the previous requested local power states and update 634 * the new requested local power states. 635 */ 636 psci_update_req_local_pwr_states(end_pwrlvl, cpu_idx, state_info, prev); 637 638 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) { 639 /* Get the requested power states for this power level */ 640 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx; 641 req_states = psci_get_req_local_pwr_states(lvl, start_idx); 642 643 /* 644 * Let the platform coordinate amongst the requested states at 645 * this power level and return the target local power state. 646 */ 647 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus; 648 target_state = plat_get_target_pwr_state(lvl, 649 req_states, 650 ncpus); 651 652 /* 653 * Verify that the requested power state matches the target 654 * local power state. 655 */ 656 if (state_info->pwr_domain_state[lvl] != target_state) { 657 if (target_state == PSCI_LOCAL_STATE_RUN) { 658 rc = PSCI_E_DENIED; 659 } else { 660 rc = PSCI_E_INVALID_PARAMS; 661 } 662 goto exit; 663 } 664 665 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node; 666 } 667 668 /* 669 * Verify that the current core is the last running core at the 670 * specified power level. 671 */ 672 lvl = state_info->last_at_pwrlvl; 673 if (!psci_is_last_cpu_to_idle_at_pwrlvl(lvl)) { 674 rc = PSCI_E_DENIED; 675 } 676 677 exit: 678 if (rc != PSCI_E_SUCCESS) { 679 /* Restore the previous requested local power states. */ 680 psci_restore_req_local_pwr_states(cpu_idx, prev); 681 return rc; 682 } 683 684 return rc; 685 } 686 #endif 687 688 /****************************************************************************** 689 * This function validates a suspend request by making sure that if a standby 690 * state is requested then no power level is turned off and the highest power 691 * level is placed in a standby/retention state. 692 * 693 * It also ensures that the state level X will enter is not shallower than the 694 * state level X + 1 will enter. 695 * 696 * This validation will be enabled only for DEBUG builds as the platform is 697 * expected to perform these validations as well. 698 *****************************************************************************/ 699 int psci_validate_suspend_req(const psci_power_state_t *state_info, 700 unsigned int is_power_down_state) 701 { 702 unsigned int max_off_lvl, target_lvl, max_retn_lvl; 703 plat_local_state_t state; 704 plat_local_state_type_t req_state_type, deepest_state_type; 705 int i; 706 707 /* Find the target suspend power level */ 708 target_lvl = psci_find_target_suspend_lvl(state_info); 709 if (target_lvl == PSCI_INVALID_PWR_LVL) 710 return PSCI_E_INVALID_PARAMS; 711 712 /* All power domain levels are in a RUN state to begin with */ 713 deepest_state_type = STATE_TYPE_RUN; 714 715 for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) { 716 state = state_info->pwr_domain_state[i]; 717 req_state_type = find_local_state_type(state); 718 719 /* 720 * While traversing from the highest power level to the lowest, 721 * the state requested for lower levels has to be the same or 722 * deeper i.e. equal to or greater than the state at the higher 723 * levels. If this condition is true, then the requested state 724 * becomes the deepest state encountered so far. 725 */ 726 if (req_state_type < deepest_state_type) 727 return PSCI_E_INVALID_PARAMS; 728 deepest_state_type = req_state_type; 729 } 730 731 /* Find the highest off power level */ 732 max_off_lvl = psci_find_max_off_lvl(state_info); 733 734 /* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */ 735 max_retn_lvl = PSCI_INVALID_PWR_LVL; 736 if (target_lvl != max_off_lvl) 737 max_retn_lvl = target_lvl; 738 739 /* 740 * If this is not a request for a power down state then max off level 741 * has to be invalid and max retention level has to be a valid power 742 * level. 743 */ 744 if ((is_power_down_state == 0U) && 745 ((max_off_lvl != PSCI_INVALID_PWR_LVL) || 746 (max_retn_lvl == PSCI_INVALID_PWR_LVL))) 747 return PSCI_E_INVALID_PARAMS; 748 749 return PSCI_E_SUCCESS; 750 } 751 752 /****************************************************************************** 753 * This function finds the highest power level which will be powered down 754 * amongst all the power levels specified in the 'state_info' structure 755 *****************************************************************************/ 756 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info) 757 { 758 int i; 759 760 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 761 if (is_local_state_off(state_info->pwr_domain_state[i]) != 0) 762 return (unsigned int) i; 763 } 764 765 return PSCI_INVALID_PWR_LVL; 766 } 767 768 /****************************************************************************** 769 * This functions finds the level of the highest power domain which will be 770 * placed in a low power state during a suspend operation. 771 *****************************************************************************/ 772 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info) 773 { 774 int i; 775 776 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) { 777 if (is_local_state_run(state_info->pwr_domain_state[i]) == 0) 778 return (unsigned int) i; 779 } 780 781 return PSCI_INVALID_PWR_LVL; 782 } 783 784 /******************************************************************************* 785 * This function is passed the highest level in the topology tree that the 786 * operation should be applied to and a list of node indexes. It picks up locks 787 * from the node index list in order of increasing power domain level in the 788 * range specified. 789 ******************************************************************************/ 790 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl, 791 const unsigned int *parent_nodes) 792 { 793 unsigned int parent_idx; 794 unsigned int level; 795 796 /* No locking required for level 0. Hence start locking from level 1 */ 797 for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) { 798 parent_idx = parent_nodes[level - 1U]; 799 psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]); 800 } 801 } 802 803 /******************************************************************************* 804 * This function is passed the highest level in the topology tree that the 805 * operation should be applied to and a list of node indexes. It releases the 806 * locks in order of decreasing power domain level in the range specified. 807 ******************************************************************************/ 808 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl, 809 const unsigned int *parent_nodes) 810 { 811 unsigned int parent_idx; 812 unsigned int level; 813 814 /* Unlock top down. No unlocking required for level 0. */ 815 for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) { 816 parent_idx = parent_nodes[level - 1U]; 817 psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]); 818 } 819 } 820 821 /******************************************************************************* 822 * This function determines the full entrypoint information for the requested 823 * PSCI entrypoint on power on/resume and returns it. 824 ******************************************************************************/ 825 #ifdef __aarch64__ 826 static int psci_get_ns_ep_info(entry_point_info_t *ep, 827 uintptr_t entrypoint, 828 u_register_t context_id) 829 { 830 u_register_t ep_attr, sctlr; 831 unsigned int daif, ee, mode; 832 u_register_t ns_scr_el3 = read_scr_el3(); 833 u_register_t ns_sctlr_el1 = read_sctlr_el1(); 834 835 sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 836 read_sctlr_el2() : ns_sctlr_el1; 837 ee = 0; 838 839 ep_attr = NON_SECURE | EP_ST_DISABLE; 840 if ((sctlr & SCTLR_EE_BIT) != 0U) { 841 ep_attr |= EP_EE_BIG; 842 ee = 1; 843 } 844 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 845 846 ep->pc = entrypoint; 847 zeromem(&ep->args, sizeof(ep->args)); 848 ep->args.arg0 = context_id; 849 850 /* 851 * Figure out whether the cpu enters the non-secure address space 852 * in aarch32 or aarch64 853 */ 854 if ((ns_scr_el3 & SCR_RW_BIT) != 0U) { 855 856 /* 857 * Check whether a Thumb entry point has been provided for an 858 * aarch64 EL 859 */ 860 if ((entrypoint & 0x1UL) != 0UL) 861 return PSCI_E_INVALID_ADDRESS; 862 863 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1; 864 865 ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX, 866 DISABLE_ALL_EXCEPTIONS); 867 } else { 868 869 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? 870 MODE32_hyp : MODE32_svc; 871 872 /* 873 * TODO: Choose async. exception bits if HYP mode is not 874 * implemented according to the values of SCR.{AW, FW} bits 875 */ 876 daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT; 877 878 ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee, 879 daif); 880 } 881 882 return PSCI_E_SUCCESS; 883 } 884 #else /* !__aarch64__ */ 885 static int psci_get_ns_ep_info(entry_point_info_t *ep, 886 uintptr_t entrypoint, 887 u_register_t context_id) 888 { 889 u_register_t ep_attr; 890 unsigned int aif, ee, mode; 891 u_register_t scr = read_scr(); 892 u_register_t ns_sctlr, sctlr; 893 894 /* Switch to non secure state */ 895 write_scr(scr | SCR_NS_BIT); 896 isb(); 897 ns_sctlr = read_sctlr(); 898 899 sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr; 900 901 /* Return to original state */ 902 write_scr(scr); 903 isb(); 904 ee = 0; 905 906 ep_attr = NON_SECURE | EP_ST_DISABLE; 907 if (sctlr & SCTLR_EE_BIT) { 908 ep_attr |= EP_EE_BIG; 909 ee = 1; 910 } 911 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr); 912 913 ep->pc = entrypoint; 914 zeromem(&ep->args, sizeof(ep->args)); 915 ep->args.arg0 = context_id; 916 917 mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc; 918 919 /* 920 * TODO: Choose async. exception bits if HYP mode is not 921 * implemented according to the values of SCR.{AW, FW} bits 922 */ 923 aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT; 924 925 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif); 926 927 return PSCI_E_SUCCESS; 928 } 929 930 #endif /* __aarch64__ */ 931 932 /******************************************************************************* 933 * This function validates the entrypoint with the platform layer if the 934 * appropriate pm_ops hook is exported by the platform and returns the 935 * 'entry_point_info'. 936 ******************************************************************************/ 937 int psci_validate_entry_point(entry_point_info_t *ep, 938 uintptr_t entrypoint, 939 u_register_t context_id) 940 { 941 int rc; 942 943 /* Validate the entrypoint using platform psci_ops */ 944 if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) { 945 rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint); 946 if (rc != PSCI_E_SUCCESS) 947 return PSCI_E_INVALID_ADDRESS; 948 } 949 950 /* 951 * Verify and derive the re-entry information for 952 * the non-secure world from the non-secure state from 953 * where this call originated. 954 */ 955 rc = psci_get_ns_ep_info(ep, entrypoint, context_id); 956 return rc; 957 } 958 959 /******************************************************************************* 960 * Generic handler which is called when a cpu is physically powered on. It 961 * traverses the node information and finds the highest power level powered 962 * off and performs generic, architectural, platform setup and state management 963 * to power on that power level and power levels below it. 964 * e.g. For a cpu that's been powered on, it will call the platform specific 965 * code to enable the gic cpu interface and for a cluster it will enable 966 * coherency at the interconnect level in addition to gic cpu interface. 967 ******************************************************************************/ 968 void psci_warmboot_entrypoint(void) 969 { 970 unsigned int end_pwrlvl; 971 unsigned int cpu_idx = plat_my_core_pos(); 972 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 973 psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} }; 974 975 /* Init registers that never change for the lifetime of TF-A */ 976 cm_manage_extensions_el3(); 977 978 /* 979 * Verify that we have been explicitly turned ON or resumed from 980 * suspend. 981 */ 982 if (psci_get_aff_info_state() == AFF_STATE_OFF) { 983 ERROR("Unexpected affinity info state.\n"); 984 panic(); 985 } 986 987 /* 988 * Get the maximum power domain level to traverse to after this cpu 989 * has been physically powered up. 990 */ 991 end_pwrlvl = get_power_on_target_pwrlvl(); 992 993 /* Get the parent nodes */ 994 psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes); 995 996 /* 997 * This function acquires the lock corresponding to each power level so 998 * that by the time all locks are taken, the system topology is snapshot 999 * and state management can be done safely. 1000 */ 1001 psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes); 1002 1003 psci_get_target_local_pwr_states(end_pwrlvl, &state_info); 1004 1005 #if ENABLE_PSCI_STAT 1006 plat_psci_stat_accounting_stop(&state_info); 1007 #endif 1008 1009 /* 1010 * This CPU could be resuming from suspend or it could have just been 1011 * turned on. To distinguish between these 2 cases, we examine the 1012 * affinity state of the CPU: 1013 * - If the affinity state is ON_PENDING then it has just been 1014 * turned on. 1015 * - Else it is resuming from suspend. 1016 * 1017 * Depending on the type of warm reset identified, choose the right set 1018 * of power management handler and perform the generic, architecture 1019 * and platform specific handling. 1020 */ 1021 if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING) 1022 psci_cpu_on_finish(cpu_idx, &state_info); 1023 else 1024 psci_cpu_suspend_finish(cpu_idx, &state_info); 1025 1026 /* 1027 * Generic management: Now we just need to retrieve the 1028 * information that we had stashed away during the cpu_on 1029 * call to set this cpu on its way. 1030 */ 1031 cm_prepare_el3_exit_ns(); 1032 1033 /* 1034 * Set the requested and target state of this CPU and all the higher 1035 * power domains which are ancestors of this CPU to run. 1036 */ 1037 psci_set_pwr_domains_to_run(end_pwrlvl); 1038 1039 #if ENABLE_PSCI_STAT 1040 psci_stats_update_pwr_up(end_pwrlvl, &state_info); 1041 #endif 1042 1043 /* 1044 * This loop releases the lock corresponding to each power level 1045 * in the reverse order to which they were acquired. 1046 */ 1047 psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes); 1048 } 1049 1050 /******************************************************************************* 1051 * This function initializes the set of hooks that PSCI invokes as part of power 1052 * management operation. The power management hooks are expected to be provided 1053 * by the SPD, after it finishes all its initialization 1054 ******************************************************************************/ 1055 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm) 1056 { 1057 assert(pm != NULL); 1058 psci_spd_pm = pm; 1059 1060 if (pm->svc_migrate != NULL) 1061 psci_caps |= define_psci_cap(PSCI_MIG_AARCH64); 1062 1063 if (pm->svc_migrate_info != NULL) 1064 psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64) 1065 | define_psci_cap(PSCI_MIG_INFO_TYPE); 1066 } 1067 1068 /******************************************************************************* 1069 * This function invokes the migrate info hook in the spd_pm_ops. It performs 1070 * the necessary return value validation. If the Secure Payload is UP and 1071 * migrate capable, it returns the mpidr of the CPU on which the Secure payload 1072 * is resident through the mpidr parameter. Else the value of the parameter on 1073 * return is undefined. 1074 ******************************************************************************/ 1075 int psci_spd_migrate_info(u_register_t *mpidr) 1076 { 1077 int rc; 1078 1079 if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL)) 1080 return PSCI_E_NOT_SUPPORTED; 1081 1082 rc = psci_spd_pm->svc_migrate_info(mpidr); 1083 1084 assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) || 1085 (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED)); 1086 1087 return rc; 1088 } 1089 1090 1091 /******************************************************************************* 1092 * This function prints the state of all power domains present in the 1093 * system 1094 ******************************************************************************/ 1095 void psci_print_power_domain_map(void) 1096 { 1097 #if LOG_LEVEL >= LOG_LEVEL_INFO 1098 unsigned int idx; 1099 plat_local_state_t state; 1100 plat_local_state_type_t state_type; 1101 1102 /* This array maps to the PSCI_STATE_X definitions in psci.h */ 1103 static const char * const psci_state_type_str[] = { 1104 "ON", 1105 "RETENTION", 1106 "OFF", 1107 }; 1108 1109 INFO("PSCI Power Domain Map:\n"); 1110 for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count); 1111 idx++) { 1112 state_type = find_local_state_type( 1113 psci_non_cpu_pd_nodes[idx].local_state); 1114 INFO(" Domain Node : Level %u, parent_node %u," 1115 " State %s (0x%x)\n", 1116 psci_non_cpu_pd_nodes[idx].level, 1117 psci_non_cpu_pd_nodes[idx].parent_node, 1118 psci_state_type_str[state_type], 1119 psci_non_cpu_pd_nodes[idx].local_state); 1120 } 1121 1122 for (idx = 0; idx < psci_plat_core_count; idx++) { 1123 state = psci_get_cpu_local_state_by_idx(idx); 1124 state_type = find_local_state_type(state); 1125 INFO(" CPU Node : MPID 0x%llx, parent_node %u," 1126 " State %s (0x%x)\n", 1127 (unsigned long long)psci_cpu_pd_nodes[idx].mpidr, 1128 psci_cpu_pd_nodes[idx].parent_node, 1129 psci_state_type_str[state_type], 1130 psci_get_cpu_local_state_by_idx(idx)); 1131 } 1132 #endif 1133 } 1134 1135 /****************************************************************************** 1136 * Return whether any secondaries were powered up with CPU_ON call. A CPU that 1137 * have ever been powered up would have set its MPDIR value to something other 1138 * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to 1139 * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is 1140 * meaningful only when called on the primary CPU during early boot. 1141 *****************************************************************************/ 1142 int psci_secondaries_brought_up(void) 1143 { 1144 unsigned int idx, n_valid = 0U; 1145 1146 for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) { 1147 if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR) 1148 n_valid++; 1149 } 1150 1151 assert(n_valid > 0U); 1152 1153 return (n_valid > 1U) ? 1 : 0; 1154 } 1155 1156 /******************************************************************************* 1157 * Initiate power down sequence, by calling power down operations registered for 1158 * this CPU. 1159 ******************************************************************************/ 1160 void psci_pwrdown_cpu(unsigned int power_level) 1161 { 1162 #if HW_ASSISTED_COHERENCY 1163 /* 1164 * With hardware-assisted coherency, the CPU drivers only initiate the 1165 * power down sequence, without performing cache-maintenance operations 1166 * in software. Data caches enabled both before and after this call. 1167 */ 1168 prepare_cpu_pwr_dwn(power_level); 1169 #else 1170 /* 1171 * Without hardware-assisted coherency, the CPU drivers disable data 1172 * caches, then perform cache-maintenance operations in software. 1173 * 1174 * This also calls prepare_cpu_pwr_dwn() to initiate power down 1175 * sequence, but that function will return with data caches disabled. 1176 * We must ensure that the stack memory is flushed out to memory before 1177 * we start popping from it again. 1178 */ 1179 psci_do_pwrdown_cache_maintenance(power_level); 1180 #endif 1181 } 1182 1183 /******************************************************************************* 1184 * This function invokes the callback 'stop_func()' with the 'mpidr' of each 1185 * online PE. Caller can pass suitable method to stop a remote core. 1186 * 1187 * 'wait_ms' is the timeout value in milliseconds for the other cores to 1188 * transition to power down state. Passing '0' makes it non-blocking. 1189 * 1190 * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the 1191 * given timeout. 1192 ******************************************************************************/ 1193 int psci_stop_other_cores(unsigned int wait_ms, 1194 void (*stop_func)(u_register_t mpidr)) 1195 { 1196 unsigned int idx, this_cpu_idx; 1197 1198 this_cpu_idx = plat_my_core_pos(); 1199 1200 /* Invoke stop_func for each core */ 1201 for (idx = 0U; idx < psci_plat_core_count; idx++) { 1202 /* skip current CPU */ 1203 if (idx == this_cpu_idx) { 1204 continue; 1205 } 1206 1207 /* Check if the CPU is ON */ 1208 if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) { 1209 (*stop_func)(psci_cpu_pd_nodes[idx].mpidr); 1210 } 1211 } 1212 1213 /* Need to wait for other cores to shutdown */ 1214 if (wait_ms != 0U) { 1215 while ((wait_ms-- != 0U) && (!psci_is_last_on_cpu())) { 1216 mdelay(1U); 1217 } 1218 1219 if (!psci_is_last_on_cpu()) { 1220 WARN("Failed to stop all cores!\n"); 1221 psci_print_power_domain_map(); 1222 return PSCI_E_DENIED; 1223 } 1224 } 1225 1226 return PSCI_E_SUCCESS; 1227 } 1228 1229 /******************************************************************************* 1230 * This function verifies that all the other cores in the system have been 1231 * turned OFF and the current CPU is the last running CPU in the system. 1232 * Returns true if the current CPU is the last ON CPU or false otherwise. 1233 * 1234 * This API has following differences with psci_is_last_on_cpu 1235 * 1. PSCI states are locked 1236 ******************************************************************************/ 1237 bool psci_is_last_on_cpu_safe(void) 1238 { 1239 unsigned int this_core = plat_my_core_pos(); 1240 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 1241 1242 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes); 1243 1244 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1245 1246 if (!psci_is_last_on_cpu()) { 1247 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1248 return false; 1249 } 1250 1251 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1252 1253 return true; 1254 } 1255 1256 /******************************************************************************* 1257 * This function verifies that all cores in the system have been turned ON. 1258 * Returns true, if all CPUs are ON or false otherwise. 1259 * 1260 * This API has following differences with psci_are_all_cpus_on 1261 * 1. PSCI states are locked 1262 ******************************************************************************/ 1263 bool psci_are_all_cpus_on_safe(void) 1264 { 1265 unsigned int this_core = plat_my_core_pos(); 1266 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0}; 1267 1268 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes); 1269 1270 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1271 1272 if (!psci_are_all_cpus_on()) { 1273 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1274 return false; 1275 } 1276 1277 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes); 1278 1279 return true; 1280 } 1281