xref: /rk3399_ARM-atf/lib/psci/psci_common.c (revision 0c836554b215464d1b96c5eca27fc58191ee365b)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <string.h>
9 
10 #include <arch.h>
11 #include <arch_features.h>
12 #include <arch_helpers.h>
13 #include <common/bl_common.h>
14 #include <common/debug.h>
15 #include <context.h>
16 #include <drivers/delay_timer.h>
17 #include <lib/el3_runtime/context_mgmt.h>
18 #include <lib/extensions/spe.h>
19 #include <lib/utils.h>
20 #include <plat/common/platform.h>
21 
22 #include "psci_private.h"
23 
24 /*
25  * SPD power management operations, expected to be supplied by the registered
26  * SPD on successful SP initialization
27  */
28 const spd_pm_ops_t *psci_spd_pm;
29 
30 /*
31  * PSCI requested local power state map. This array is used to store the local
32  * power states requested by a CPU for power levels from level 1 to
33  * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
34  * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
35  * CPU are the same.
36  *
37  * During state coordination, the platform is passed an array containing the
38  * local states requested for a particular non cpu power domain by each cpu
39  * within the domain.
40  *
41  * TODO: Dense packing of the requested states will cause cache thrashing
42  * when multiple power domains write to it. If we allocate the requested
43  * states at each power level in a cache-line aligned per-domain memory,
44  * the cache thrashing can be avoided.
45  */
46 static plat_local_state_t
47 	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
48 
49 unsigned int psci_plat_core_count;
50 
51 /*******************************************************************************
52  * Arrays that hold the platform's power domain tree information for state
53  * management of power domains.
54  * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
55  * which is an ancestor of a CPU power domain.
56  * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
57  ******************************************************************************/
58 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
59 #if USE_COHERENT_MEM
60 __section(".tzfw_coherent_mem")
61 #endif
62 ;
63 
64 /* Lock for PSCI state coordination */
65 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
66 
67 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
68 
69 /*******************************************************************************
70  * Pointer to functions exported by the platform to complete power mgmt. ops
71  ******************************************************************************/
72 const plat_psci_ops_t *psci_plat_pm_ops;
73 
74 /******************************************************************************
75  * Check that the maximum power level supported by the platform makes sense
76  *****************************************************************************/
77 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
78 	(PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
79 	assert_platform_max_pwrlvl_check);
80 
81 #if PSCI_OS_INIT_MODE
82 /*******************************************************************************
83  * The power state coordination mode used in CPU_SUSPEND.
84  * Defaults to platform-coordinated mode.
85  ******************************************************************************/
86 suspend_mode_t psci_suspend_mode = PLAT_COORD;
87 #endif
88 
89 /*
90  * The plat_local_state used by the platform is one of these types: RUN,
91  * RETENTION and OFF. The platform can define further sub-states for each type
92  * apart from RUN. This categorization is done to verify the sanity of the
93  * psci_power_state passed by the platform and to print debug information. The
94  * categorization is done on the basis of the following conditions:
95  *
96  * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
97  *
98  * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
99  *    STATE_TYPE_RETN.
100  *
101  * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
102  *    STATE_TYPE_OFF.
103  */
104 typedef enum plat_local_state_type {
105 	STATE_TYPE_RUN = 0,
106 	STATE_TYPE_RETN,
107 	STATE_TYPE_OFF
108 } plat_local_state_type_t;
109 
110 /* Function used to categorize plat_local_state. */
111 static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
112 {
113 	if (state != 0U) {
114 		if (state > PLAT_MAX_RET_STATE) {
115 			return STATE_TYPE_OFF;
116 		} else {
117 			return STATE_TYPE_RETN;
118 		}
119 	} else {
120 		return STATE_TYPE_RUN;
121 	}
122 }
123 
124 /******************************************************************************
125  * Check that the maximum retention level supported by the platform is less
126  * than the maximum off level.
127  *****************************************************************************/
128 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
129 		assert_platform_max_off_and_retn_state_check);
130 
131 /******************************************************************************
132  * This function ensures that the power state parameter in a CPU_SUSPEND request
133  * is valid. If so, it returns the requested states for each power level.
134  *****************************************************************************/
135 int psci_validate_power_state(unsigned int power_state,
136 			      psci_power_state_t *state_info)
137 {
138 	/* Check SBZ bits in power state are zero */
139 	if (psci_check_power_state(power_state) != 0U)
140 		return PSCI_E_INVALID_PARAMS;
141 
142 	assert(psci_plat_pm_ops->validate_power_state != NULL);
143 
144 	/* Validate the power_state using platform pm_ops */
145 	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
146 }
147 
148 /******************************************************************************
149  * This function retrieves the `psci_power_state_t` for system suspend from
150  * the platform.
151  *****************************************************************************/
152 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
153 {
154 	/*
155 	 * Assert that the required pm_ops hook is implemented to ensure that
156 	 * the capability detected during psci_setup() is valid.
157 	 */
158 	assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
159 
160 	/*
161 	 * Query the platform for the power_state required for system suspend
162 	 */
163 	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
164 }
165 
166 #if PSCI_OS_INIT_MODE
167 /*******************************************************************************
168  * This function verifies that all the other cores at the 'end_pwrlvl' have been
169  * idled and the current CPU is the last running CPU at the 'end_pwrlvl'.
170  * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
171  * otherwise.
172  ******************************************************************************/
173 static bool psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int end_pwrlvl)
174 {
175 	unsigned int my_idx, lvl;
176 	unsigned int parent_idx = 0;
177 	unsigned int cpu_start_idx, ncpus, cpu_idx;
178 	plat_local_state_t local_state;
179 
180 	if (end_pwrlvl == PSCI_CPU_PWR_LVL) {
181 		return true;
182 	}
183 
184 	my_idx = plat_my_core_pos();
185 	parent_idx = psci_cpu_pd_nodes[my_idx].parent_node;
186 	for (lvl = PSCI_CPU_PWR_LVL + U(1); lvl < end_pwrlvl; lvl++) {
187 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
188 	}
189 
190 	cpu_start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
191 	ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
192 
193 	for (cpu_idx = cpu_start_idx; cpu_idx < cpu_start_idx + ncpus;
194 			cpu_idx++) {
195 		local_state = psci_get_cpu_local_state_by_idx(cpu_idx);
196 		if (cpu_idx == my_idx) {
197 			assert(is_local_state_run(local_state) != 0);
198 			continue;
199 		}
200 
201 		if (is_local_state_run(local_state) != 0) {
202 			return false;
203 		}
204 	}
205 
206 	return true;
207 }
208 #endif
209 
210 /*******************************************************************************
211  * This function verifies that all the other cores in the system have been
212  * turned OFF and the current CPU is the last running CPU in the system.
213  * Returns true, if the current CPU is the last ON CPU or false otherwise.
214  ******************************************************************************/
215 bool psci_is_last_on_cpu(void)
216 {
217 	unsigned int cpu_idx, my_idx = plat_my_core_pos();
218 
219 	for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
220 		if (cpu_idx == my_idx) {
221 			assert(psci_get_aff_info_state() == AFF_STATE_ON);
222 			continue;
223 		}
224 
225 		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) {
226 			VERBOSE("core=%u other than current core=%u %s\n",
227 				cpu_idx, my_idx, "running in the system");
228 			return false;
229 		}
230 	}
231 
232 	return true;
233 }
234 
235 /*******************************************************************************
236  * This function verifies that all cores in the system have been turned ON.
237  * Returns true, if all CPUs are ON or false otherwise.
238  ******************************************************************************/
239 static bool psci_are_all_cpus_on(void)
240 {
241 	unsigned int cpu_idx;
242 
243 	for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
244 		if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_OFF) {
245 			return false;
246 		}
247 	}
248 
249 	return true;
250 }
251 
252 /*******************************************************************************
253  * Routine to return the maximum power level to traverse to after a cpu has
254  * been physically powered up. It is expected to be called immediately after
255  * reset from assembler code.
256  ******************************************************************************/
257 static unsigned int get_power_on_target_pwrlvl(void)
258 {
259 	unsigned int pwrlvl;
260 
261 	/*
262 	 * Assume that this cpu was suspended and retrieve its target power
263 	 * level. If it wasn't, the cpu is off so this will be PLAT_MAX_PWR_LVL.
264 	 */
265 	pwrlvl = psci_get_suspend_pwrlvl();
266 	assert(pwrlvl < PSCI_INVALID_PWR_LVL);
267 	return pwrlvl;
268 }
269 
270 /******************************************************************************
271  * Helper function to update the requested local power state array. This array
272  * does not store the requested state for the CPU power level. Hence an
273  * assertion is added to prevent us from accessing the CPU power level.
274  *****************************************************************************/
275 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
276 					 unsigned int cpu_idx,
277 					 plat_local_state_t req_pwr_state)
278 {
279 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
280 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
281 			(cpu_idx < psci_plat_core_count)) {
282 		psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
283 	}
284 }
285 
286 /******************************************************************************
287  * This function initializes the psci_req_local_pwr_states.
288  *****************************************************************************/
289 void __init psci_init_req_local_pwr_states(void)
290 {
291 	/* Initialize the requested state of all non CPU power domains as OFF */
292 	unsigned int pwrlvl;
293 	unsigned int core;
294 
295 	for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
296 		for (core = 0; core < psci_plat_core_count; core++) {
297 			psci_req_local_pwr_states[pwrlvl][core] =
298 				PLAT_MAX_OFF_STATE;
299 		}
300 	}
301 }
302 
303 /******************************************************************************
304  * Helper function to return a reference to an array containing the local power
305  * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
306  * array will be the number of cpu power domains of which this power domain is
307  * an ancestor. These requested states will be used to determine a suitable
308  * target state for this power domain during psci state coordination. An
309  * assertion is added to prevent us from accessing the CPU power level.
310  *****************************************************************************/
311 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
312 							 unsigned int cpu_idx)
313 {
314 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
315 
316 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
317 			(cpu_idx < psci_plat_core_count)) {
318 		return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
319 	} else
320 		return NULL;
321 }
322 
323 #if PSCI_OS_INIT_MODE
324 /******************************************************************************
325  * Helper function to save a copy of the psci_req_local_pwr_states (prev) for a
326  * CPU (cpu_idx), and update psci_req_local_pwr_states with the new requested
327  * local power states (state_info).
328  *****************************************************************************/
329 void psci_update_req_local_pwr_states(unsigned int end_pwrlvl,
330 				      unsigned int cpu_idx,
331 				      psci_power_state_t *state_info,
332 				      plat_local_state_t *prev)
333 {
334 	unsigned int lvl;
335 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
336 	unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
337 #else
338 	unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
339 #endif
340 	plat_local_state_t req_state;
341 
342 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
343 		/* Save the previous requested local power state */
344 		prev[lvl - 1U] = *psci_get_req_local_pwr_states(lvl, cpu_idx);
345 
346 		/* Update the new requested local power state */
347 		if (lvl <= end_pwrlvl) {
348 			req_state = state_info->pwr_domain_state[lvl];
349 		} else {
350 			req_state = state_info->pwr_domain_state[end_pwrlvl];
351 		}
352 		psci_set_req_local_pwr_state(lvl, cpu_idx, req_state);
353 	}
354 }
355 
356 /******************************************************************************
357  * Helper function to restore the previously saved requested local power states
358  * (prev) for a CPU (cpu_idx) to psci_req_local_pwr_states.
359  *****************************************************************************/
360 void psci_restore_req_local_pwr_states(unsigned int cpu_idx,
361 				       plat_local_state_t *prev)
362 {
363 	unsigned int lvl;
364 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
365 	unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
366 #else
367 	unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
368 #endif
369 
370 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
371 		/* Restore the previous requested local power state */
372 		psci_set_req_local_pwr_state(lvl, cpu_idx, prev[lvl - 1U]);
373 	}
374 }
375 #endif
376 
377 /*
378  * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
379  * memory.
380  *
381  * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
382  * it's accessed by both cached and non-cached participants. To serve the common
383  * minimum, perform a cache flush before read and after write so that non-cached
384  * participants operate on latest data in main memory.
385  *
386  * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
387  * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
388  * In both cases, no cache operations are required.
389  */
390 
391 /*
392  * Retrieve local state of non-CPU power domain node from a non-cached CPU,
393  * after any required cache maintenance operation.
394  */
395 static plat_local_state_t get_non_cpu_pd_node_local_state(
396 		unsigned int parent_idx)
397 {
398 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
399 	flush_dcache_range(
400 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
401 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
402 #endif
403 	return psci_non_cpu_pd_nodes[parent_idx].local_state;
404 }
405 
406 /*
407  * Update local state of non-CPU power domain node from a cached CPU; perform
408  * any required cache maintenance operation afterwards.
409  */
410 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
411 		plat_local_state_t state)
412 {
413 	psci_non_cpu_pd_nodes[parent_idx].local_state = state;
414 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
415 	flush_dcache_range(
416 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
417 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
418 #endif
419 }
420 
421 /******************************************************************************
422  * Helper function to return the current local power state of each power domain
423  * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
424  * function will be called after a cpu is powered on to find the local state
425  * each power domain has emerged from.
426  *****************************************************************************/
427 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
428 				      psci_power_state_t *target_state)
429 {
430 	unsigned int parent_idx, lvl;
431 	plat_local_state_t *pd_state = target_state->pwr_domain_state;
432 
433 	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
434 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
435 
436 	/* Copy the local power state from node to state_info */
437 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
438 		pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
439 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
440 	}
441 
442 	/* Set the the higher levels to RUN */
443 	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
444 		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
445 }
446 
447 /******************************************************************************
448  * Helper function to set the target local power state that each power domain
449  * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
450  * enter. This function will be called after coordination of requested power
451  * states has been done for each power level.
452  *****************************************************************************/
453 void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
454 				      const psci_power_state_t *target_state)
455 {
456 	unsigned int parent_idx, lvl;
457 	const plat_local_state_t *pd_state = target_state->pwr_domain_state;
458 
459 	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
460 
461 	/*
462 	 * Need to flush as local_state might be accessed with Data Cache
463 	 * disabled during power on
464 	 */
465 	psci_flush_cpu_data(psci_svc_cpu_data.local_state);
466 
467 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
468 
469 	/* Copy the local_state from state_info */
470 	for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
471 		set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
472 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
473 	}
474 }
475 
476 /*******************************************************************************
477  * PSCI helper function to get the parent nodes corresponding to a cpu_index.
478  ******************************************************************************/
479 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
480 				      unsigned int end_lvl,
481 				      unsigned int *node_index)
482 {
483 	unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
484 	unsigned int i;
485 	unsigned int *node = node_index;
486 
487 	for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
488 		*node = parent_node;
489 		node++;
490 		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
491 	}
492 }
493 
494 /******************************************************************************
495  * This function is invoked post CPU power up and initialization. It sets the
496  * affinity info state, target power state and requested power state for the
497  * current CPU and all its ancestor power domains to RUN.
498  *****************************************************************************/
499 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
500 {
501 	unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
502 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
503 
504 	/* Reset the local_state to RUN for the non cpu power domains. */
505 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
506 		set_non_cpu_pd_node_local_state(parent_idx,
507 				PSCI_LOCAL_STATE_RUN);
508 		psci_set_req_local_pwr_state(lvl,
509 					     cpu_idx,
510 					     PSCI_LOCAL_STATE_RUN);
511 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
512 	}
513 
514 	/* Set the affinity info state to ON */
515 	psci_set_aff_info_state(AFF_STATE_ON);
516 
517 	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
518 	psci_flush_cpu_data(psci_svc_cpu_data);
519 }
520 
521 /******************************************************************************
522  * This function is used in platform-coordinated mode.
523  *
524  * This function is passed the local power states requested for each power
525  * domain (state_info) between the current CPU domain and its ancestors until
526  * the target power level (end_pwrlvl). It updates the array of requested power
527  * states with this information.
528  *
529  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
530  * retrieves the states requested by all the cpus of which the power domain at
531  * that level is an ancestor. It passes this information to the platform to
532  * coordinate and return the target power state. If the target state for a level
533  * is RUN then subsequent levels are not considered. At the CPU level, state
534  * coordination is not required. Hence, the requested and the target states are
535  * the same.
536  *
537  * The 'state_info' is updated with the target state for each level between the
538  * CPU and the 'end_pwrlvl' and returned to the caller.
539  *
540  * This function will only be invoked with data cache enabled and while
541  * powering down a core.
542  *****************************************************************************/
543 void psci_do_state_coordination(unsigned int end_pwrlvl,
544 				psci_power_state_t *state_info)
545 {
546 	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
547 	unsigned int start_idx;
548 	unsigned int ncpus;
549 	plat_local_state_t target_state, *req_states;
550 
551 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
552 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
553 
554 	/* For level 0, the requested state will be equivalent
555 	   to target state */
556 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
557 
558 		/* First update the requested power state */
559 		psci_set_req_local_pwr_state(lvl, cpu_idx,
560 					     state_info->pwr_domain_state[lvl]);
561 
562 		/* Get the requested power states for this power level */
563 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
564 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
565 
566 		/*
567 		 * Let the platform coordinate amongst the requested states at
568 		 * this power level and return the target local power state.
569 		 */
570 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
571 		target_state = plat_get_target_pwr_state(lvl,
572 							 req_states,
573 							 ncpus);
574 
575 		state_info->pwr_domain_state[lvl] = target_state;
576 
577 		/* Break early if the negotiated target power state is RUN */
578 		if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0)
579 			break;
580 
581 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
582 	}
583 
584 	/*
585 	 * This is for cases when we break out of the above loop early because
586 	 * the target power state is RUN at a power level < end_pwlvl.
587 	 * We update the requested power state from state_info and then
588 	 * set the target state as RUN.
589 	 */
590 	for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
591 		psci_set_req_local_pwr_state(lvl, cpu_idx,
592 					     state_info->pwr_domain_state[lvl]);
593 		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
594 
595 	}
596 }
597 
598 #if PSCI_OS_INIT_MODE
599 /******************************************************************************
600  * This function is used in OS-initiated mode.
601  *
602  * This function is passed the local power states requested for each power
603  * domain (state_info) between the current CPU domain and its ancestors until
604  * the target power level (end_pwrlvl), and ensures the requested power states
605  * are valid. It updates the array of requested power states with this
606  * information.
607  *
608  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
609  * retrieves the states requested by all the cpus of which the power domain at
610  * that level is an ancestor. It passes this information to the platform to
611  * coordinate and return the target power state. If the requested state does
612  * not match the target state, the request is denied.
613  *
614  * The 'state_info' is not modified.
615  *
616  * This function will only be invoked with data cache enabled and while
617  * powering down a core.
618  *****************************************************************************/
619 int psci_validate_state_coordination(unsigned int end_pwrlvl,
620 				     psci_power_state_t *state_info)
621 {
622 	int rc = PSCI_E_SUCCESS;
623 	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
624 	unsigned int start_idx;
625 	unsigned int ncpus;
626 	plat_local_state_t target_state, *req_states;
627 	plat_local_state_t prev[PLAT_MAX_PWR_LVL];
628 
629 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
630 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
631 
632 	/*
633 	 * Save a copy of the previous requested local power states and update
634 	 * the new requested local power states.
635 	 */
636 	psci_update_req_local_pwr_states(end_pwrlvl, cpu_idx, state_info, prev);
637 
638 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
639 		/* Get the requested power states for this power level */
640 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
641 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
642 
643 		/*
644 		 * Let the platform coordinate amongst the requested states at
645 		 * this power level and return the target local power state.
646 		 */
647 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
648 		target_state = plat_get_target_pwr_state(lvl,
649 							 req_states,
650 							 ncpus);
651 
652 		/*
653 		 * Verify that the requested power state matches the target
654 		 * local power state.
655 		 */
656 		if (state_info->pwr_domain_state[lvl] != target_state) {
657 			if (target_state == PSCI_LOCAL_STATE_RUN) {
658 				rc = PSCI_E_DENIED;
659 			} else {
660 				rc = PSCI_E_INVALID_PARAMS;
661 			}
662 			goto exit;
663 		}
664 
665 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
666 	}
667 
668 	/*
669 	 * Verify that the current core is the last running core at the
670 	 * specified power level.
671 	 */
672 	lvl = state_info->last_at_pwrlvl;
673 	if (!psci_is_last_cpu_to_idle_at_pwrlvl(lvl)) {
674 		rc = PSCI_E_DENIED;
675 	}
676 
677 exit:
678 	if (rc != PSCI_E_SUCCESS) {
679 		/* Restore the previous requested local power states. */
680 		psci_restore_req_local_pwr_states(cpu_idx, prev);
681 		return rc;
682 	}
683 
684 	return rc;
685 }
686 #endif
687 
688 /******************************************************************************
689  * This function validates a suspend request by making sure that if a standby
690  * state is requested then no power level is turned off and the highest power
691  * level is placed in a standby/retention state.
692  *
693  * It also ensures that the state level X will enter is not shallower than the
694  * state level X + 1 will enter.
695  *
696  * This validation will be enabled only for DEBUG builds as the platform is
697  * expected to perform these validations as well.
698  *****************************************************************************/
699 int psci_validate_suspend_req(const psci_power_state_t *state_info,
700 			      unsigned int is_power_down_state)
701 {
702 	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
703 	plat_local_state_t state;
704 	plat_local_state_type_t req_state_type, deepest_state_type;
705 	int i;
706 
707 	/* Find the target suspend power level */
708 	target_lvl = psci_find_target_suspend_lvl(state_info);
709 	if (target_lvl == PSCI_INVALID_PWR_LVL)
710 		return PSCI_E_INVALID_PARAMS;
711 
712 	/* All power domain levels are in a RUN state to begin with */
713 	deepest_state_type = STATE_TYPE_RUN;
714 
715 	for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
716 		state = state_info->pwr_domain_state[i];
717 		req_state_type = find_local_state_type(state);
718 
719 		/*
720 		 * While traversing from the highest power level to the lowest,
721 		 * the state requested for lower levels has to be the same or
722 		 * deeper i.e. equal to or greater than the state at the higher
723 		 * levels. If this condition is true, then the requested state
724 		 * becomes the deepest state encountered so far.
725 		 */
726 		if (req_state_type < deepest_state_type)
727 			return PSCI_E_INVALID_PARAMS;
728 		deepest_state_type = req_state_type;
729 	}
730 
731 	/* Find the highest off power level */
732 	max_off_lvl = psci_find_max_off_lvl(state_info);
733 
734 	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
735 	max_retn_lvl = PSCI_INVALID_PWR_LVL;
736 	if (target_lvl != max_off_lvl)
737 		max_retn_lvl = target_lvl;
738 
739 	/*
740 	 * If this is not a request for a power down state then max off level
741 	 * has to be invalid and max retention level has to be a valid power
742 	 * level.
743 	 */
744 	if ((is_power_down_state == 0U) &&
745 			((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
746 			 (max_retn_lvl == PSCI_INVALID_PWR_LVL)))
747 		return PSCI_E_INVALID_PARAMS;
748 
749 	return PSCI_E_SUCCESS;
750 }
751 
752 /******************************************************************************
753  * This function finds the highest power level which will be powered down
754  * amongst all the power levels specified in the 'state_info' structure
755  *****************************************************************************/
756 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
757 {
758 	int i;
759 
760 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
761 		if (is_local_state_off(state_info->pwr_domain_state[i]) != 0)
762 			return (unsigned int) i;
763 	}
764 
765 	return PSCI_INVALID_PWR_LVL;
766 }
767 
768 /******************************************************************************
769  * This functions finds the level of the highest power domain which will be
770  * placed in a low power state during a suspend operation.
771  *****************************************************************************/
772 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
773 {
774 	int i;
775 
776 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
777 		if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
778 			return (unsigned int) i;
779 	}
780 
781 	return PSCI_INVALID_PWR_LVL;
782 }
783 
784 /*******************************************************************************
785  * This function is passed the highest level in the topology tree that the
786  * operation should be applied to and a list of node indexes. It picks up locks
787  * from the node index list in order of increasing power domain level in the
788  * range specified.
789  ******************************************************************************/
790 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
791 				   const unsigned int *parent_nodes)
792 {
793 	unsigned int parent_idx;
794 	unsigned int level;
795 
796 	/* No locking required for level 0. Hence start locking from level 1 */
797 	for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
798 		parent_idx = parent_nodes[level - 1U];
799 		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
800 	}
801 }
802 
803 /*******************************************************************************
804  * This function is passed the highest level in the topology tree that the
805  * operation should be applied to and a list of node indexes. It releases the
806  * locks in order of decreasing power domain level in the range specified.
807  ******************************************************************************/
808 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
809 				   const unsigned int *parent_nodes)
810 {
811 	unsigned int parent_idx;
812 	unsigned int level;
813 
814 	/* Unlock top down. No unlocking required for level 0. */
815 	for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) {
816 		parent_idx = parent_nodes[level - 1U];
817 		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
818 	}
819 }
820 
821 /*******************************************************************************
822  * This function determines the full entrypoint information for the requested
823  * PSCI entrypoint on power on/resume and returns it.
824  ******************************************************************************/
825 #ifdef __aarch64__
826 static int psci_get_ns_ep_info(entry_point_info_t *ep,
827 			       uintptr_t entrypoint,
828 			       u_register_t context_id)
829 {
830 	u_register_t ep_attr, sctlr;
831 	unsigned int daif, ee, mode;
832 	u_register_t ns_scr_el3 = read_scr_el3();
833 	u_register_t ns_sctlr_el1 = read_sctlr_el1();
834 
835 	sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
836 		read_sctlr_el2() : ns_sctlr_el1;
837 	ee = 0;
838 
839 	ep_attr = NON_SECURE | EP_ST_DISABLE;
840 	if ((sctlr & SCTLR_EE_BIT) != 0U) {
841 		ep_attr |= EP_EE_BIG;
842 		ee = 1;
843 	}
844 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
845 
846 	ep->pc = entrypoint;
847 	zeromem(&ep->args, sizeof(ep->args));
848 	ep->args.arg0 = context_id;
849 
850 	/*
851 	 * Figure out whether the cpu enters the non-secure address space
852 	 * in aarch32 or aarch64
853 	 */
854 	if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
855 
856 		/*
857 		 * Check whether a Thumb entry point has been provided for an
858 		 * aarch64 EL
859 		 */
860 		if ((entrypoint & 0x1UL) != 0UL)
861 			return PSCI_E_INVALID_ADDRESS;
862 
863 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
864 
865 		ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX,
866 				   DISABLE_ALL_EXCEPTIONS);
867 	} else {
868 
869 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
870 			MODE32_hyp : MODE32_svc;
871 
872 		/*
873 		 * TODO: Choose async. exception bits if HYP mode is not
874 		 * implemented according to the values of SCR.{AW, FW} bits
875 		 */
876 		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
877 
878 		ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee,
879 				       daif);
880 	}
881 
882 	return PSCI_E_SUCCESS;
883 }
884 #else /* !__aarch64__ */
885 static int psci_get_ns_ep_info(entry_point_info_t *ep,
886 			       uintptr_t entrypoint,
887 			       u_register_t context_id)
888 {
889 	u_register_t ep_attr;
890 	unsigned int aif, ee, mode;
891 	u_register_t scr = read_scr();
892 	u_register_t ns_sctlr, sctlr;
893 
894 	/* Switch to non secure state */
895 	write_scr(scr | SCR_NS_BIT);
896 	isb();
897 	ns_sctlr = read_sctlr();
898 
899 	sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
900 
901 	/* Return to original state */
902 	write_scr(scr);
903 	isb();
904 	ee = 0;
905 
906 	ep_attr = NON_SECURE | EP_ST_DISABLE;
907 	if (sctlr & SCTLR_EE_BIT) {
908 		ep_attr |= EP_EE_BIG;
909 		ee = 1;
910 	}
911 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
912 
913 	ep->pc = entrypoint;
914 	zeromem(&ep->args, sizeof(ep->args));
915 	ep->args.arg0 = context_id;
916 
917 	mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
918 
919 	/*
920 	 * TODO: Choose async. exception bits if HYP mode is not
921 	 * implemented according to the values of SCR.{AW, FW} bits
922 	 */
923 	aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
924 
925 	ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
926 
927 	return PSCI_E_SUCCESS;
928 }
929 
930 #endif /* __aarch64__ */
931 
932 /*******************************************************************************
933  * This function validates the entrypoint with the platform layer if the
934  * appropriate pm_ops hook is exported by the platform and returns the
935  * 'entry_point_info'.
936  ******************************************************************************/
937 int psci_validate_entry_point(entry_point_info_t *ep,
938 			      uintptr_t entrypoint,
939 			      u_register_t context_id)
940 {
941 	int rc;
942 
943 	/* Validate the entrypoint using platform psci_ops */
944 	if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
945 		rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
946 		if (rc != PSCI_E_SUCCESS)
947 			return PSCI_E_INVALID_ADDRESS;
948 	}
949 
950 	/*
951 	 * Verify and derive the re-entry information for
952 	 * the non-secure world from the non-secure state from
953 	 * where this call originated.
954 	 */
955 	rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
956 	return rc;
957 }
958 
959 /*******************************************************************************
960  * Generic handler which is called when a cpu is physically powered on. It
961  * traverses the node information and finds the highest power level powered
962  * off and performs generic, architectural, platform setup and state management
963  * to power on that power level and power levels below it.
964  * e.g. For a cpu that's been powered on, it will call the platform specific
965  * code to enable the gic cpu interface and for a cluster it will enable
966  * coherency at the interconnect level in addition to gic cpu interface.
967  ******************************************************************************/
968 void psci_warmboot_entrypoint(void)
969 {
970 	unsigned int end_pwrlvl;
971 	unsigned int cpu_idx = plat_my_core_pos();
972 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
973 	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
974 
975 	/* Init registers that never change for the lifetime of TF-A */
976 	cm_manage_extensions_el3();
977 
978 	/*
979 	 * Verify that we have been explicitly turned ON or resumed from
980 	 * suspend.
981 	 */
982 	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
983 		ERROR("Unexpected affinity info state.\n");
984 		panic();
985 	}
986 
987 	/*
988 	 * Get the maximum power domain level to traverse to after this cpu
989 	 * has been physically powered up.
990 	 */
991 	end_pwrlvl = get_power_on_target_pwrlvl();
992 
993 	/* Get the parent nodes */
994 	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
995 
996 	/*
997 	 * This function acquires the lock corresponding to each power level so
998 	 * that by the time all locks are taken, the system topology is snapshot
999 	 * and state management can be done safely.
1000 	 */
1001 	psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes);
1002 
1003 	psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
1004 
1005 #if ENABLE_PSCI_STAT
1006 	plat_psci_stat_accounting_stop(&state_info);
1007 #endif
1008 
1009 	/*
1010 	 * This CPU could be resuming from suspend or it could have just been
1011 	 * turned on. To distinguish between these 2 cases, we examine the
1012 	 * affinity state of the CPU:
1013 	 *  - If the affinity state is ON_PENDING then it has just been
1014 	 *    turned on.
1015 	 *  - Else it is resuming from suspend.
1016 	 *
1017 	 * Depending on the type of warm reset identified, choose the right set
1018 	 * of power management handler and perform the generic, architecture
1019 	 * and platform specific handling.
1020 	 */
1021 	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
1022 		psci_cpu_on_finish(cpu_idx, &state_info);
1023 	else
1024 		psci_cpu_suspend_finish(cpu_idx, &state_info);
1025 
1026 	/*
1027 	 * Generic management: Now we just need to retrieve the
1028 	 * information that we had stashed away during the cpu_on
1029 	 * call to set this cpu on its way.
1030 	 */
1031 	cm_prepare_el3_exit_ns();
1032 
1033 	/*
1034 	 * Set the requested and target state of this CPU and all the higher
1035 	 * power domains which are ancestors of this CPU to run.
1036 	 */
1037 	psci_set_pwr_domains_to_run(end_pwrlvl);
1038 
1039 #if ENABLE_PSCI_STAT
1040 	psci_stats_update_pwr_up(end_pwrlvl, &state_info);
1041 #endif
1042 
1043 	/*
1044 	 * This loop releases the lock corresponding to each power level
1045 	 * in the reverse order to which they were acquired.
1046 	 */
1047 	psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes);
1048 }
1049 
1050 /*******************************************************************************
1051  * This function initializes the set of hooks that PSCI invokes as part of power
1052  * management operation. The power management hooks are expected to be provided
1053  * by the SPD, after it finishes all its initialization
1054  ******************************************************************************/
1055 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
1056 {
1057 	assert(pm != NULL);
1058 	psci_spd_pm = pm;
1059 
1060 	if (pm->svc_migrate != NULL)
1061 		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
1062 
1063 	if (pm->svc_migrate_info != NULL)
1064 		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
1065 				| define_psci_cap(PSCI_MIG_INFO_TYPE);
1066 }
1067 
1068 /*******************************************************************************
1069  * This function invokes the migrate info hook in the spd_pm_ops. It performs
1070  * the necessary return value validation. If the Secure Payload is UP and
1071  * migrate capable, it returns the mpidr of the CPU on which the Secure payload
1072  * is resident through the mpidr parameter. Else the value of the parameter on
1073  * return is undefined.
1074  ******************************************************************************/
1075 int psci_spd_migrate_info(u_register_t *mpidr)
1076 {
1077 	int rc;
1078 
1079 	if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
1080 		return PSCI_E_NOT_SUPPORTED;
1081 
1082 	rc = psci_spd_pm->svc_migrate_info(mpidr);
1083 
1084 	assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
1085 	       (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
1086 
1087 	return rc;
1088 }
1089 
1090 
1091 /*******************************************************************************
1092  * This function prints the state of all power domains present in the
1093  * system
1094  ******************************************************************************/
1095 void psci_print_power_domain_map(void)
1096 {
1097 #if LOG_LEVEL >= LOG_LEVEL_INFO
1098 	unsigned int idx;
1099 	plat_local_state_t state;
1100 	plat_local_state_type_t state_type;
1101 
1102 	/* This array maps to the PSCI_STATE_X definitions in psci.h */
1103 	static const char * const psci_state_type_str[] = {
1104 		"ON",
1105 		"RETENTION",
1106 		"OFF",
1107 	};
1108 
1109 	INFO("PSCI Power Domain Map:\n");
1110 	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count);
1111 							idx++) {
1112 		state_type = find_local_state_type(
1113 				psci_non_cpu_pd_nodes[idx].local_state);
1114 		INFO("  Domain Node : Level %u, parent_node %u,"
1115 				" State %s (0x%x)\n",
1116 				psci_non_cpu_pd_nodes[idx].level,
1117 				psci_non_cpu_pd_nodes[idx].parent_node,
1118 				psci_state_type_str[state_type],
1119 				psci_non_cpu_pd_nodes[idx].local_state);
1120 	}
1121 
1122 	for (idx = 0; idx < psci_plat_core_count; idx++) {
1123 		state = psci_get_cpu_local_state_by_idx(idx);
1124 		state_type = find_local_state_type(state);
1125 		INFO("  CPU Node : MPID 0x%llx, parent_node %u,"
1126 				" State %s (0x%x)\n",
1127 				(unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
1128 				psci_cpu_pd_nodes[idx].parent_node,
1129 				psci_state_type_str[state_type],
1130 				psci_get_cpu_local_state_by_idx(idx));
1131 	}
1132 #endif
1133 }
1134 
1135 /******************************************************************************
1136  * Return whether any secondaries were powered up with CPU_ON call. A CPU that
1137  * have ever been powered up would have set its MPDIR value to something other
1138  * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
1139  * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
1140  * meaningful only when called on the primary CPU during early boot.
1141  *****************************************************************************/
1142 int psci_secondaries_brought_up(void)
1143 {
1144 	unsigned int idx, n_valid = 0U;
1145 
1146 	for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
1147 		if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
1148 			n_valid++;
1149 	}
1150 
1151 	assert(n_valid > 0U);
1152 
1153 	return (n_valid > 1U) ? 1 : 0;
1154 }
1155 
1156 /*******************************************************************************
1157  * Initiate power down sequence, by calling power down operations registered for
1158  * this CPU.
1159  ******************************************************************************/
1160 void psci_pwrdown_cpu(unsigned int power_level)
1161 {
1162 #if HW_ASSISTED_COHERENCY
1163 	/*
1164 	 * With hardware-assisted coherency, the CPU drivers only initiate the
1165 	 * power down sequence, without performing cache-maintenance operations
1166 	 * in software. Data caches enabled both before and after this call.
1167 	 */
1168 	prepare_cpu_pwr_dwn(power_level);
1169 #else
1170 	/*
1171 	 * Without hardware-assisted coherency, the CPU drivers disable data
1172 	 * caches, then perform cache-maintenance operations in software.
1173 	 *
1174 	 * This also calls prepare_cpu_pwr_dwn() to initiate power down
1175 	 * sequence, but that function will return with data caches disabled.
1176 	 * We must ensure that the stack memory is flushed out to memory before
1177 	 * we start popping from it again.
1178 	 */
1179 	psci_do_pwrdown_cache_maintenance(power_level);
1180 #endif
1181 }
1182 
1183 /*******************************************************************************
1184  * This function invokes the callback 'stop_func()' with the 'mpidr' of each
1185  * online PE. Caller can pass suitable method to stop a remote core.
1186  *
1187  * 'wait_ms' is the timeout value in milliseconds for the other cores to
1188  * transition to power down state. Passing '0' makes it non-blocking.
1189  *
1190  * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the
1191  * given timeout.
1192  ******************************************************************************/
1193 int psci_stop_other_cores(unsigned int wait_ms,
1194 				   void (*stop_func)(u_register_t mpidr))
1195 {
1196 	unsigned int idx, this_cpu_idx;
1197 
1198 	this_cpu_idx = plat_my_core_pos();
1199 
1200 	/* Invoke stop_func for each core */
1201 	for (idx = 0U; idx < psci_plat_core_count; idx++) {
1202 		/* skip current CPU */
1203 		if (idx == this_cpu_idx) {
1204 			continue;
1205 		}
1206 
1207 		/* Check if the CPU is ON */
1208 		if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) {
1209 			(*stop_func)(psci_cpu_pd_nodes[idx].mpidr);
1210 		}
1211 	}
1212 
1213 	/* Need to wait for other cores to shutdown */
1214 	if (wait_ms != 0U) {
1215 		while ((wait_ms-- != 0U) && (!psci_is_last_on_cpu())) {
1216 			mdelay(1U);
1217 		}
1218 
1219 		if (!psci_is_last_on_cpu()) {
1220 			WARN("Failed to stop all cores!\n");
1221 			psci_print_power_domain_map();
1222 			return PSCI_E_DENIED;
1223 		}
1224 	}
1225 
1226 	return PSCI_E_SUCCESS;
1227 }
1228 
1229 /*******************************************************************************
1230  * This function verifies that all the other cores in the system have been
1231  * turned OFF and the current CPU is the last running CPU in the system.
1232  * Returns true if the current CPU is the last ON CPU or false otherwise.
1233  *
1234  * This API has following differences with psci_is_last_on_cpu
1235  *  1. PSCI states are locked
1236  ******************************************************************************/
1237 bool psci_is_last_on_cpu_safe(void)
1238 {
1239 	unsigned int this_core = plat_my_core_pos();
1240 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1241 
1242 	psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1243 
1244 	psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1245 
1246 	if (!psci_is_last_on_cpu()) {
1247 		psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1248 		return false;
1249 	}
1250 
1251 	psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1252 
1253 	return true;
1254 }
1255 
1256 /*******************************************************************************
1257  * This function verifies that all cores in the system have been turned ON.
1258  * Returns true, if all CPUs are ON or false otherwise.
1259  *
1260  * This API has following differences with psci_are_all_cpus_on
1261  *  1. PSCI states are locked
1262  ******************************************************************************/
1263 bool psci_are_all_cpus_on_safe(void)
1264 {
1265 	unsigned int this_core = plat_my_core_pos();
1266 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1267 
1268 	psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1269 
1270 	psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1271 
1272 	if (!psci_are_all_cpus_on()) {
1273 		psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1274 		return false;
1275 	}
1276 
1277 	psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1278 
1279 	return true;
1280 }
1281