1 /*
2 * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <assert.h>
8 #include <string.h>
9
10 #include <arch.h>
11 #include <arch_features.h>
12 #include <arch_helpers.h>
13 #include <common/bl_common.h>
14 #include <common/debug.h>
15 #include <context.h>
16 #include <drivers/delay_timer.h>
17 #include <lib/cpus/cpu_ops.h>
18 #include <lib/el3_runtime/context_mgmt.h>
19 #include <lib/extensions/spe.h>
20 #include <lib/per_cpu/per_cpu.h>
21 #include <lib/pmf/pmf.h>
22 #include <lib/runtime_instr.h>
23 #include <lib/utils.h>
24 #include <plat/common/platform.h>
25
26 #include "psci_private.h"
27
28 /*
29 * SPD power management operations, expected to be supplied by the registered
30 * SPD on successful SP initialization
31 */
32 const spd_pm_ops_t *psci_spd_pm;
33
34 /*
35 * PSCI requested local power state map. This array is used to store the local
36 * power states requested by a CPU for power levels from level 1 to
37 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
38 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
39 * CPU are the same.
40 *
41 * During state coordination, the platform is passed an array containing the
42 * local states requested for a particular non cpu power domain by each cpu
43 * within the domain.
44 *
45 * TODO: Dense packing of the requested states will cause cache thrashing
46 * when multiple power domains write to it. If we allocate the requested
47 * states at each power level in a cache-line aligned per-domain memory,
48 * the cache thrashing can be avoided.
49 */
50 static plat_local_state_t
51 psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
52
53 unsigned int psci_plat_core_count;
54
55 /*******************************************************************************
56 * Arrays that hold the platform's power domain tree information for state
57 * management of power domains.
58 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
59 * which is an ancestor of a CPU power domain.
60 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
61 ******************************************************************************/
62 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
63 #if USE_COHERENT_MEM
64 __section(".tzfw_coherent_mem")
65 #endif
66 ;
67
68 /* Lock for PSCI state coordination */
69 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
70
71 PER_CPU_DEFINE(cpu_pd_node_t, psci_cpu_pd_nodes);
72
73 /*******************************************************************************
74 * Pointer to functions exported by the platform to complete power mgmt. ops
75 ******************************************************************************/
76 const plat_psci_ops_t *psci_plat_pm_ops;
77
78 /******************************************************************************
79 * Check that the maximum power level supported by the platform makes sense
80 *****************************************************************************/
81 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
82 (PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
83 assert_platform_max_pwrlvl_check);
84
85 #if PSCI_OS_INIT_MODE
86 /*******************************************************************************
87 * The power state coordination mode used in CPU_SUSPEND.
88 * Defaults to platform-coordinated mode.
89 ******************************************************************************/
90 suspend_mode_t psci_suspend_mode = PLAT_COORD;
91 #endif
92
93 /*
94 * The plat_local_state used by the platform is one of these types: RUN,
95 * RETENTION and OFF. The platform can define further sub-states for each type
96 * apart from RUN. This categorization is done to verify the sanity of the
97 * psci_power_state passed by the platform and to print debug information. The
98 * categorization is done on the basis of the following conditions:
99 *
100 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
101 *
102 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
103 * STATE_TYPE_RETN.
104 *
105 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
106 * STATE_TYPE_OFF.
107 */
108 typedef enum plat_local_state_type {
109 STATE_TYPE_RUN = 0,
110 STATE_TYPE_RETN,
111 STATE_TYPE_OFF
112 } plat_local_state_type_t;
113
114 /* Function used to categorize plat_local_state. */
find_local_state_type(plat_local_state_t state)115 static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
116 {
117 if (state != 0U) {
118 if (state > PLAT_MAX_RET_STATE) {
119 return STATE_TYPE_OFF;
120 } else {
121 return STATE_TYPE_RETN;
122 }
123 } else {
124 return STATE_TYPE_RUN;
125 }
126 }
127
128 /******************************************************************************
129 * Check that the maximum retention level supported by the platform is less
130 * than the maximum off level.
131 *****************************************************************************/
132 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
133 assert_platform_max_off_and_retn_state_check);
134
135 /******************************************************************************
136 * This function ensures that the power state parameter in a CPU_SUSPEND request
137 * is valid. If so, it returns the requested states for each power level.
138 *****************************************************************************/
psci_validate_power_state(unsigned int power_state,psci_power_state_t * state_info)139 int psci_validate_power_state(unsigned int power_state,
140 psci_power_state_t *state_info)
141 {
142 /* Check SBZ bits in power state are zero */
143 if (psci_check_power_state(power_state) != 0U) {
144 return PSCI_E_INVALID_PARAMS;
145 }
146 assert(psci_plat_pm_ops->validate_power_state != NULL);
147
148 /* Validate the power_state using platform pm_ops */
149 return psci_plat_pm_ops->validate_power_state(power_state, state_info);
150 }
151
152 /******************************************************************************
153 * This function retrieves the `psci_power_state_t` for system suspend from
154 * the platform.
155 *****************************************************************************/
psci_query_sys_suspend_pwrstate(psci_power_state_t * state_info)156 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
157 {
158 /*
159 * Assert that the required pm_ops hook is implemented to ensure that
160 * the capability detected during psci_setup() is valid.
161 */
162 assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
163
164 /*
165 * Query the platform for the power_state required for system suspend
166 */
167 psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
168 }
169
170 #if PSCI_OS_INIT_MODE
171 /*******************************************************************************
172 * This function verifies that all the other cores at the 'end_pwrlvl' have been
173 * idled and the current CPU is the last running CPU at the 'end_pwrlvl'.
174 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
175 * otherwise.
176 ******************************************************************************/
psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int my_idx,unsigned int end_pwrlvl)177 static bool psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int my_idx, unsigned int end_pwrlvl)
178 {
179 unsigned int lvl;
180 unsigned int parent_idx = 0;
181 unsigned int cpu_start_idx, ncpus, cpu_idx;
182 plat_local_state_t local_state;
183
184 if (end_pwrlvl == PSCI_CPU_PWR_LVL) {
185 return true;
186 }
187
188 parent_idx = PER_CPU_BY_INDEX(psci_cpu_pd_nodes, my_idx)->parent_node;
189 for (lvl = PSCI_CPU_PWR_LVL + U(1); lvl < end_pwrlvl; lvl++) {
190 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
191 }
192
193 cpu_start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
194 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
195
196 for (cpu_idx = cpu_start_idx; cpu_idx < cpu_start_idx + ncpus;
197 cpu_idx++) {
198 local_state = psci_get_cpu_local_state_by_idx(cpu_idx);
199 if (cpu_idx == my_idx) {
200 assert(is_local_state_run(local_state) != 0);
201 continue;
202 }
203
204 if (is_local_state_run(local_state) != 0) {
205 return false;
206 }
207 }
208
209 return true;
210 }
211 #endif
212
213 /*******************************************************************************
214 * This function verifies that all the other cores in the system have been
215 * turned OFF and the current CPU is the last running CPU in the system.
216 * Returns true, if the current CPU is the last ON CPU or false otherwise.
217 ******************************************************************************/
psci_is_last_on_cpu(unsigned int my_idx)218 bool psci_is_last_on_cpu(unsigned int my_idx)
219 {
220 for (unsigned int cpu_idx = 0U; cpu_idx < psci_plat_core_count; cpu_idx++) {
221 if (cpu_idx == my_idx) {
222 assert(psci_get_aff_info_state() == AFF_STATE_ON);
223 continue;
224 }
225
226 if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) {
227 VERBOSE("core=%u other than current core=%u %s\n",
228 cpu_idx, my_idx, "running in the system");
229 return false;
230 }
231 }
232
233 return true;
234 }
235
236 /*******************************************************************************
237 * This function verifies that all cores in the system have been turned ON.
238 * Returns true, if all CPUs are ON or false otherwise.
239 ******************************************************************************/
psci_are_all_cpus_on(void)240 static bool psci_are_all_cpus_on(void)
241 {
242 unsigned int cpu_idx;
243
244 for (cpu_idx = 0U; cpu_idx < psci_plat_core_count; cpu_idx++) {
245 if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_OFF) {
246 return false;
247 }
248 }
249
250 return true;
251 }
252
253 /*******************************************************************************
254 * Counts the number of CPUs in the system that are currently in the ON or
255 * ON_PENDING state.
256 *
257 * @note This function does not acquire any power domain locks. It must only be
258 * called in contexts where it is guaranteed that PSCI state transitions
259 * are not concurrently happening, or where locks are already held.
260 *
261 * @return The number of CPUs currently in AFF_STATE_ON or AFF_STATE_ON_PENDING.
262 ******************************************************************************/
psci_num_cpus_running(void)263 static unsigned int psci_num_cpus_running(void)
264 {
265 unsigned int cpu_idx;
266 unsigned int no_of_cpus = 0U;
267 aff_info_state_t aff_state;
268
269 for (cpu_idx = 0U; cpu_idx < psci_plat_core_count; cpu_idx++) {
270 aff_state = psci_get_aff_info_state_by_idx(cpu_idx);
271 if (aff_state == AFF_STATE_ON ||
272 aff_state == AFF_STATE_ON_PENDING) {
273 no_of_cpus++;
274 }
275 }
276
277 return no_of_cpus;
278 }
279
280 /*******************************************************************************
281 * Routine to return the maximum power level to traverse to after a cpu has
282 * been physically powered up. It is expected to be called immediately after
283 * reset from assembler code.
284 ******************************************************************************/
get_power_on_target_pwrlvl(void)285 static unsigned int get_power_on_target_pwrlvl(void)
286 {
287 unsigned int pwrlvl;
288
289 /*
290 * Assume that this cpu was suspended and retrieve its target power
291 * level. If it wasn't, the cpu is off so this will be PLAT_MAX_PWR_LVL.
292 */
293 pwrlvl = psci_get_suspend_pwrlvl();
294 assert(pwrlvl < PSCI_INVALID_PWR_LVL);
295 return pwrlvl;
296 }
297
298 /******************************************************************************
299 * Helper function to update the requested local power state array. This array
300 * does not store the requested state for the CPU power level. Hence an
301 * assertion is added to prevent us from accessing the CPU power level.
302 *****************************************************************************/
psci_set_req_local_pwr_state(unsigned int pwrlvl,unsigned int cpu_idx,plat_local_state_t req_pwr_state)303 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
304 unsigned int cpu_idx,
305 plat_local_state_t req_pwr_state)
306 {
307 assert(pwrlvl > PSCI_CPU_PWR_LVL);
308 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
309 (cpu_idx < psci_plat_core_count)) {
310 psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
311 }
312 }
313
314 /******************************************************************************
315 * This function initializes the psci_req_local_pwr_states.
316 *****************************************************************************/
psci_init_req_local_pwr_states(void)317 void __init psci_init_req_local_pwr_states(void)
318 {
319 /* Initialize the requested state of all non CPU power domains as OFF */
320 unsigned int pwrlvl;
321 unsigned int core;
322
323 for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
324 for (core = 0; core < psci_plat_core_count; core++) {
325 psci_req_local_pwr_states[pwrlvl][core] =
326 PLAT_MAX_OFF_STATE;
327 }
328 }
329 }
330
331 /******************************************************************************
332 * Helper function to return a reference to an array containing the local power
333 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
334 * array will be the number of cpu power domains of which this power domain is
335 * an ancestor. These requested states will be used to determine a suitable
336 * target state for this power domain during psci state coordination. An
337 * assertion is added to prevent us from accessing the CPU power level.
338 *****************************************************************************/
psci_get_req_local_pwr_states(unsigned int pwrlvl,unsigned int cpu_idx)339 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
340 unsigned int cpu_idx)
341 {
342 assert(pwrlvl > PSCI_CPU_PWR_LVL);
343
344 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
345 (cpu_idx < psci_plat_core_count)) {
346 return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
347 } else {
348 return NULL;
349 }
350 }
351
352 #if PSCI_OS_INIT_MODE
353 /******************************************************************************
354 * Helper function to save a copy of the psci_req_local_pwr_states (prev) for a
355 * CPU (cpu_idx), and update psci_req_local_pwr_states with the new requested
356 * local power states (state_info).
357 *****************************************************************************/
psci_update_req_local_pwr_states(unsigned int end_pwrlvl,unsigned int cpu_idx,psci_power_state_t * state_info,plat_local_state_t * prev)358 void psci_update_req_local_pwr_states(unsigned int end_pwrlvl,
359 unsigned int cpu_idx,
360 psci_power_state_t *state_info,
361 plat_local_state_t *prev)
362 {
363 unsigned int lvl;
364 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
365 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
366 #else
367 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
368 #endif
369 plat_local_state_t req_state;
370
371 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
372 /* Save the previous requested local power state */
373 prev[lvl - 1U] = *psci_get_req_local_pwr_states(lvl, cpu_idx);
374
375 /* Update the new requested local power state */
376 if (lvl <= end_pwrlvl) {
377 req_state = state_info->pwr_domain_state[lvl];
378 } else {
379 req_state = state_info->pwr_domain_state[end_pwrlvl];
380 }
381 psci_set_req_local_pwr_state(lvl, cpu_idx, req_state);
382 }
383 }
384
385 /******************************************************************************
386 * Helper function to restore the previously saved requested local power states
387 * (prev) for a CPU (cpu_idx) to psci_req_local_pwr_states.
388 *****************************************************************************/
psci_restore_req_local_pwr_states(unsigned int cpu_idx,plat_local_state_t * prev)389 void psci_restore_req_local_pwr_states(unsigned int cpu_idx,
390 plat_local_state_t *prev)
391 {
392 unsigned int lvl;
393 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
394 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
395 #else
396 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
397 #endif
398
399 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
400 /* Restore the previous requested local power state */
401 psci_set_req_local_pwr_state(lvl, cpu_idx, prev[lvl - 1U]);
402 }
403 }
404 #endif
405
406 /*
407 * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
408 * memory.
409 *
410 * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
411 * it's accessed by both cached and non-cached participants. To serve the common
412 * minimum, perform a cache flush before read and after write so that non-cached
413 * participants operate on latest data in main memory.
414 *
415 * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
416 * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
417 * In both cases, no cache operations are required.
418 */
419
420 /*
421 * Retrieve local state of non-CPU power domain node from a non-cached CPU,
422 * after any required cache maintenance operation.
423 */
get_non_cpu_pd_node_local_state(unsigned int parent_idx)424 static plat_local_state_t get_non_cpu_pd_node_local_state(
425 unsigned int parent_idx)
426 {
427 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
428 flush_dcache_range(
429 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
430 sizeof(psci_non_cpu_pd_nodes[parent_idx]));
431 #endif
432 return psci_non_cpu_pd_nodes[parent_idx].local_state;
433 }
434
435 /*
436 * Update local state of non-CPU power domain node from a cached CPU; perform
437 * any required cache maintenance operation afterwards.
438 */
set_non_cpu_pd_node_local_state(unsigned int parent_idx,plat_local_state_t state)439 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
440 plat_local_state_t state)
441 {
442 psci_non_cpu_pd_nodes[parent_idx].local_state = state;
443 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
444 flush_dcache_range(
445 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
446 sizeof(psci_non_cpu_pd_nodes[parent_idx]));
447 #endif
448 }
449
450 /******************************************************************************
451 * Helper function to return the current local power state of each power domain
452 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
453 * function will be called after a cpu is powered on to find the local state
454 * each power domain has emerged from.
455 *****************************************************************************/
psci_get_target_local_pwr_states(unsigned int cpu_idx,unsigned int end_pwrlvl,psci_power_state_t * target_state)456 void psci_get_target_local_pwr_states(unsigned int cpu_idx, unsigned int end_pwrlvl,
457 psci_power_state_t *target_state)
458 {
459 unsigned int parent_idx, lvl;
460 plat_local_state_t *pd_state = target_state->pwr_domain_state;
461
462 pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
463 parent_idx = PER_CPU_BY_INDEX(psci_cpu_pd_nodes, cpu_idx)->parent_node;
464
465 /* Copy the local power state from node to state_info */
466 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
467 pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
468 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
469 }
470
471 /* Set the the higher levels to RUN */
472 for (; lvl <= PLAT_MAX_PWR_LVL; lvl++) {
473 target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
474 }
475 }
476
477 /******************************************************************************
478 * Helper function to set the target local power state that each power domain
479 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
480 * enter. This function will be called after coordination of requested power
481 * states has been done for each power level.
482 *****************************************************************************/
psci_set_target_local_pwr_states(unsigned int cpu_idx,unsigned int end_pwrlvl,const psci_power_state_t * target_state)483 void psci_set_target_local_pwr_states(unsigned int cpu_idx, unsigned int end_pwrlvl,
484 const psci_power_state_t *target_state)
485 {
486 unsigned int parent_idx, lvl;
487 const plat_local_state_t *pd_state = target_state->pwr_domain_state;
488
489 psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
490
491 /*
492 * Need to flush as local_state might be accessed with Data Cache
493 * disabled during power on
494 */
495 psci_flush_cpu_data(psci_svc_cpu_data.local_state);
496
497 parent_idx = PER_CPU_BY_INDEX(psci_cpu_pd_nodes, cpu_idx)->parent_node;
498
499 /* Copy the local_state from state_info */
500 for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
501 set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
502 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
503 }
504 }
505
506 /*******************************************************************************
507 * PSCI helper function to get the parent nodes corresponding to a cpu_index.
508 ******************************************************************************/
psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,unsigned int end_lvl,unsigned int * node_index)509 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
510 unsigned int end_lvl,
511 unsigned int *node_index)
512 {
513 unsigned int parent_node =
514 PER_CPU_BY_INDEX(psci_cpu_pd_nodes, cpu_idx)->parent_node;
515 unsigned int i;
516 unsigned int *node = node_index;
517
518 for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
519 *node = parent_node;
520 node++;
521 parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
522 }
523 }
524
525 /******************************************************************************
526 * This function is invoked post CPU power up and initialization. It sets the
527 * affinity info state, target power state and requested power state for the
528 * current CPU and all its ancestor power domains to RUN.
529 *****************************************************************************/
psci_set_pwr_domains_to_run(unsigned int cpu_idx,unsigned int end_pwrlvl)530 void psci_set_pwr_domains_to_run(unsigned int cpu_idx, unsigned int end_pwrlvl)
531 {
532 unsigned int parent_idx, lvl;
533 parent_idx = PER_CPU_BY_INDEX(psci_cpu_pd_nodes, cpu_idx)->parent_node;
534
535 /* Reset the local_state to RUN for the non cpu power domains. */
536 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
537 set_non_cpu_pd_node_local_state(parent_idx,
538 PSCI_LOCAL_STATE_RUN);
539 psci_set_req_local_pwr_state(lvl,
540 cpu_idx,
541 PSCI_LOCAL_STATE_RUN);
542 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
543 }
544
545 /* Set the affinity info state to ON */
546 psci_set_aff_info_state(AFF_STATE_ON);
547
548 psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
549 psci_flush_cpu_data(psci_svc_cpu_data);
550 }
551
552 /******************************************************************************
553 * This function is used in platform-coordinated mode.
554 *
555 * This function is passed the local power states requested for each power
556 * domain (state_info) between the current CPU domain and its ancestors until
557 * the target power level (end_pwrlvl). It updates the array of requested power
558 * states with this information.
559 *
560 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
561 * retrieves the states requested by all the cpus of which the power domain at
562 * that level is an ancestor. It passes this information to the platform to
563 * coordinate and return the target power state. If the target state for a level
564 * is RUN then subsequent levels are not considered. At the CPU level, state
565 * coordination is not required. Hence, the requested and the target states are
566 * the same.
567 *
568 * The 'state_info' is updated with the target state for each level between the
569 * CPU and the 'end_pwrlvl' and returned to the caller.
570 *
571 * This function will only be invoked with data cache enabled and while
572 * powering down a core.
573 *****************************************************************************/
psci_do_state_coordination(unsigned int cpu_idx,unsigned int end_pwrlvl,psci_power_state_t * state_info)574 void psci_do_state_coordination(unsigned int cpu_idx, unsigned int end_pwrlvl,
575 psci_power_state_t *state_info)
576 {
577 unsigned int lvl, parent_idx;
578 unsigned int start_idx;
579 unsigned int ncpus;
580 plat_local_state_t target_state;
581
582 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
583 parent_idx = PER_CPU_BY_INDEX(psci_cpu_pd_nodes, cpu_idx)->parent_node;
584
585 /* For level 0, the requested state will be equivalent
586 to target state */
587 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
588
589 /* First update the requested power state */
590 psci_set_req_local_pwr_state(lvl, cpu_idx,
591 state_info->pwr_domain_state[lvl]);
592
593 /* Get the requested power states for this power level */
594 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
595 plat_local_state_t const *req_states = psci_get_req_local_pwr_states(lvl,
596 start_idx);
597
598 /*
599 * Let the platform coordinate amongst the requested states at
600 * this power level and return the target local power state.
601 */
602 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
603 target_state = plat_get_target_pwr_state(lvl,
604 req_states,
605 ncpus);
606
607 state_info->pwr_domain_state[lvl] = target_state;
608
609 /* Break early if the negotiated target power state is RUN */
610 if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0) {
611 break;
612 }
613
614 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
615 }
616
617 /*
618 * This is for cases when we break out of the above loop early because
619 * the target power state is RUN at a power level < end_pwlvl.
620 * We update the requested power state from state_info and then
621 * set the target state as RUN.
622 */
623 for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
624 psci_set_req_local_pwr_state(lvl, cpu_idx,
625 state_info->pwr_domain_state[lvl]);
626 state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
627
628 }
629 }
630
631 #if PSCI_OS_INIT_MODE
632 /******************************************************************************
633 * This function is used in OS-initiated mode.
634 *
635 * This function is passed the local power states requested for each power
636 * domain (state_info) between the current CPU domain and its ancestors until
637 * the target power level (end_pwrlvl), and ensures the requested power states
638 * are valid. It updates the array of requested power states with this
639 * information.
640 *
641 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
642 * retrieves the states requested by all the cpus of which the power domain at
643 * that level is an ancestor. It passes this information to the platform to
644 * coordinate and return the target power state. If the requested state does
645 * not match the target state, the request is denied.
646 *
647 * The 'state_info' is not modified.
648 *
649 * This function will only be invoked with data cache enabled and while
650 * powering down a core.
651 *****************************************************************************/
psci_validate_state_coordination(unsigned int cpu_idx,unsigned int end_pwrlvl,psci_power_state_t * state_info)652 int psci_validate_state_coordination(unsigned int cpu_idx, unsigned int end_pwrlvl,
653 psci_power_state_t *state_info)
654 {
655 int rc = PSCI_E_SUCCESS;
656 unsigned int lvl, parent_idx;
657 unsigned int start_idx;
658 unsigned int ncpus;
659 plat_local_state_t target_state, *req_states;
660 plat_local_state_t prev[PLAT_MAX_PWR_LVL];
661
662 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
663 parent_idx = PER_CPU_BY_INDEX(psci_cpu_pd_nodes, cpu_idx)->parent_node;
664
665 /*
666 * Save a copy of the previous requested local power states and update
667 * the new requested local power states.
668 */
669 psci_update_req_local_pwr_states(end_pwrlvl, cpu_idx, state_info, prev);
670
671 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
672 /* Get the requested power states for this power level */
673 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
674 req_states = psci_get_req_local_pwr_states(lvl, start_idx);
675
676 /*
677 * Let the platform coordinate amongst the requested states at
678 * this power level and return the target local power state.
679 */
680 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
681 target_state = plat_get_target_pwr_state(lvl,
682 req_states,
683 ncpus);
684
685 /*
686 * Verify that the requested power state matches the target
687 * local power state.
688 */
689 if (state_info->pwr_domain_state[lvl] != target_state) {
690 if (target_state == PSCI_LOCAL_STATE_RUN) {
691 rc = PSCI_E_DENIED;
692 } else {
693 rc = PSCI_E_INVALID_PARAMS;
694 }
695 goto exit;
696 }
697
698 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
699 }
700
701 /*
702 * Verify that the current core is the last running core at the
703 * specified power level.
704 */
705 lvl = state_info->last_at_pwrlvl;
706 if (!psci_is_last_cpu_to_idle_at_pwrlvl(cpu_idx, lvl)) {
707 rc = PSCI_E_DENIED;
708 }
709
710 exit:
711 if (rc != PSCI_E_SUCCESS) {
712 /* Restore the previous requested local power states. */
713 psci_restore_req_local_pwr_states(cpu_idx, prev);
714 return rc;
715 }
716
717 return rc;
718 }
719 #endif
720
721 /******************************************************************************
722 * This function validates a suspend request by making sure that if a standby
723 * state is requested then no power level is turned off and the highest power
724 * level is placed in a standby/retention state.
725 *
726 * It also ensures that the state level X will enter is not shallower than the
727 * state level X + 1 will enter.
728 *
729 * This validation will be enabled only for DEBUG builds as the platform is
730 * expected to perform these validations as well.
731 *****************************************************************************/
psci_validate_suspend_req(const psci_power_state_t * state_info,unsigned int is_power_down_state)732 int psci_validate_suspend_req(const psci_power_state_t *state_info,
733 unsigned int is_power_down_state)
734 {
735 unsigned int max_off_lvl, target_lvl, max_retn_lvl;
736 plat_local_state_t state;
737 plat_local_state_type_t req_state_type, deepest_state_type;
738 int i;
739
740 /* Find the target suspend power level */
741 target_lvl = psci_find_target_suspend_lvl(state_info);
742 if (target_lvl == PSCI_INVALID_PWR_LVL) {
743 return PSCI_E_INVALID_PARAMS;
744 }
745
746 /* All power domain levels are in a RUN state to begin with */
747 deepest_state_type = STATE_TYPE_RUN;
748
749 for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
750 state = state_info->pwr_domain_state[i];
751 req_state_type = find_local_state_type(state);
752
753 /*
754 * While traversing from the highest power level to the lowest,
755 * the state requested for lower levels has to be the same or
756 * deeper i.e. equal to or greater than the state at the higher
757 * levels. If this condition is true, then the requested state
758 * becomes the deepest state encountered so far.
759 */
760 if (req_state_type < deepest_state_type) {
761 return PSCI_E_INVALID_PARAMS;
762 }
763 deepest_state_type = req_state_type;
764 }
765
766 /* Find the highest off power level */
767 max_off_lvl = psci_find_max_off_lvl(state_info);
768
769 /* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
770 max_retn_lvl = PSCI_INVALID_PWR_LVL;
771 if (target_lvl != max_off_lvl) {
772 max_retn_lvl = target_lvl;
773 }
774
775 /*
776 * If this is not a request for a power down state then max off level
777 * has to be invalid and max retention level has to be a valid power
778 * level.
779 */
780 if ((is_power_down_state == 0U) &&
781 ((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
782 (max_retn_lvl == PSCI_INVALID_PWR_LVL))) {
783 return PSCI_E_INVALID_PARAMS;
784 }
785
786 return PSCI_E_SUCCESS;
787 }
788
789 /******************************************************************************
790 * This function finds the highest power level which will be powered down
791 * amongst all the power levels specified in the 'state_info' structure
792 *****************************************************************************/
psci_find_max_off_lvl(const psci_power_state_t * state_info)793 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
794 {
795 int i;
796
797 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
798 if (is_local_state_off(state_info->pwr_domain_state[i]) != 0) {
799 return (unsigned int) i;
800 }
801 }
802
803 return PSCI_INVALID_PWR_LVL;
804 }
805
806 /******************************************************************************
807 * This functions finds the level of the highest power domain which will be
808 * placed in a low power state during a suspend operation.
809 *****************************************************************************/
psci_find_target_suspend_lvl(const psci_power_state_t * state_info)810 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
811 {
812 int i;
813
814 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
815 if (is_local_state_run(state_info->pwr_domain_state[i]) == 0) {
816 return (unsigned int) i;
817 }
818 }
819
820 return PSCI_INVALID_PWR_LVL;
821 }
822
823 /*******************************************************************************
824 * This function is passed the highest level in the topology tree that the
825 * operation should be applied to and a list of node indexes. It picks up locks
826 * from the node index list in order of increasing power domain level in the
827 * range specified.
828 ******************************************************************************/
psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)829 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
830 const unsigned int *parent_nodes)
831 {
832 unsigned int parent_idx;
833 unsigned int level;
834
835 /* No locking required for level 0. Hence start locking from level 1 */
836 for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
837 parent_idx = parent_nodes[level - 1U];
838 psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
839 }
840 }
841
842 /*******************************************************************************
843 * This function is passed the highest level in the topology tree that the
844 * operation should be applied to and a list of node indexes. It releases the
845 * locks in order of decreasing power domain level in the range specified.
846 ******************************************************************************/
psci_release_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)847 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
848 const unsigned int *parent_nodes)
849 {
850 unsigned int parent_idx;
851 unsigned int level;
852
853 /* Unlock top down. No unlocking required for level 0. */
854 for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) {
855 parent_idx = parent_nodes[level - 1U];
856 psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
857 }
858 }
859
860 /*******************************************************************************
861 * This function determines the full entrypoint information for the requested
862 * PSCI entrypoint on power on/resume and returns it.
863 ******************************************************************************/
864 #ifdef __aarch64__
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)865 static int psci_get_ns_ep_info(entry_point_info_t *ep,
866 uintptr_t entrypoint,
867 u_register_t context_id)
868 {
869 u_register_t ep_attr, sctlr;
870 unsigned int daif, ee, mode;
871 u_register_t ns_scr_el3 = read_scr_el3();
872 u_register_t ns_sctlr_el1 = read_sctlr_el1();
873
874 sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
875 read_sctlr_el2() : ns_sctlr_el1;
876 ee = 0;
877
878 ep_attr = NON_SECURE | EP_ST_DISABLE;
879 if ((sctlr & SCTLR_EE_BIT) != 0U) {
880 ep_attr |= EP_EE_BIG;
881 ee = 1;
882 }
883 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
884
885 ep->pc = entrypoint;
886 zeromem(&ep->args, sizeof(ep->args));
887 ep->args.arg0 = context_id;
888
889 /*
890 * Figure out whether the cpu enters the non-secure address space
891 * in aarch32 or aarch64
892 */
893 if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
894
895 /*
896 * Check whether a Thumb entry point has been provided for an
897 * aarch64 EL
898 */
899 if ((entrypoint & 0x1UL) != 0UL) {
900 return PSCI_E_INVALID_ADDRESS;
901 }
902
903 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
904
905 ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX,
906 DISABLE_ALL_EXCEPTIONS);
907 } else {
908
909 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
910 MODE32_hyp : MODE32_svc;
911
912 /*
913 * TODO: Choose async. exception bits if HYP mode is not
914 * implemented according to the values of SCR.{AW, FW} bits
915 */
916 daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
917
918 ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee,
919 daif);
920 }
921
922 return PSCI_E_SUCCESS;
923 }
924 #else /* !__aarch64__ */
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)925 static int psci_get_ns_ep_info(entry_point_info_t *ep,
926 uintptr_t entrypoint,
927 u_register_t context_id)
928 {
929 u_register_t ep_attr;
930 unsigned int aif, ee, mode;
931 u_register_t scr = read_scr();
932 u_register_t ns_sctlr, sctlr;
933
934 /* Switch to non secure state */
935 write_scr(scr | SCR_NS_BIT);
936 isb();
937 ns_sctlr = read_sctlr();
938
939 sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
940
941 /* Return to original state */
942 write_scr(scr);
943 isb();
944 ee = 0;
945
946 ep_attr = NON_SECURE | EP_ST_DISABLE;
947 if (sctlr & SCTLR_EE_BIT) {
948 ep_attr |= EP_EE_BIG;
949 ee = 1;
950 }
951 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
952
953 ep->pc = entrypoint;
954 zeromem(&ep->args, sizeof(ep->args));
955 ep->args.arg0 = context_id;
956
957 mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
958
959 /*
960 * TODO: Choose async. exception bits if HYP mode is not
961 * implemented according to the values of SCR.{AW, FW} bits
962 */
963 aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
964
965 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
966
967 return PSCI_E_SUCCESS;
968 }
969
970 #endif /* __aarch64__ */
971
972 /*******************************************************************************
973 * This function validates the entrypoint with the platform layer if the
974 * appropriate pm_ops hook is exported by the platform and returns the
975 * 'entry_point_info'.
976 ******************************************************************************/
psci_validate_entry_point(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)977 int psci_validate_entry_point(entry_point_info_t *ep,
978 uintptr_t entrypoint,
979 u_register_t context_id)
980 {
981 int rc;
982
983 /* Validate the entrypoint using platform psci_ops */
984 if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
985 rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
986 if (rc != PSCI_E_SUCCESS) {
987 return PSCI_E_INVALID_ADDRESS;
988 }
989 }
990
991 /*
992 * Verify and derive the re-entry information for
993 * the non-secure world from the non-secure state from
994 * where this call originated.
995 */
996 rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
997 return rc;
998 }
999
1000 /*******************************************************************************
1001 * Generic handler which is called when a cpu is physically powered on. It
1002 * traverses the node information and finds the highest power level powered
1003 * off and performs generic, architectural, platform setup and state management
1004 * to power on that power level and power levels below it.
1005 * e.g. For a cpu that's been powered on, it will call the platform specific
1006 * code to enable the gic cpu interface and for a cluster it will enable
1007 * coherency at the interconnect level in addition to gic cpu interface.
1008 ******************************************************************************/
psci_warmboot_entrypoint(unsigned int cpu_idx)1009 void psci_warmboot_entrypoint(unsigned int cpu_idx)
1010 {
1011 unsigned int end_pwrlvl;
1012 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1013 psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
1014
1015 /*
1016 * Verify that we have been explicitly turned ON or resumed from
1017 * suspend.
1018 */
1019 if (psci_get_aff_info_state() == AFF_STATE_OFF) {
1020 ERROR("Unexpected affinity info state.\n");
1021 panic();
1022 }
1023
1024 /*
1025 * Get the maximum power domain level to traverse to after this cpu
1026 * has been physically powered up.
1027 */
1028 end_pwrlvl = get_power_on_target_pwrlvl();
1029
1030 /* Get the parent nodes */
1031 psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
1032
1033 /*
1034 * This function acquires the lock corresponding to each power level so
1035 * that by the time all locks are taken, the system topology is snapshot
1036 * and state management can be done safely.
1037 */
1038 psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes);
1039
1040 psci_get_target_local_pwr_states(cpu_idx, end_pwrlvl, &state_info);
1041
1042 #if ENABLE_PSCI_STAT
1043 plat_psci_stat_accounting_stop(&state_info);
1044 #endif
1045
1046 /*
1047 * This CPU could be resuming from suspend or it could have just been
1048 * turned on. To distinguish between these 2 cases, we examine the
1049 * affinity state of the CPU:
1050 * - If the affinity state is ON_PENDING then it has just been
1051 * turned on.
1052 * - Else it is resuming from suspend.
1053 *
1054 * Depending on the type of warm reset identified, choose the right set
1055 * of power management handler and perform the generic, architecture
1056 * and platform specific handling.
1057 */
1058 if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING) {
1059 psci_cpu_on_finish(cpu_idx, &state_info);
1060 } else {
1061 unsigned int max_off_lvl = psci_find_max_off_lvl(&state_info);
1062
1063 assert(max_off_lvl != PSCI_INVALID_PWR_LVL);
1064 psci_cpu_suspend_to_powerdown_finish(cpu_idx, max_off_lvl, &state_info, false);
1065 }
1066
1067 /*
1068 * Caches and (importantly) coherency are on so we can rely on seeing
1069 * whatever the primary gave us without explicit cache maintenance
1070 */
1071 entry_point_info_t *ep = get_cpu_data(warmboot_ep_info);
1072 cm_init_my_context(ep);
1073
1074 /*
1075 * Generic management: Now we just need to retrieve the
1076 * information that we had stashed away during the cpu_on
1077 * call to set this cpu on its way.
1078 */
1079 cm_prepare_el3_exit_ns();
1080
1081 /*
1082 * Set the requested and target state of this CPU and all the higher
1083 * power domains which are ancestors of this CPU to run.
1084 */
1085 psci_set_pwr_domains_to_run(cpu_idx, end_pwrlvl);
1086
1087 #if ENABLE_PSCI_STAT
1088 psci_stats_update_pwr_up(cpu_idx, end_pwrlvl, &state_info);
1089 #endif
1090
1091 /*
1092 * This loop releases the lock corresponding to each power level
1093 * in the reverse order to which they were acquired.
1094 */
1095 psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes);
1096 }
1097
1098 /*******************************************************************************
1099 * This function initializes the set of hooks that PSCI invokes as part of power
1100 * management operation. The power management hooks are expected to be provided
1101 * by the SPD, after it finishes all its initialization
1102 ******************************************************************************/
psci_register_spd_pm_hook(const spd_pm_ops_t * pm)1103 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
1104 {
1105 assert(pm != NULL);
1106 psci_spd_pm = pm;
1107
1108 if (pm->svc_migrate != NULL) {
1109 psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
1110 }
1111
1112 if (pm->svc_migrate_info != NULL) {
1113 psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
1114 | define_psci_cap(PSCI_MIG_INFO_TYPE);
1115 }
1116 }
1117
1118 /*******************************************************************************
1119 * This function invokes the migrate info hook in the spd_pm_ops. It performs
1120 * the necessary return value validation. If the Secure Payload is UP and
1121 * migrate capable, it returns the mpidr of the CPU on which the Secure payload
1122 * is resident through the mpidr parameter. Else the value of the parameter on
1123 * return is undefined.
1124 ******************************************************************************/
psci_spd_migrate_info(u_register_t * mpidr)1125 int psci_spd_migrate_info(u_register_t *mpidr)
1126 {
1127 int rc;
1128
1129 if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL)) {
1130 return PSCI_E_NOT_SUPPORTED;
1131 }
1132
1133 rc = psci_spd_pm->svc_migrate_info(mpidr);
1134
1135 assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
1136 (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
1137
1138 return rc;
1139 }
1140
1141
1142 /*******************************************************************************
1143 * This function prints the state of all power domains present in the
1144 * system
1145 ******************************************************************************/
psci_print_power_domain_map(void)1146 void psci_print_power_domain_map(void)
1147 {
1148 #if LOG_LEVEL >= LOG_LEVEL_INFO
1149 unsigned int idx;
1150 plat_local_state_t state;
1151 plat_local_state_type_t state_type;
1152
1153 /* This array maps to the PSCI_STATE_X definitions in psci.h */
1154 static const char * const psci_state_type_str[] = {
1155 "ON",
1156 "RETENTION",
1157 "OFF",
1158 };
1159
1160 INFO("PSCI Power Domain Map:\n");
1161 for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count);
1162 idx++) {
1163 state_type = find_local_state_type(
1164 psci_non_cpu_pd_nodes[idx].local_state);
1165 INFO(" Domain Node : Level %u, parent_node %u,"
1166 " State %s (0x%x)\n",
1167 psci_non_cpu_pd_nodes[idx].level,
1168 psci_non_cpu_pd_nodes[idx].parent_node,
1169 psci_state_type_str[state_type],
1170 psci_non_cpu_pd_nodes[idx].local_state);
1171 }
1172
1173 for (idx = 0; idx < psci_plat_core_count; idx++) {
1174 state = psci_get_cpu_local_state_by_idx(idx);
1175 state_type = find_local_state_type(state);
1176 INFO(" CPU Node : MPID 0x%llx, parent_node %u,"
1177 " State %s (0x%x)\n",
1178 (unsigned long long)PER_CPU_BY_INDEX(psci_cpu_pd_nodes, idx)->mpidr,
1179 PER_CPU_BY_INDEX(psci_cpu_pd_nodes, idx)->parent_node,
1180 psci_state_type_str[state_type],
1181 psci_get_cpu_local_state_by_idx(idx));
1182 }
1183 #endif
1184 }
1185
1186 /******************************************************************************
1187 * Return whether any secondaries were powered up with CPU_ON call. A CPU that
1188 * have ever been powered up would have set its MPDIR value to something other
1189 * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
1190 * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
1191 * meaningful only when called on the primary CPU during early boot.
1192 *****************************************************************************/
psci_secondaries_brought_up(void)1193 int psci_secondaries_brought_up(void)
1194 {
1195 unsigned int idx, n_valid = 0U;
1196
1197 for (idx = 0U; idx < PLATFORM_CORE_COUNT; idx++) {
1198 if (PER_CPU_BY_INDEX(psci_cpu_pd_nodes, idx)->mpidr != PSCI_INVALID_MPIDR) {
1199 n_valid++;
1200 }
1201 }
1202
1203 assert(n_valid > 0U);
1204
1205 return (n_valid > 1U) ? 1 : 0;
1206 }
1207
call_cpu_pwr_dwn(unsigned int power_level)1208 static u_register_t call_cpu_pwr_dwn(unsigned int power_level)
1209 {
1210 struct cpu_ops *ops = get_cpu_data(cpu_ops_ptr);
1211
1212 /* Call the last available power down handler */
1213 if (power_level > CPU_MAX_PWR_DWN_OPS - 1) {
1214 power_level = CPU_MAX_PWR_DWN_OPS - 1;
1215 }
1216
1217 assert(ops != NULL);
1218 assert(ops->pwr_dwn_ops[power_level] != NULL);
1219
1220 return ops->pwr_dwn_ops[power_level]();
1221 }
1222
prepare_cpu_pwr_dwn(unsigned int power_level)1223 static void prepare_cpu_pwr_dwn(unsigned int power_level)
1224 {
1225 /* ignore the return, all cpus should behave the same */
1226 (void)call_cpu_pwr_dwn(power_level);
1227 }
1228
prepare_cpu_pwr_up(unsigned int power_level)1229 static void prepare_cpu_pwr_up(unsigned int power_level)
1230 {
1231 /*
1232 * Call the pwr_dwn cpu hook again, indicating that an abandon happened.
1233 * The cpu driver is expected to clean up. We ask it to return
1234 * PABANDON_ACK to indicate that it has handled this. This is a
1235 * heuristic: the value has been chosen such that an unported CPU is
1236 * extremely unlikely to return this value.
1237 */
1238 u_register_t ret = call_cpu_pwr_dwn(power_level);
1239
1240 /* unreachable on AArch32 so cast down to calm the compiler */
1241 if (ret != (u_register_t) PABANDON_ACK) {
1242 panic();
1243 }
1244 }
1245
1246 /*******************************************************************************
1247 * Initiate power down sequence, by calling power down operations registered for
1248 * this CPU.
1249 ******************************************************************************/
psci_pwrdown_cpu_start(unsigned int power_level)1250 void psci_pwrdown_cpu_start(unsigned int power_level)
1251 {
1252 #if ENABLE_RUNTIME_INSTRUMENTATION
1253
1254 /*
1255 * Flush cache line so that even if CPU power down happens
1256 * the timestamp update is reflected in memory.
1257 */
1258 PMF_CAPTURE_TIMESTAMP(rt_instr_svc,
1259 RT_INSTR_ENTER_CFLUSH,
1260 PMF_CACHE_MAINT);
1261 #endif
1262
1263 #if !HW_ASSISTED_COHERENCY
1264 /*
1265 * Disable data caching and handle the stack's cache maintenance.
1266 *
1267 * If the core can't automatically exit coherency, the cpu driver needs
1268 * to flush caches and exit coherency. We can't do this with data caches
1269 * enabled. The cpu driver will decide which caches to flush based on
1270 * the power level.
1271 *
1272 * If automatic coherency management is possible, we can keep data
1273 * caches on until the very end and let hardware do cache maintenance.
1274 */
1275 psci_do_pwrdown_cache_maintenance();
1276 #endif
1277
1278 /* Initiate the power down sequence by calling into the cpu driver. */
1279 prepare_cpu_pwr_dwn(power_level);
1280
1281 #if ENABLE_RUNTIME_INSTRUMENTATION
1282 PMF_CAPTURE_TIMESTAMP(rt_instr_svc,
1283 RT_INSTR_EXIT_CFLUSH,
1284 PMF_NO_CACHE_MAINT);
1285 #endif
1286 }
1287
1288 /*******************************************************************************
1289 * Finish a terminal power down sequence, ending with a wfi. In case of wakeup
1290 * will retry the sleep and panic if it persists.
1291 ******************************************************************************/
psci_pwrdown_cpu_end_terminal(void)1292 void __dead2 psci_pwrdown_cpu_end_terminal(void)
1293 {
1294 #if ERRATA_SME_POWER_DOWN
1295 /*
1296 * force SME off to not get power down rejected. Getting here is
1297 * terminal so we don't care if we lose context because of another
1298 * wakeup
1299 */
1300 if (is_feat_sme_supported()) {
1301 write_svcr(0);
1302 isb();
1303 }
1304 #endif /* ERRATA_SME_POWER_DOWN */
1305
1306 /* ensure write buffer empty */
1307 dsbsy();
1308
1309 /*
1310 * Execute a wfi which, in most cases, will allow the power controller
1311 * to physically power down this cpu. Under some circumstances that may
1312 * be denied. Hopefully this is transient, retrying a few times should
1313 * power down.
1314 */
1315 for (int i = 0; i < 32; i++)
1316 wfi();
1317
1318 /* Wake up wasn't transient. System is probably in a bad state. */
1319 ERROR("Could not power off CPU.\n");
1320 panic();
1321 }
1322
1323 /*******************************************************************************
1324 * Finish a non-terminal power down sequence, ending with a wfi. In case of
1325 * wakeup will unwind any CPU specific actions and return.
1326 ******************************************************************************/
1327
psci_pwrdown_cpu_end_wakeup(unsigned int power_level)1328 void psci_pwrdown_cpu_end_wakeup(unsigned int power_level)
1329 {
1330 /* ensure write buffer empty */
1331 dsbsy();
1332
1333 /*
1334 * Turn the core off. Usually, will be terminal. In some circumstances
1335 * the powerdown will be denied and we'll need to unwind.
1336 */
1337 wfi();
1338
1339 /*
1340 * Waking up does not require hardware-assisted coherency, but that is
1341 * the case for every core that can wake up. Can either happen because
1342 * of errata or pabandon.
1343 */
1344 #if !defined(__aarch64__) || !HW_ASSISTED_COHERENCY
1345 ERROR("AArch32 systems shouldn't wake up.\n");
1346 panic();
1347 #endif
1348 /*
1349 * Begin unwinding. Everything can be shared with CPU_ON and co later,
1350 * except the CPU specific bit. Cores that have hardware-assisted
1351 * coherency should be able to handle this.
1352 */
1353 prepare_cpu_pwr_up(power_level);
1354 }
1355
1356 /*******************************************************************************
1357 * This function invokes the callback 'stop_func()' with the 'mpidr' of each
1358 * online PE. Caller can pass suitable method to stop a remote core.
1359 *
1360 * 'wait_ms' is the timeout value in milliseconds for the other cores to
1361 * transition to power down state. Passing '0' makes it non-blocking.
1362 *
1363 * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the
1364 * given timeout.
1365 ******************************************************************************/
psci_stop_other_cores(unsigned int this_cpu_idx,unsigned int wait_ms,void (* stop_func)(u_register_t mpidr))1366 int psci_stop_other_cores(unsigned int this_cpu_idx, unsigned int wait_ms,
1367 void (*stop_func)(u_register_t mpidr))
1368 {
1369 /* Invoke stop_func for each core */
1370 for (unsigned int idx = 0U; idx < psci_plat_core_count; idx++) {
1371 /* skip current CPU */
1372 if (idx == this_cpu_idx) {
1373 continue;
1374 }
1375
1376 /* Check if the CPU is ON */
1377 if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) {
1378 (*stop_func)(PER_CPU_BY_INDEX(psci_cpu_pd_nodes, idx)->mpidr);
1379 }
1380 }
1381
1382 /* Need to wait for other cores to shutdown */
1383 if (wait_ms != 0U) {
1384 for (uint32_t delay_ms = wait_ms; ((delay_ms != 0U) &&
1385 (!psci_is_last_on_cpu(this_cpu_idx))); delay_ms--) {
1386 mdelay(1U);
1387 }
1388
1389 if (!psci_is_last_on_cpu(this_cpu_idx)) {
1390 WARN("Failed to stop all cores!\n");
1391 psci_print_power_domain_map();
1392 return PSCI_E_DENIED;
1393 }
1394 }
1395
1396 return PSCI_E_SUCCESS;
1397 }
1398
1399 /*******************************************************************************
1400 * This function verifies that all the other cores in the system have been
1401 * turned OFF and the current CPU is the last running CPU in the system.
1402 * Returns true if the current CPU is the last ON CPU or false otherwise.
1403 *
1404 * This API has following differences with psci_is_last_on_cpu
1405 * 1. PSCI states are locked
1406 ******************************************************************************/
psci_is_last_on_cpu_safe(unsigned int this_core)1407 bool psci_is_last_on_cpu_safe(unsigned int this_core)
1408 {
1409 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1410
1411 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1412
1413 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1414
1415 if (!psci_is_last_on_cpu(this_core)) {
1416 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1417 return false;
1418 }
1419
1420 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1421
1422 return true;
1423 }
1424
1425 /*******************************************************************************
1426 * This function verifies that all cores in the system have been turned ON.
1427 * Returns true, if all CPUs are ON or false otherwise.
1428 *
1429 * This API has following differences with psci_are_all_cpus_on
1430 * 1. PSCI states are locked
1431 ******************************************************************************/
psci_are_all_cpus_on_safe(unsigned int this_core)1432 bool psci_are_all_cpus_on_safe(unsigned int this_core)
1433 {
1434 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1435
1436 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1437
1438 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1439
1440 if (!psci_are_all_cpus_on()) {
1441 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1442 return false;
1443 }
1444
1445 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1446
1447 return true;
1448 }
1449
1450 /*******************************************************************************
1451 * Safely counts the number of CPUs in the system that are currently in the ON
1452 * or ON_PENDING state.
1453 *
1454 * This function acquires and releases the necessary power domain locks to
1455 * ensure consistency of the CPU state information.
1456 *
1457 * @param this_core The index of the current core making the query.
1458 *
1459 * @return The number of CPUs currently in AFF_STATE_ON or AFF_STATE_ON_PENDING.
1460 ******************************************************************************/
psci_num_cpus_running_on_safe(unsigned int this_core)1461 unsigned int psci_num_cpus_running_on_safe(unsigned int this_core)
1462 {
1463 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1464 unsigned int no_of_cpus;
1465
1466 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1467
1468 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1469
1470 no_of_cpus = psci_num_cpus_running();
1471
1472 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1473
1474 return no_of_cpus;
1475 }
1476