xref: /rk3399_ARM-atf/lib/locks/bakery/bakery_lock_coherent.c (revision 8c5fe0b5b9f1666b4ddd8f5849de80249cdebe40)
1 /*
2  * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <arch_helpers.h>
32 #include <assert.h>
33 #include <bakery_lock.h>
34 #include <cpu_data.h>
35 #include <platform.h>
36 #include <string.h>
37 
38 /*
39  * Functions in this file implement Bakery Algorithm for mutual exclusion with the
40  * bakery lock data structures in coherent memory.
41  *
42  * ARM architecture offers a family of exclusive access instructions to
43  * efficiently implement mutual exclusion with hardware support. However, as
44  * well as depending on external hardware, the these instructions have defined
45  * behavior only on certain memory types (cacheable and Normal memory in
46  * particular; see ARMv8 Architecture Reference Manual section B2.10). Use cases
47  * in trusted firmware are such that mutual exclusion implementation cannot
48  * expect that accesses to the lock have the specific type required by the
49  * architecture for these primitives to function (for example, not all
50  * contenders may have address translation enabled).
51  *
52  * This implementation does not use mutual exclusion primitives. It expects
53  * memory regions where the locks reside to be fully ordered and coherent
54  * (either by disabling address translation, or by assigning proper attributes
55  * when translation is enabled).
56  *
57  * Note that the ARM architecture guarantees single-copy atomicity for aligned
58  * accesses regardless of status of address translation.
59  */
60 
61 #define assert_bakery_entry_valid(entry, bakery) do {	\
62 	assert(bakery);					\
63 	assert(entry < BAKERY_LOCK_MAX_CPUS);		\
64 } while (0)
65 
66 /* Convert a ticket to priority */
67 #define PRIORITY(t, pos)	(((t) << 8) | (pos))
68 
69 
70 /* Initialize Bakery Lock to reset ownership and all ticket values */
71 void bakery_lock_init(bakery_lock_t *bakery)
72 {
73 	assert(bakery);
74 
75 	/* All ticket values need to be 0 */
76 	memset(bakery, 0, sizeof(*bakery));
77 	bakery->owner = NO_OWNER;
78 }
79 
80 
81 /* Obtain a ticket for a given CPU */
82 static unsigned int bakery_get_ticket(bakery_lock_t *bakery, unsigned int me)
83 {
84 	unsigned int my_ticket, their_ticket;
85 	unsigned int they;
86 
87 	/*
88 	 * Flag that we're busy getting our ticket. All CPUs are iterated in the
89 	 * order of their ordinal position to decide the maximum ticket value
90 	 * observed so far. Our priority is set to be greater than the maximum
91 	 * observed priority
92 	 *
93 	 * Note that it's possible that more than one contender gets the same
94 	 * ticket value. That's OK as the lock is acquired based on the priority
95 	 * value, not the ticket value alone.
96 	 */
97 	my_ticket = 0;
98 	bakery->entering[me] = 1;
99 	for (they = 0; they < BAKERY_LOCK_MAX_CPUS; they++) {
100 		their_ticket = bakery->number[they];
101 		if (their_ticket > my_ticket)
102 			my_ticket = their_ticket;
103 	}
104 
105 	/*
106 	 * Compute ticket; then signal to other contenders waiting for us to
107 	 * finish calculating our ticket value that we're done
108 	 */
109 	++my_ticket;
110 	bakery->number[me] = my_ticket;
111 	bakery->entering[me] = 0;
112 
113 	return my_ticket;
114 }
115 
116 
117 /*
118  * Acquire bakery lock
119  *
120  * Contending CPUs need first obtain a non-zero ticket and then calculate
121  * priority value. A contending CPU iterate over all other CPUs in the platform,
122  * which may be contending for the same lock, in the order of their ordinal
123  * position (CPU0, CPU1 and so on). A non-contending CPU will have its ticket
124  * (and priority) value as 0. The contending CPU compares its priority with that
125  * of others'. The CPU with the highest priority (lowest numerical value)
126  * acquires the lock
127  */
128 void bakery_lock_get(bakery_lock_t *bakery)
129 {
130 	unsigned int they, me;
131 	unsigned int my_ticket, my_prio, their_ticket;
132 
133 	me = platform_get_core_pos(read_mpidr_el1());
134 
135 	assert_bakery_entry_valid(me, bakery);
136 
137 	/* Prevent recursive acquisition */
138 	assert(bakery->owner != me);
139 
140 	/* Get a ticket */
141 	my_ticket = bakery_get_ticket(bakery, me);
142 
143 	/*
144 	 * Now that we got our ticket, compute our priority value, then compare
145 	 * with that of others, and proceed to acquire the lock
146 	 */
147 	my_prio = PRIORITY(my_ticket, me);
148 	for (they = 0; they < BAKERY_LOCK_MAX_CPUS; they++) {
149 		if (me == they)
150 			continue;
151 
152 		/* Wait for the contender to get their ticket */
153 		while (bakery->entering[they])
154 			;
155 
156 		/*
157 		 * If the other party is a contender, they'll have non-zero
158 		 * (valid) ticket value. If they do, compare priorities
159 		 */
160 		their_ticket = bakery->number[they];
161 		if (their_ticket && (PRIORITY(their_ticket, they) < my_prio)) {
162 			/*
163 			 * They have higher priority (lower value). Wait for
164 			 * their ticket value to change (either release the lock
165 			 * to have it dropped to 0; or drop and probably content
166 			 * again for the same lock to have an even higher value)
167 			 */
168 			do {
169 				wfe();
170 			} while (their_ticket == bakery->number[they]);
171 		}
172 	}
173 
174 	/* Lock acquired */
175 	bakery->owner = me;
176 }
177 
178 
179 /* Release the lock and signal contenders */
180 void bakery_lock_release(bakery_lock_t *bakery)
181 {
182 	unsigned int me = platform_get_core_pos(read_mpidr_el1());
183 
184 	assert_bakery_entry_valid(me, bakery);
185 	assert(bakery->owner == me);
186 
187 	/*
188 	 * Release lock by resetting ownership and ticket. Then signal other
189 	 * waiting contenders
190 	 */
191 	bakery->owner = NO_OWNER;
192 	bakery->number[me] = 0;
193 	dsb();
194 	sev();
195 }
196