xref: /rk3399_ARM-atf/lib/gpt_rme/gpt_rme.c (revision d766084fc48ed83890c63a7ef773b8fff9e4ea86)
1 /*
2  * Copyright (c) 2022-2024, Arm Limited. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <errno.h>
9 #include <inttypes.h>
10 #include <limits.h>
11 #include <stdint.h>
12 
13 #include <arch.h>
14 #include <arch_features.h>
15 #include <arch_helpers.h>
16 #include <common/debug.h>
17 #include "gpt_rme_private.h"
18 #include <lib/gpt_rme/gpt_rme.h>
19 #include <lib/smccc.h>
20 #include <lib/spinlock.h>
21 #include <lib/xlat_tables/xlat_tables_v2.h>
22 
23 #if !ENABLE_RME
24 #error "ENABLE_RME must be enabled to use the GPT library"
25 #endif
26 
27 /*
28  * Lookup T from PPS
29  *
30  *   PPS    Size    T
31  *   0b000  4GB     32
32  *   0b001  64GB    36
33  *   0b010  1TB     40
34  *   0b011  4TB     42
35  *   0b100  16TB    44
36  *   0b101  256TB   48
37  *   0b110  4PB     52
38  *
39  * See section 15.1.27 of the RME specification.
40  */
41 static const gpt_t_val_e gpt_t_lookup[] = {PPS_4GB_T, PPS_64GB_T,
42 					   PPS_1TB_T, PPS_4TB_T,
43 					   PPS_16TB_T, PPS_256TB_T,
44 					   PPS_4PB_T};
45 
46 /*
47  * Lookup P from PGS
48  *
49  *   PGS    Size    P
50  *   0b00   4KB     12
51  *   0b10   16KB    14
52  *   0b01   64KB    16
53  *
54  * Note that pgs=0b10 is 16KB and pgs=0b01 is 64KB, this is not a typo.
55  *
56  * See section 15.1.27 of the RME specification.
57  */
58 static const gpt_p_val_e gpt_p_lookup[] = {PGS_4KB_P, PGS_64KB_P, PGS_16KB_P};
59 
60 static void shatter_2mb(uintptr_t base, const gpi_info_t *gpi_info,
61 				uint64_t l1_desc);
62 static void shatter_32mb(uintptr_t base, const gpi_info_t *gpi_info,
63 				uint64_t l1_desc);
64 static void shatter_512mb(uintptr_t base, const gpi_info_t *gpi_info,
65 				uint64_t l1_desc);
66 
67 /*
68  * This structure contains GPT configuration data
69  */
70 typedef struct {
71 	uintptr_t plat_gpt_l0_base;
72 	gpccr_pps_e pps;
73 	gpt_t_val_e t;
74 	gpccr_pgs_e pgs;
75 	gpt_p_val_e p;
76 } gpt_config_t;
77 
78 static gpt_config_t gpt_config;
79 
80 /*
81  * Number of L1 entries in 2MB, depending on GPCCR_EL3.PGS:
82  * +-------+------------+
83  * |  PGS  | L1 entries |
84  * +-------+------------+
85  * |  4KB  |     32     |
86  * +-------+------------+
87  * |  16KB |     8      |
88  * +-------+------------+
89  * |  64KB |     2      |
90  * +-------+------------+
91  */
92 static unsigned int gpt_l1_cnt_2mb;
93 
94 /*
95  * Mask for the L1 index field, depending on
96  * GPCCR_EL3.L0GPTSZ and GPCCR_EL3.PGS:
97  * +---------+-------------------------------+
98  * |         |             PGS               |
99  * +---------+----------+----------+---------+
100  * | L0GPTSZ |   4KB    |   16KB   |   64KB  |
101  * +---------+----------+----------+---------+
102  * |  1GB    |  0x3FFF  |  0xFFF   |  0x3FF  |
103  * +---------+----------+----------+---------+
104  * |  16GB   | 0x3FFFF  |  0xFFFF  | 0x3FFF  |
105  * +---------+----------+----------+---------+
106  * |  64GB   | 0xFFFFF  | 0x3FFFF  | 0xFFFF  |
107  * +---------+----------+----------+---------+
108  * |  512GB  | 0x7FFFFF | 0x1FFFFF | 0x7FFFF |
109  * +---------+----------+----------+---------+
110  */
111 static uint64_t gpt_l1_index_mask;
112 
113 /* Number of 128-bit L1 entries in 2MB, 32MB and 512MB */
114 #define L1_QWORDS_2MB	(gpt_l1_cnt_2mb / 2U)
115 #define L1_QWORDS_32MB	(L1_QWORDS_2MB * 16U)
116 #define L1_QWORDS_512MB	(L1_QWORDS_32MB * 16U)
117 
118 /* Size in bytes of L1 entries in 2MB, 32MB */
119 #define L1_BYTES_2MB	(gpt_l1_cnt_2mb * sizeof(uint64_t))
120 #define L1_BYTES_32MB	(L1_BYTES_2MB * 16U)
121 
122 /* Get the index into the L1 table from a physical address */
123 #define GPT_L1_INDEX(_pa)	\
124 	(((_pa) >> (unsigned int)GPT_L1_IDX_SHIFT(gpt_config.p)) & gpt_l1_index_mask)
125 
126 /* These variables are used during initialization of the L1 tables */
127 static uintptr_t gpt_l1_tbl;
128 
129 /* These variable is used during runtime */
130 #if (RME_GPT_BITLOCK_BLOCK == 0)
131 /*
132  * The GPTs are protected by a global spinlock to ensure
133  * that multiple CPUs do not attempt to change the descriptors at once.
134  */
135 static spinlock_t gpt_lock;
136 #else
137 
138 /* Bitlocks base address */
139 static bitlock_t *gpt_bitlock_base;
140 #endif
141 
142 /* Lock/unlock macros for GPT entries */
143 #if (RME_GPT_BITLOCK_BLOCK == 0)
144 /*
145  * Access to GPT is controlled by a global lock to ensure
146  * that no more than one CPU is allowed to make changes at any
147  * given time.
148  */
149 #define GPT_LOCK	spin_lock(&gpt_lock)
150 #define GPT_UNLOCK	spin_unlock(&gpt_lock)
151 #else
152 /*
153  * Access to a block of memory is controlled by a bitlock.
154  * Size of block = RME_GPT_BITLOCK_BLOCK * 512MB.
155  */
156 #define GPT_LOCK	bit_lock(gpi_info.lock, gpi_info.mask)
157 #define GPT_UNLOCK	bit_unlock(gpi_info.lock, gpi_info.mask)
158 #endif
159 
160 static void tlbi_page_dsbosh(uintptr_t base)
161 {
162 	/* Look-up table for invalidation TLBs for 4KB, 16KB and 64KB pages */
163 	static const gpt_tlbi_lookup_t tlbi_page_lookup[] = {
164 		{ tlbirpalos_4k, ~(SZ_4K - 1UL) },
165 		{ tlbirpalos_64k, ~(SZ_64K - 1UL) },
166 		{ tlbirpalos_16k, ~(SZ_16K - 1UL) }
167 	};
168 
169 	tlbi_page_lookup[gpt_config.pgs].function(
170 			base & tlbi_page_lookup[gpt_config.pgs].mask);
171 	dsbosh();
172 }
173 
174 /*
175  * Helper function to fill out GPI entries in a single L1 table
176  * with Granules or Contiguous descriptor.
177  *
178  * Parameters
179  *   l1			Pointer to 2MB, 32MB or 512MB aligned L1 table entry to fill out
180  *   l1_desc		GPT Granules or Contiguous descriptor set this range to
181  *   cnt		Number of double 128-bit L1 entries to fill
182  *
183  */
184 static void fill_desc(uint64_t *l1, uint64_t l1_desc, unsigned int cnt)
185 {
186 	uint128_t *l1_quad = (uint128_t *)l1;
187 	uint128_t l1_quad_desc = (uint128_t)l1_desc | ((uint128_t)l1_desc << 64);
188 
189 	VERBOSE("GPT: %s(%p 0x%"PRIx64" %u)\n", __func__, l1, l1_desc, cnt);
190 
191 	for (unsigned int i = 0U; i < cnt; i++) {
192 		*l1_quad++ = l1_quad_desc;
193 	}
194 }
195 
196 static void shatter_2mb(uintptr_t base, const gpi_info_t *gpi_info,
197 				uint64_t l1_desc)
198 {
199 	unsigned long idx = GPT_L1_INDEX(ALIGN_2MB(base));
200 
201 	VERBOSE("GPT: %s(0x%"PRIxPTR" 0x%"PRIx64")\n",
202 				__func__, base, l1_desc);
203 
204 	/* Convert 2MB Contiguous block to Granules */
205 	fill_desc(&gpi_info->gpt_l1_addr[idx], l1_desc, L1_QWORDS_2MB);
206 }
207 
208 static void shatter_32mb(uintptr_t base, const gpi_info_t *gpi_info,
209 				uint64_t l1_desc)
210 {
211 	unsigned long idx = GPT_L1_INDEX(ALIGN_2MB(base));
212 	const uint64_t *l1_gran = &gpi_info->gpt_l1_addr[idx];
213 	uint64_t l1_cont_desc = GPT_L1_CONT_DESC(l1_desc, 2MB);
214 	uint64_t *l1;
215 
216 	VERBOSE("GPT: %s(0x%"PRIxPTR" 0x%"PRIx64")\n",
217 				__func__, base, l1_desc);
218 
219 	/* Get index corresponding to 32MB aligned address */
220 	idx = GPT_L1_INDEX(ALIGN_32MB(base));
221 	l1 = &gpi_info->gpt_l1_addr[idx];
222 
223 	/* 16 x 2MB blocks in 32MB */
224 	for (unsigned int i = 0U; i < 16U; i++) {
225 		/* Fill with Granules or Contiguous descriptors */
226 		fill_desc(l1, (l1 == l1_gran) ? l1_desc : l1_cont_desc,
227 							L1_QWORDS_2MB);
228 		l1 = (uint64_t *)((uintptr_t)l1 + L1_BYTES_2MB);
229 	}
230 }
231 
232 static void shatter_512mb(uintptr_t base, const gpi_info_t *gpi_info,
233 				uint64_t l1_desc)
234 {
235 	unsigned long idx = GPT_L1_INDEX(ALIGN_32MB(base));
236 	const uint64_t *l1_32mb = &gpi_info->gpt_l1_addr[idx];
237 	uint64_t l1_cont_desc = GPT_L1_CONT_DESC(l1_desc, 32MB);
238 	uint64_t *l1;
239 
240 	VERBOSE("GPT: %s(0x%"PRIxPTR" 0x%"PRIx64")\n",
241 				__func__, base, l1_desc);
242 
243 	/* Get index corresponding to 512MB aligned address */
244 	idx = GPT_L1_INDEX(ALIGN_512MB(base));
245 	l1 = &gpi_info->gpt_l1_addr[idx];
246 
247 	/* 16 x 32MB blocks in 512MB */
248 	for (unsigned int i = 0U; i < 16U; i++) {
249 		if (l1 == l1_32mb) {
250 			/* Shatter this 32MB block */
251 			shatter_32mb(base, gpi_info, l1_desc);
252 		} else {
253 			/* Fill 32MB with Contiguous descriptors */
254 			fill_desc(l1, l1_cont_desc, L1_QWORDS_32MB);
255 		}
256 
257 		l1 = (uint64_t *)((uintptr_t)l1 + L1_BYTES_32MB);
258 	}
259 }
260 
261 /*
262  * This function checks to see if a GPI value is valid.
263  *
264  * These are valid GPI values.
265  *   GPT_GPI_NO_ACCESS   U(0x0)
266  *   GPT_GPI_SECURE      U(0x8)
267  *   GPT_GPI_NS          U(0x9)
268  *   GPT_GPI_ROOT        U(0xA)
269  *   GPT_GPI_REALM       U(0xB)
270  *   GPT_GPI_ANY         U(0xF)
271  *
272  * Parameters
273  *   gpi		GPI to check for validity.
274  *
275  * Return
276  *   true for a valid GPI, false for an invalid one.
277  */
278 static bool is_gpi_valid(unsigned int gpi)
279 {
280 	if ((gpi == GPT_GPI_NO_ACCESS) || (gpi == GPT_GPI_ANY) ||
281 	    ((gpi >= GPT_GPI_SECURE) && (gpi <= GPT_GPI_REALM))) {
282 		return true;
283 	}
284 	return false;
285 }
286 
287 /*
288  * This function checks to see if two PAS regions overlap.
289  *
290  * Parameters
291  *   base_1: base address of first PAS
292  *   size_1: size of first PAS
293  *   base_2: base address of second PAS
294  *   size_2: size of second PAS
295  *
296  * Return
297  *   True if PAS regions overlap, false if they do not.
298  */
299 static bool check_pas_overlap(uintptr_t base_1, size_t size_1,
300 			      uintptr_t base_2, size_t size_2)
301 {
302 	if (((base_1 + size_1) > base_2) && ((base_2 + size_2) > base_1)) {
303 		return true;
304 	}
305 	return false;
306 }
307 
308 /*
309  * This helper function checks to see if a PAS region from index 0 to
310  * (pas_idx - 1) occupies the L0 region at index l0_idx in the L0 table.
311  *
312  * Parameters
313  *   l0_idx:      Index of the L0 entry to check
314  *   pas_regions: PAS region array
315  *   pas_idx:     Upper bound of the PAS array index.
316  *
317  * Return
318  *   True if a PAS region occupies the L0 region in question, false if not.
319  */
320 static bool does_previous_pas_exist_here(unsigned int l0_idx,
321 					 pas_region_t *pas_regions,
322 					 unsigned int pas_idx)
323 {
324 	/* Iterate over PAS regions up to pas_idx */
325 	for (unsigned int i = 0U; i < pas_idx; i++) {
326 		if (check_pas_overlap((GPT_L0GPTSZ_ACTUAL_SIZE * l0_idx),
327 		    GPT_L0GPTSZ_ACTUAL_SIZE,
328 		    pas_regions[i].base_pa, pas_regions[i].size)) {
329 			return true;
330 		}
331 	}
332 	return false;
333 }
334 
335 /*
336  * This function iterates over all of the PAS regions and checks them to ensure
337  * proper alignment of base and size, that the GPI is valid, and that no regions
338  * overlap. As a part of the overlap checks, this function checks existing L0
339  * mappings against the new PAS regions in the event that gpt_init_pas_l1_tables
340  * is called multiple times to place L1 tables in different areas of memory. It
341  * also counts the number of L1 tables needed and returns it on success.
342  *
343  * Parameters
344  *   *pas_regions	Pointer to array of PAS region structures.
345  *   pas_region_cnt	Total number of PAS regions in the array.
346  *
347  * Return
348  *   Negative Linux error code in the event of a failure, number of L1 regions
349  *   required when successful.
350  */
351 static int validate_pas_mappings(pas_region_t *pas_regions,
352 				 unsigned int pas_region_cnt)
353 {
354 	unsigned int idx;
355 	unsigned int l1_cnt = 0U;
356 	unsigned int pas_l1_cnt;
357 	uint64_t *l0_desc = (uint64_t *)gpt_config.plat_gpt_l0_base;
358 
359 	assert(pas_regions != NULL);
360 	assert(pas_region_cnt != 0U);
361 
362 	for (idx = 0U; idx < pas_region_cnt; idx++) {
363 		/* Check for arithmetic overflow in region */
364 		if ((ULONG_MAX - pas_regions[idx].base_pa) <
365 		    pas_regions[idx].size) {
366 			ERROR("GPT: Address overflow in PAS[%u]!\n", idx);
367 			return -EOVERFLOW;
368 		}
369 
370 		/* Initial checks for PAS validity */
371 		if (((pas_regions[idx].base_pa + pas_regions[idx].size) >
372 		    GPT_PPS_ACTUAL_SIZE(gpt_config.t)) ||
373 		    !is_gpi_valid(GPT_PAS_ATTR_GPI(pas_regions[idx].attrs))) {
374 			ERROR("GPT: PAS[%u] is invalid!\n", idx);
375 			return -EFAULT;
376 		}
377 
378 		/*
379 		 * Make sure this PAS does not overlap with another one. We
380 		 * start from idx + 1 instead of 0 since prior PAS mappings will
381 		 * have already checked themselves against this one.
382 		 */
383 		for (unsigned int i = idx + 1U; i < pas_region_cnt; i++) {
384 			if (check_pas_overlap(pas_regions[idx].base_pa,
385 			    pas_regions[idx].size,
386 			    pas_regions[i].base_pa,
387 			    pas_regions[i].size)) {
388 				ERROR("GPT: PAS[%u] overlaps with PAS[%u]\n",
389 					i, idx);
390 				return -EFAULT;
391 			}
392 		}
393 
394 		/*
395 		 * Since this function can be called multiple times with
396 		 * separate L1 tables we need to check the existing L0 mapping
397 		 * to see if this PAS would fall into one that has already been
398 		 * initialized.
399 		 */
400 		for (unsigned int i =
401 			(unsigned int)GPT_L0_IDX(pas_regions[idx].base_pa);
402 			i <= GPT_L0_IDX(pas_regions[idx].base_pa +
403 					pas_regions[idx].size - 1UL);
404 			i++) {
405 			if ((GPT_L0_TYPE(l0_desc[i]) == GPT_L0_TYPE_BLK_DESC) &&
406 			    (GPT_L0_BLKD_GPI(l0_desc[i]) == GPT_GPI_ANY)) {
407 				/* This descriptor is unused so continue */
408 				continue;
409 			}
410 
411 			/*
412 			 * This descriptor has been initialized in a previous
413 			 * call to this function so cannot be initialized again.
414 			 */
415 			ERROR("GPT: PAS[%u] overlaps with previous L0[%u]!\n",
416 			      idx, i);
417 			return -EFAULT;
418 		}
419 
420 		/* Check for block mapping (L0) type */
421 		if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
422 		    GPT_PAS_ATTR_MAP_TYPE_BLOCK) {
423 			/* Make sure base and size are block-aligned */
424 			if (!GPT_IS_L0_ALIGNED(pas_regions[idx].base_pa) ||
425 			    !GPT_IS_L0_ALIGNED(pas_regions[idx].size)) {
426 				ERROR("GPT: PAS[%u] is not block-aligned!\n",
427 				      idx);
428 				return -EFAULT;
429 			}
430 
431 			continue;
432 		}
433 
434 		/* Check for granule mapping (L1) type */
435 		if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
436 		    GPT_PAS_ATTR_MAP_TYPE_GRANULE) {
437 			/* Make sure base and size are granule-aligned */
438 			if (!GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].base_pa) ||
439 			    !GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].size)) {
440 				ERROR("GPT: PAS[%u] is not granule-aligned!\n",
441 				      idx);
442 				return -EFAULT;
443 			}
444 
445 			/* Find how many L1 tables this PAS occupies */
446 			pas_l1_cnt = (GPT_L0_IDX(pas_regions[idx].base_pa +
447 				     pas_regions[idx].size - 1UL) -
448 				     GPT_L0_IDX(pas_regions[idx].base_pa) + 1U);
449 
450 			/*
451 			 * This creates a situation where, if multiple PAS
452 			 * regions occupy the same table descriptor, we can get
453 			 * an artificially high total L1 table count. The way we
454 			 * handle this is by checking each PAS against those
455 			 * before it in the array, and if they both occupy the
456 			 * same PAS we subtract from pas_l1_cnt and only the
457 			 * first PAS in the array gets to count it.
458 			 */
459 
460 			/*
461 			 * If L1 count is greater than 1 we know the start and
462 			 * end PAs are in different L0 regions so we must check
463 			 * both for overlap against other PAS.
464 			 */
465 			if (pas_l1_cnt > 1) {
466 				if (does_previous_pas_exist_here(
467 				    GPT_L0_IDX(pas_regions[idx].base_pa +
468 				    pas_regions[idx].size - 1UL),
469 				    pas_regions, idx)) {
470 					pas_l1_cnt--;
471 				}
472 			}
473 
474 			if (does_previous_pas_exist_here(
475 			    GPT_L0_IDX(pas_regions[idx].base_pa),
476 			    pas_regions, idx)) {
477 				pas_l1_cnt--;
478 			}
479 
480 			l1_cnt += pas_l1_cnt;
481 			continue;
482 		}
483 
484 		/* If execution reaches this point, mapping type is invalid */
485 		ERROR("GPT: PAS[%u] has invalid mapping type 0x%x.\n", idx,
486 		      GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs));
487 		return -EINVAL;
488 	}
489 
490 	return l1_cnt;
491 }
492 
493 /*
494  * This function validates L0 initialization parameters.
495  *
496  * Parameters
497  *   l0_mem_base	Base address of memory used for L0 tables.
498  *   l1_mem_size	Size of memory available for L0 tables.
499  *
500  * Return
501  *   Negative Linux error code in the event of a failure, 0 for success.
502  */
503 static int validate_l0_params(gpccr_pps_e pps, uintptr_t l0_mem_base,
504 				size_t l0_mem_size)
505 {
506 	size_t l0_alignment, locks_size = 0;
507 
508 	/*
509 	 * Make sure PPS is valid and then store it since macros need this value
510 	 * to work.
511 	 */
512 	if (pps > GPT_PPS_MAX) {
513 		ERROR("GPT: Invalid PPS: 0x%x\n", pps);
514 		return -EINVAL;
515 	}
516 	gpt_config.pps = pps;
517 	gpt_config.t = gpt_t_lookup[pps];
518 
519 	/* Alignment must be the greater of 4KB or l0 table size */
520 	l0_alignment = PAGE_SIZE_4KB;
521 	if (l0_alignment < GPT_L0_TABLE_SIZE(gpt_config.t)) {
522 		l0_alignment = GPT_L0_TABLE_SIZE(gpt_config.t);
523 	}
524 
525 	/* Check base address */
526 	if ((l0_mem_base == 0UL) ||
527 	   ((l0_mem_base & (l0_alignment - 1UL)) != 0UL)) {
528 		ERROR("GPT: Invalid L0 base address: 0x%lx\n", l0_mem_base);
529 		return -EFAULT;
530 	}
531 
532 #if (RME_GPT_BITLOCK_BLOCK != 0)
533 	/*
534 	 * Size of bitlocks in bytes for the protected address space
535 	 * with RME_GPT_BITLOCK_BLOCK * 512MB per bitlock.
536 	 */
537 	locks_size = GPT_PPS_ACTUAL_SIZE(gpt_config.t) /
538 			(RME_GPT_BITLOCK_BLOCK * SZ_512M * 8U);
539 
540 	/*
541 	 * If protected space size is less than the size covered
542 	 * by 'bitlock' structure, check for a single bitlock.
543 	 */
544 	if (locks_size < LOCK_SIZE) {
545 		locks_size = LOCK_SIZE;
546 	}
547 #endif
548 	/* Check size for L0 tables and bitlocks */
549 	if (l0_mem_size < (GPT_L0_TABLE_SIZE(gpt_config.t) + locks_size)) {
550 		ERROR("GPT: Inadequate L0 memory\n");
551 		ERROR("      Expected 0x%lx bytes, got 0x%lx bytes\n",
552 			GPT_L0_TABLE_SIZE(gpt_config.t) + locks_size,
553 			l0_mem_size);
554 		return -ENOMEM;
555 	}
556 
557 	return 0;
558 }
559 
560 /*
561  * In the event that L1 tables are needed, this function validates
562  * the L1 table generation parameters.
563  *
564  * Parameters
565  *   l1_mem_base	Base address of memory used for L1 table allocation.
566  *   l1_mem_size	Total size of memory available for L1 tables.
567  *   l1_gpt_cnt		Number of L1 tables needed.
568  *
569  * Return
570  *   Negative Linux error code in the event of a failure, 0 for success.
571  */
572 static int validate_l1_params(uintptr_t l1_mem_base, size_t l1_mem_size,
573 				unsigned int l1_gpt_cnt)
574 {
575 	size_t l1_gpt_mem_sz;
576 
577 	/* Check if the granularity is supported */
578 	if (!xlat_arch_is_granule_size_supported(
579 	    GPT_PGS_ACTUAL_SIZE(gpt_config.p))) {
580 		return -EPERM;
581 	}
582 
583 	/* Make sure L1 tables are aligned to their size */
584 	if ((l1_mem_base & (GPT_L1_TABLE_SIZE(gpt_config.p) - 1UL)) != 0UL) {
585 		ERROR("GPT: Unaligned L1 GPT base address: 0x%"PRIxPTR"\n",
586 		      l1_mem_base);
587 		return -EFAULT;
588 	}
589 
590 	/* Get total memory needed for L1 tables */
591 	l1_gpt_mem_sz = l1_gpt_cnt * GPT_L1_TABLE_SIZE(gpt_config.p);
592 
593 	/* Check for overflow */
594 	if ((l1_gpt_mem_sz / GPT_L1_TABLE_SIZE(gpt_config.p)) != l1_gpt_cnt) {
595 		ERROR("GPT: Overflow calculating L1 memory size\n");
596 		return -ENOMEM;
597 	}
598 
599 	/* Make sure enough space was supplied */
600 	if (l1_mem_size < l1_gpt_mem_sz) {
601 		ERROR("%sL1 GPTs%s", (const char *)"GPT: Inadequate ",
602 			(const char *)" memory\n");
603 		ERROR("      Expected 0x%lx bytes, got 0x%lx bytes\n",
604 			l1_gpt_mem_sz, l1_mem_size);
605 		return -ENOMEM;
606 	}
607 
608 	VERBOSE("GPT: Requested 0x%lx bytes for L1 GPTs\n", l1_gpt_mem_sz);
609 	return 0;
610 }
611 
612 /*
613  * This function initializes L0 block descriptors (regions that cannot be
614  * transitioned at the granule level) according to the provided PAS.
615  *
616  * Parameters
617  *   *pas		Pointer to the structure defining the PAS region to
618  *			initialize.
619  */
620 static void generate_l0_blk_desc(pas_region_t *pas)
621 {
622 	uint64_t gpt_desc;
623 	unsigned long idx, end_idx;
624 	uint64_t *l0_gpt_arr;
625 
626 	assert(gpt_config.plat_gpt_l0_base != 0U);
627 	assert(pas != NULL);
628 
629 	/*
630 	 * Checking of PAS parameters has already been done in
631 	 * validate_pas_mappings so no need to check the same things again.
632 	 */
633 
634 	l0_gpt_arr = (uint64_t *)gpt_config.plat_gpt_l0_base;
635 
636 	/* Create the GPT Block descriptor for this PAS region */
637 	gpt_desc = GPT_L0_BLK_DESC(GPT_PAS_ATTR_GPI(pas->attrs));
638 
639 	/* Start index of this region in L0 GPTs */
640 	idx = GPT_L0_IDX(pas->base_pa);
641 
642 	/*
643 	 * Determine number of L0 GPT descriptors covered by
644 	 * this PAS region and use the count to populate these
645 	 * descriptors.
646 	 */
647 	end_idx = GPT_L0_IDX(pas->base_pa + pas->size);
648 
649 	/* Generate the needed block descriptors */
650 	for (; idx < end_idx; idx++) {
651 		l0_gpt_arr[idx] = gpt_desc;
652 		VERBOSE("GPT: L0 entry (BLOCK) index %lu [%p]: GPI = 0x%"PRIx64" (0x%"PRIx64")\n",
653 			idx, &l0_gpt_arr[idx],
654 			(gpt_desc >> GPT_L0_BLK_DESC_GPI_SHIFT) &
655 			GPT_L0_BLK_DESC_GPI_MASK, l0_gpt_arr[idx]);
656 	}
657 }
658 
659 /*
660  * Helper function to determine if the end physical address lies in the same L0
661  * region as the current physical address. If true, the end physical address is
662  * returned else, the start address of the next region is returned.
663  *
664  * Parameters
665  *   cur_pa		Physical address of the current PA in the loop through
666  *			the range.
667  *   end_pa		Physical address of the end PA in a PAS range.
668  *
669  * Return
670  *   The PA of the end of the current range.
671  */
672 static uintptr_t get_l1_end_pa(uintptr_t cur_pa, uintptr_t end_pa)
673 {
674 	uintptr_t cur_idx;
675 	uintptr_t end_idx;
676 
677 	cur_idx = GPT_L0_IDX(cur_pa);
678 	end_idx = GPT_L0_IDX(end_pa);
679 
680 	assert(cur_idx <= end_idx);
681 
682 	if (cur_idx == end_idx) {
683 		return end_pa;
684 	}
685 
686 	return (cur_idx + 1UL) << GPT_L0_IDX_SHIFT;
687 }
688 
689 /*
690  * Helper function to fill out GPI entries from 'first' granule address of
691  * the specified 'length' in a single L1 table with 'l1_desc' Contiguous
692  * descriptor.
693  *
694  * Parameters
695  *   l1			Pointer to L1 table to fill out
696  *   first		Address of first granule in range
697  *   length		Length of the range in bytes
698  *   gpi		GPI set this range to
699  *
700  * Return
701  *   Address of next granule in range.
702  */
703 static uintptr_t fill_l1_cont_desc(uint64_t *l1, uintptr_t first,
704 				   size_t length, unsigned int gpi)
705 {
706 	/*
707 	 * Look up table for contiguous blocks and descriptors.
708 	 * Entries should be defined in descending block sizes:
709 	 * 512MB, 32MB and 2MB.
710 	 */
711 	static const gpt_fill_lookup_t gpt_fill_lookup[] = {
712 #if (RME_GPT_MAX_BLOCK == 512)
713 		{ SZ_512M, GPT_L1_CONT_DESC_512MB },
714 #endif
715 #if (RME_GPT_MAX_BLOCK >= 32)
716 		{ SZ_32M, GPT_L1_CONT_DESC_32MB },
717 #endif
718 #if (RME_GPT_MAX_BLOCK != 0)
719 		{ SZ_2M, GPT_L1_CONT_DESC_2MB }
720 #endif
721 	};
722 
723 	/*
724 	 * Iterate through all block sizes (512MB, 32MB and 2MB)
725 	 * starting with maximum supported.
726 	 */
727 	for (unsigned long i = 0UL; i < ARRAY_SIZE(gpt_fill_lookup); i++) {
728 		/* Calculate index */
729 		unsigned long idx = GPT_L1_INDEX(first);
730 
731 		/* Contiguous block size */
732 		size_t cont_size = gpt_fill_lookup[i].size;
733 
734 		if (GPT_REGION_IS_CONT(length, first, cont_size)) {
735 
736 			/* Generate Contiguous descriptor */
737 			uint64_t l1_desc = GPT_L1_GPI_CONT_DESC(gpi,
738 						gpt_fill_lookup[i].desc);
739 
740 			/* Number of 128-bit L1 entries in block */
741 			unsigned int cnt;
742 
743 			switch (cont_size) {
744 			case SZ_512M:
745 				cnt = L1_QWORDS_512MB;
746 				break;
747 			case SZ_32M:
748 				cnt = L1_QWORDS_32MB;
749 				break;
750 			default:			/* SZ_2MB */
751 				cnt = L1_QWORDS_2MB;
752 			}
753 
754 			VERBOSE("GPT: Contiguous descriptor 0x%"PRIxPTR" %luMB\n",
755 				first, cont_size / SZ_1M);
756 
757 			/* Fill Contiguous descriptors */
758 			fill_desc(&l1[idx], l1_desc, cnt);
759 			first += cont_size;
760 			length -= cont_size;
761 
762 			if (length == 0UL) {
763 				break;
764 			}
765 		}
766 	}
767 
768 	return first;
769 }
770 
771 /* Build Granules descriptor with the same 'gpi' for every GPI entry */
772 static uint64_t build_l1_desc(unsigned int gpi)
773 {
774 	uint64_t l1_desc = (uint64_t)gpi | ((uint64_t)gpi << 4);
775 
776 	l1_desc |= (l1_desc << 8);
777 	l1_desc |= (l1_desc << 16);
778 	return (l1_desc | (l1_desc << 32));
779 }
780 
781 /*
782  * Helper function to fill out GPI entries from 'first' to 'last' granule
783  * address in a single L1 table with 'l1_desc' Granules descriptor.
784  *
785  * Parameters
786  *   l1			Pointer to L1 table to fill out
787  *   first		Address of first granule in range
788  *   last		Address of last granule in range (inclusive)
789  *   gpi		GPI set this range to
790  *
791  * Return
792  *   Address of next granule in range.
793  */
794 static uintptr_t fill_l1_gran_desc(uint64_t *l1, uintptr_t first,
795 				   uintptr_t last, unsigned int gpi)
796 {
797 	uint64_t gpi_mask;
798 	unsigned long i;
799 
800 	/* Generate Granules descriptor */
801 	uint64_t l1_desc = build_l1_desc(gpi);
802 
803 	/* Shift the mask if we're starting in the middle of an L1 entry */
804 	gpi_mask = ULONG_MAX << (GPT_L1_GPI_IDX(gpt_config.p, first) << 2);
805 
806 	/* Fill out each L1 entry for this region */
807 	for (i = GPT_L1_INDEX(first); i <= GPT_L1_INDEX(last); i++) {
808 
809 		/* Account for stopping in the middle of an L1 entry */
810 		if (i == GPT_L1_INDEX(last)) {
811 			gpi_mask &= (gpi_mask >> ((15U -
812 				    GPT_L1_GPI_IDX(gpt_config.p, last)) << 2));
813 		}
814 
815 		assert((l1[i] & gpi_mask) == (GPT_L1_ANY_DESC & gpi_mask));
816 
817 		/* Write GPI values */
818 		l1[i] = (l1[i] & ~gpi_mask) | (l1_desc & gpi_mask);
819 
820 		/* Reset mask */
821 		gpi_mask = ULONG_MAX;
822 	}
823 
824 	return last + GPT_PGS_ACTUAL_SIZE(gpt_config.p);
825 }
826 
827 /*
828  * Helper function to fill out GPI entries in a single L1 table.
829  * This function fills out an entire L1 table with either Contiguous
830  * or Granules descriptors depending on region length and alignment.
831  *
832  * Parameters
833  *   l1			Pointer to L1 table to fill out
834  *   first		Address of first granule in range
835  *   last		Address of last granule in range (inclusive)
836  *   gpi		GPI set this range to
837  */
838 static void fill_l1_tbl(uint64_t *l1, uintptr_t first, uintptr_t last,
839 			unsigned int gpi)
840 {
841 	assert(l1 != NULL);
842 	assert(first <= last);
843 	assert((first & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) == 0UL);
844 	assert((last & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) == 0UL);
845 	assert(GPT_L0_IDX(first) == GPT_L0_IDX(last));
846 
847 	while (first < last) {
848 		/* Region length */
849 		size_t length = last - first + GPT_PGS_ACTUAL_SIZE(gpt_config.p);
850 
851 		if (length < SZ_2M) {
852 			/*
853 			 * Fill with Granule descriptor in case of
854 			 * region length < 2MB.
855 			 */
856 			first = fill_l1_gran_desc(l1, first, last, gpi);
857 
858 		} else if ((first & (SZ_2M - UL(1))) == UL(0)) {
859 			/*
860 			 * For region length >= 2MB and at least 2MB aligned
861 			 * call to fill_l1_cont_desc will iterate through
862 			 * all block sizes (512MB, 32MB and 2MB) supported and
863 			 * fill corresponding Contiguous descriptors.
864 			 */
865 			first = fill_l1_cont_desc(l1, first, length, gpi);
866 		} else {
867 			/*
868 			 * For not aligned region >= 2MB fill with Granules
869 			 * descriptors up to the next 2MB aligned address.
870 			 */
871 			uintptr_t new_last = ALIGN_2MB(first + SZ_2M) -
872 					GPT_PGS_ACTUAL_SIZE(gpt_config.p);
873 
874 			first = fill_l1_gran_desc(l1, first, new_last, gpi);
875 		}
876 	}
877 
878 	assert(first == (last + GPT_PGS_ACTUAL_SIZE(gpt_config.p)));
879 }
880 
881 /*
882  * This function finds the next available unused L1 table and initializes all
883  * granules descriptor entries to GPI_ANY. This ensures that there are no chunks
884  * of GPI_NO_ACCESS (0b0000) memory floating around in the system in the
885  * event that a PAS region stops midway through an L1 table, thus guaranteeing
886  * that all memory not explicitly assigned is GPI_ANY. This function does not
887  * check for overflow conditions, that should be done by the caller.
888  *
889  * Return
890  *   Pointer to the next available L1 table.
891  */
892 static uint64_t *get_new_l1_tbl(void)
893 {
894 	/* Retrieve the next L1 table */
895 	uint64_t *l1 = (uint64_t *)gpt_l1_tbl;
896 
897 	/* Increment L1 GPT address */
898 	gpt_l1_tbl += GPT_L1_TABLE_SIZE(gpt_config.p);
899 
900 	/* Initialize all GPIs to GPT_GPI_ANY */
901 	for (unsigned int i = 0U; i < GPT_L1_ENTRY_COUNT(gpt_config.p); i++) {
902 		l1[i] = GPT_L1_ANY_DESC;
903 	}
904 
905 	return l1;
906 }
907 
908 /*
909  * When L1 tables are needed, this function creates the necessary L0 table
910  * descriptors and fills out the L1 table entries according to the supplied
911  * PAS range.
912  *
913  * Parameters
914  *   *pas		Pointer to the structure defining the PAS region.
915  */
916 static void generate_l0_tbl_desc(pas_region_t *pas)
917 {
918 	uintptr_t end_pa;
919 	uintptr_t cur_pa;
920 	uintptr_t last_gran_pa;
921 	uint64_t *l0_gpt_base;
922 	uint64_t *l1_gpt_arr;
923 	unsigned int l0_idx, gpi;
924 
925 	assert(gpt_config.plat_gpt_l0_base != 0U);
926 	assert(pas != NULL);
927 
928 	/*
929 	 * Checking of PAS parameters has already been done in
930 	 * validate_pas_mappings so no need to check the same things again.
931 	 */
932 	end_pa = pas->base_pa + pas->size;
933 	l0_gpt_base = (uint64_t *)gpt_config.plat_gpt_l0_base;
934 
935 	/* We start working from the granule at base PA */
936 	cur_pa = pas->base_pa;
937 
938 	/* Get GPI */
939 	gpi = GPT_PAS_ATTR_GPI(pas->attrs);
940 
941 	/* Iterate over each L0 region in this memory range */
942 	for (l0_idx = (unsigned int)GPT_L0_IDX(pas->base_pa);
943 	     l0_idx <= (unsigned int)GPT_L0_IDX(end_pa - 1UL);
944 	     l0_idx++) {
945 		/*
946 		 * See if the L0 entry is already a table descriptor or if we
947 		 * need to create one.
948 		 */
949 		if (GPT_L0_TYPE(l0_gpt_base[l0_idx]) == GPT_L0_TYPE_TBL_DESC) {
950 			/* Get the L1 array from the L0 entry */
951 			l1_gpt_arr = GPT_L0_TBLD_ADDR(l0_gpt_base[l0_idx]);
952 		} else {
953 			/* Get a new L1 table from the L1 memory space */
954 			l1_gpt_arr = get_new_l1_tbl();
955 
956 			/* Fill out the L0 descriptor and flush it */
957 			l0_gpt_base[l0_idx] = GPT_L0_TBL_DESC(l1_gpt_arr);
958 		}
959 
960 		VERBOSE("GPT: L0 entry (TABLE) index %u [%p] ==> L1 Addr %p (0x%"PRIx64")\n",
961 			l0_idx, &l0_gpt_base[l0_idx], l1_gpt_arr, l0_gpt_base[l0_idx]);
962 
963 		/*
964 		 * Determine the PA of the last granule in this L0 descriptor.
965 		 */
966 		last_gran_pa = get_l1_end_pa(cur_pa, end_pa) -
967 			       GPT_PGS_ACTUAL_SIZE(gpt_config.p);
968 
969 		/*
970 		 * Fill up L1 GPT entries between these two addresses. This
971 		 * function needs the addresses of the first granule and last
972 		 * granule in the range.
973 		 */
974 		fill_l1_tbl(l1_gpt_arr, cur_pa, last_gran_pa, gpi);
975 
976 		/* Advance cur_pa to first granule in next L0 region */
977 		cur_pa = get_l1_end_pa(cur_pa, end_pa);
978 	}
979 }
980 
981 /*
982  * This function flushes a range of L0 descriptors used by a given PAS region
983  * array. There is a chance that some unmodified L0 descriptors would be flushed
984  * in the case that there are "holes" in an array of PAS regions but overall
985  * this should be faster than individually flushing each modified L0 descriptor
986  * as they are created.
987  *
988  * Parameters
989  *   *pas		Pointer to an array of PAS regions.
990  *   pas_count		Number of entries in the PAS array.
991  */
992 static void flush_l0_for_pas_array(pas_region_t *pas, unsigned int pas_count)
993 {
994 	unsigned long idx;
995 	unsigned long start_idx;
996 	unsigned long end_idx;
997 	uint64_t *l0 = (uint64_t *)gpt_config.plat_gpt_l0_base;
998 
999 	assert(pas != NULL);
1000 	assert(pas_count != 0U);
1001 
1002 	/* Initial start and end values */
1003 	start_idx = GPT_L0_IDX(pas[0].base_pa);
1004 	end_idx = GPT_L0_IDX(pas[0].base_pa + pas[0].size - 1UL);
1005 
1006 	/* Find lowest and highest L0 indices used in this PAS array */
1007 	for (idx = 1UL; idx < pas_count; idx++) {
1008 		if (GPT_L0_IDX(pas[idx].base_pa) < start_idx) {
1009 			start_idx = GPT_L0_IDX(pas[idx].base_pa);
1010 		}
1011 		if (GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1UL) > end_idx) {
1012 			end_idx = GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1UL);
1013 		}
1014 	}
1015 
1016 	/*
1017 	 * Flush all covered L0 descriptors, add 1 because we need to include
1018 	 * the end index value.
1019 	 */
1020 	flush_dcache_range((uintptr_t)&l0[start_idx],
1021 			   ((end_idx + 1UL) - start_idx) * sizeof(uint64_t));
1022 }
1023 
1024 /*
1025  * Public API to enable granule protection checks once the tables have all been
1026  * initialized. This function is called at first initialization and then again
1027  * later during warm boots of CPU cores.
1028  *
1029  * Return
1030  *   Negative Linux error code in the event of a failure, 0 for success.
1031  */
1032 int gpt_enable(void)
1033 {
1034 	u_register_t gpccr_el3;
1035 
1036 	/*
1037 	 * Granule tables must be initialised before enabling
1038 	 * granule protection.
1039 	 */
1040 	if (gpt_config.plat_gpt_l0_base == 0UL) {
1041 		ERROR("GPT: Tables have not been initialized!\n");
1042 		return -EPERM;
1043 	}
1044 
1045 	/* Write the base address of the L0 tables into GPTBR */
1046 	write_gptbr_el3(((gpt_config.plat_gpt_l0_base >> GPTBR_BADDR_VAL_SHIFT)
1047 			>> GPTBR_BADDR_SHIFT) & GPTBR_BADDR_MASK);
1048 
1049 	/* GPCCR_EL3.PPS */
1050 	gpccr_el3 = SET_GPCCR_PPS(gpt_config.pps);
1051 
1052 	/* GPCCR_EL3.PGS */
1053 	gpccr_el3 |= SET_GPCCR_PGS(gpt_config.pgs);
1054 
1055 	/*
1056 	 * Since EL3 maps the L1 region as Inner shareable, use the same
1057 	 * shareability attribute for GPC as well so that
1058 	 * GPC fetches are visible to PEs
1059 	 */
1060 	gpccr_el3 |= SET_GPCCR_SH(GPCCR_SH_IS);
1061 
1062 	/* Outer and Inner cacheability set to Normal memory, WB, RA, WA */
1063 	gpccr_el3 |= SET_GPCCR_ORGN(GPCCR_ORGN_WB_RA_WA);
1064 	gpccr_el3 |= SET_GPCCR_IRGN(GPCCR_IRGN_WB_RA_WA);
1065 
1066 	/* Prepopulate GPCCR_EL3 but don't enable GPC yet */
1067 	write_gpccr_el3(gpccr_el3);
1068 	isb();
1069 
1070 	/* Invalidate any stale TLB entries and any cached register fields */
1071 	tlbipaallos();
1072 	dsb();
1073 	isb();
1074 
1075 	/* Enable GPT */
1076 	gpccr_el3 |= GPCCR_GPC_BIT;
1077 
1078 	/* TODO: Configure GPCCR_EL3_GPCP for Fault control */
1079 	write_gpccr_el3(gpccr_el3);
1080 	isb();
1081 	tlbipaallos();
1082 	dsb();
1083 	isb();
1084 
1085 	return 0;
1086 }
1087 
1088 /*
1089  * Public API to disable granule protection checks.
1090  */
1091 void gpt_disable(void)
1092 {
1093 	u_register_t gpccr_el3 = read_gpccr_el3();
1094 
1095 	write_gpccr_el3(gpccr_el3 & ~GPCCR_GPC_BIT);
1096 	dsbsy();
1097 	isb();
1098 }
1099 
1100 /*
1101  * Public API that initializes the entire protected space to GPT_GPI_ANY using
1102  * the L0 tables (block descriptors). Ideally, this function is invoked prior
1103  * to DDR discovery and initialization. The MMU must be initialized before
1104  * calling this function.
1105  *
1106  * Parameters
1107  *   pps		PPS value to use for table generation
1108  *   l0_mem_base	Base address of L0 tables in memory.
1109  *   l0_mem_size	Total size of memory available for L0 tables.
1110  *
1111  * Return
1112  *   Negative Linux error code in the event of a failure, 0 for success.
1113  */
1114 int gpt_init_l0_tables(gpccr_pps_e pps, uintptr_t l0_mem_base,
1115 		       size_t l0_mem_size)
1116 {
1117 	uint64_t gpt_desc;
1118 	size_t locks_size = 0;
1119 	__unused bitlock_t *bit_locks;
1120 	int ret;
1121 
1122 	/* Ensure that MMU and Data caches are enabled */
1123 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
1124 
1125 	/* Validate other parameters */
1126 	ret = validate_l0_params(pps, l0_mem_base, l0_mem_size);
1127 	if (ret != 0) {
1128 		return ret;
1129 	}
1130 
1131 	/* Create the descriptor to initialize L0 entries with */
1132 	gpt_desc = GPT_L0_BLK_DESC(GPT_GPI_ANY);
1133 
1134 	/* Iterate through all L0 entries */
1135 	for (unsigned int i = 0U; i < GPT_L0_REGION_COUNT(gpt_config.t); i++) {
1136 		((uint64_t *)l0_mem_base)[i] = gpt_desc;
1137 	}
1138 
1139 #if (RME_GPT_BITLOCK_BLOCK != 0)
1140 	/* Initialise bitlocks at the end of L0 table */
1141 	bit_locks = (bitlock_t *)(l0_mem_base +
1142 					GPT_L0_TABLE_SIZE(gpt_config.t));
1143 
1144 	/* Size of bitlocks in bytes */
1145 	locks_size = GPT_PPS_ACTUAL_SIZE(gpt_config.t) /
1146 					(RME_GPT_BITLOCK_BLOCK * SZ_512M * 8U);
1147 
1148 	/*
1149 	 * If protected space size is less than the size covered
1150 	 * by 'bitlock' structure, initialise a single bitlock.
1151 	 */
1152 	if (locks_size < LOCK_SIZE) {
1153 		locks_size = LOCK_SIZE;
1154 	}
1155 
1156 	for (size_t i = 0UL; i < (locks_size/LOCK_SIZE); i++) {
1157 		bit_locks[i].lock = 0U;
1158 	}
1159 #endif
1160 
1161 	/* Flush updated L0 tables and bitlocks to memory */
1162 	flush_dcache_range((uintptr_t)l0_mem_base,
1163 				GPT_L0_TABLE_SIZE(gpt_config.t) + locks_size);
1164 
1165 	/* Stash the L0 base address once initial setup is complete */
1166 	gpt_config.plat_gpt_l0_base = l0_mem_base;
1167 
1168 	return 0;
1169 }
1170 
1171 /*
1172  * Public API that carves out PAS regions from the L0 tables and builds any L1
1173  * tables that are needed. This function ideally is run after DDR discovery and
1174  * initialization. The L0 tables must have already been initialized to GPI_ANY
1175  * when this function is called.
1176  *
1177  * This function can be called multiple times with different L1 memory ranges
1178  * and PAS regions if it is desirable to place L1 tables in different locations
1179  * in memory. (ex: you have multiple DDR banks and want to place the L1 tables
1180  * in the DDR bank that they control).
1181  *
1182  * Parameters
1183  *   pgs		PGS value to use for table generation.
1184  *   l1_mem_base	Base address of memory used for L1 tables.
1185  *   l1_mem_size	Total size of memory available for L1 tables.
1186  *   *pas_regions	Pointer to PAS regions structure array.
1187  *   pas_count		Total number of PAS regions.
1188  *
1189  * Return
1190  *   Negative Linux error code in the event of a failure, 0 for success.
1191  */
1192 int gpt_init_pas_l1_tables(gpccr_pgs_e pgs, uintptr_t l1_mem_base,
1193 			   size_t l1_mem_size, pas_region_t *pas_regions,
1194 			   unsigned int pas_count)
1195 {
1196 	int l1_gpt_cnt, ret;
1197 
1198 	/* Ensure that MMU and Data caches are enabled */
1199 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
1200 
1201 	/* PGS is needed for validate_pas_mappings so check it now */
1202 	if (pgs > GPT_PGS_MAX) {
1203 		ERROR("GPT: Invalid PGS: 0x%x\n", pgs);
1204 		return -EINVAL;
1205 	}
1206 	gpt_config.pgs = pgs;
1207 	gpt_config.p = gpt_p_lookup[pgs];
1208 
1209 	/* Make sure L0 tables have been initialized */
1210 	if (gpt_config.plat_gpt_l0_base == 0U) {
1211 		ERROR("GPT: L0 tables must be initialized first!\n");
1212 		return -EPERM;
1213 	}
1214 
1215 	/* Check if L1 GPTs are required and how many */
1216 	l1_gpt_cnt = validate_pas_mappings(pas_regions, pas_count);
1217 	if (l1_gpt_cnt < 0) {
1218 		return l1_gpt_cnt;
1219 	}
1220 
1221 	VERBOSE("GPT: %i L1 GPTs requested\n", l1_gpt_cnt);
1222 
1223 	/* If L1 tables are needed then validate the L1 parameters */
1224 	if (l1_gpt_cnt > 0) {
1225 		ret = validate_l1_params(l1_mem_base, l1_mem_size,
1226 					(unsigned int)l1_gpt_cnt);
1227 		if (ret != 0) {
1228 			return ret;
1229 		}
1230 
1231 		/* Set up parameters for L1 table generation */
1232 		gpt_l1_tbl = l1_mem_base;
1233 	}
1234 
1235 	/* Number of L1 entries in 2MB depends on GPCCR_EL3.PGS value */
1236 	gpt_l1_cnt_2mb = (unsigned int)GPT_L1_ENTRY_COUNT_2MB(gpt_config.p);
1237 
1238 	/* Mask for the L1 index field */
1239 	gpt_l1_index_mask = GPT_L1_IDX_MASK(gpt_config.p);
1240 
1241 	INFO("GPT: Boot Configuration\n");
1242 	INFO("  PPS/T:     0x%x/%u\n", gpt_config.pps, gpt_config.t);
1243 	INFO("  PGS/P:     0x%x/%u\n", gpt_config.pgs, gpt_config.p);
1244 	INFO("  L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL);
1245 	INFO("  PAS count: %u\n", pas_count);
1246 	INFO("  L0 base:   0x%"PRIxPTR"\n", gpt_config.plat_gpt_l0_base);
1247 
1248 	/* Generate the tables in memory */
1249 	for (unsigned int idx = 0U; idx < pas_count; idx++) {
1250 		VERBOSE("GPT: PAS[%u]: base 0x%"PRIxPTR"\tsize 0x%lx\tGPI 0x%x\ttype 0x%x\n",
1251 			idx, pas_regions[idx].base_pa, pas_regions[idx].size,
1252 			GPT_PAS_ATTR_GPI(pas_regions[idx].attrs),
1253 			GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs));
1254 
1255 		/* Check if a block or table descriptor is required */
1256 		if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
1257 		    GPT_PAS_ATTR_MAP_TYPE_BLOCK) {
1258 			generate_l0_blk_desc(&pas_regions[idx]);
1259 
1260 		} else {
1261 			generate_l0_tbl_desc(&pas_regions[idx]);
1262 		}
1263 	}
1264 
1265 	/* Flush modified L0 tables */
1266 	flush_l0_for_pas_array(pas_regions, pas_count);
1267 
1268 	/* Flush L1 tables if needed */
1269 	if (l1_gpt_cnt > 0) {
1270 		flush_dcache_range(l1_mem_base,
1271 				   GPT_L1_TABLE_SIZE(gpt_config.p) *
1272 				   (size_t)l1_gpt_cnt);
1273 	}
1274 
1275 	/* Make sure that all the entries are written to the memory */
1276 	dsbishst();
1277 	tlbipaallos();
1278 	dsb();
1279 	isb();
1280 
1281 	return 0;
1282 }
1283 
1284 /*
1285  * Public API to initialize the runtime gpt_config structure based on the values
1286  * present in the GPTBR_EL3 and GPCCR_EL3 registers. GPT initialization
1287  * typically happens in a bootloader stage prior to setting up the EL3 runtime
1288  * environment for the granule transition service so this function detects the
1289  * initialization from a previous stage. Granule protection checks must be
1290  * enabled already or this function will return an error.
1291  *
1292  * Return
1293  *   Negative Linux error code in the event of a failure, 0 for success.
1294  */
1295 int gpt_runtime_init(void)
1296 {
1297 	u_register_t reg;
1298 
1299 	/* Ensure that MMU and Data caches are enabled */
1300 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
1301 
1302 	/* Ensure GPC are already enabled */
1303 	if ((read_gpccr_el3() & GPCCR_GPC_BIT) == 0U) {
1304 		ERROR("GPT: Granule protection checks are not enabled!\n");
1305 		return -EPERM;
1306 	}
1307 
1308 	/*
1309 	 * Read the L0 table address from GPTBR, we don't need the L1 base
1310 	 * address since those are included in the L0 tables as needed.
1311 	 */
1312 	reg = read_gptbr_el3();
1313 	gpt_config.plat_gpt_l0_base = ((reg >> GPTBR_BADDR_SHIFT) &
1314 				      GPTBR_BADDR_MASK) <<
1315 				      GPTBR_BADDR_VAL_SHIFT;
1316 
1317 	/* Read GPCCR to get PGS and PPS values */
1318 	reg = read_gpccr_el3();
1319 	gpt_config.pps = (reg >> GPCCR_PPS_SHIFT) & GPCCR_PPS_MASK;
1320 	gpt_config.t = gpt_t_lookup[gpt_config.pps];
1321 	gpt_config.pgs = (reg >> GPCCR_PGS_SHIFT) & GPCCR_PGS_MASK;
1322 	gpt_config.p = gpt_p_lookup[gpt_config.pgs];
1323 
1324 	/* Number of L1 entries in 2MB depends on GPCCR_EL3.PGS value */
1325 	gpt_l1_cnt_2mb = (unsigned int)GPT_L1_ENTRY_COUNT_2MB(gpt_config.p);
1326 
1327 	/* Mask for the L1 index field */
1328 	gpt_l1_index_mask = GPT_L1_IDX_MASK(gpt_config.p);
1329 
1330 #if (RME_GPT_BITLOCK_BLOCK != 0)
1331 	/* Bitlocks at the end of L0 table */
1332 	gpt_bitlock_base = (bitlock_t *)(gpt_config.plat_gpt_l0_base +
1333 					GPT_L0_TABLE_SIZE(gpt_config.t));
1334 #endif
1335 	VERBOSE("GPT: Runtime Configuration\n");
1336 	VERBOSE("  PPS/T:     0x%x/%u\n", gpt_config.pps, gpt_config.t);
1337 	VERBOSE("  PGS/P:     0x%x/%u\n", gpt_config.pgs, gpt_config.p);
1338 	VERBOSE("  L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL);
1339 	VERBOSE("  L0 base:   0x%"PRIxPTR"\n", gpt_config.plat_gpt_l0_base);
1340 #if (RME_GPT_BITLOCK_BLOCK != 0)
1341 	VERBOSE("  Bitlocks:  0x%"PRIxPTR"\n", (uintptr_t)gpt_bitlock_base);
1342 #endif
1343 	return 0;
1344 }
1345 
1346 /*
1347  * A helper to write the value (target_pas << gpi_shift) to the index of
1348  * the gpt_l1_addr.
1349  */
1350 static inline void write_gpt(uint64_t *gpt_l1_desc, uint64_t *gpt_l1_addr,
1351 			     unsigned int gpi_shift, unsigned int idx,
1352 			     unsigned int target_pas)
1353 {
1354 	*gpt_l1_desc &= ~(GPT_L1_GRAN_DESC_GPI_MASK << gpi_shift);
1355 	*gpt_l1_desc |= ((uint64_t)target_pas << gpi_shift);
1356 	gpt_l1_addr[idx] = *gpt_l1_desc;
1357 
1358 	dsboshst();
1359 }
1360 
1361 /*
1362  * Helper to retrieve the gpt_l1_* information from the base address
1363  * returned in gpi_info.
1364  */
1365 static int get_gpi_params(uint64_t base, gpi_info_t *gpi_info)
1366 {
1367 	uint64_t gpt_l0_desc, *gpt_l0_base;
1368 	__unused unsigned int block_idx;
1369 
1370 	gpt_l0_base = (uint64_t *)gpt_config.plat_gpt_l0_base;
1371 	gpt_l0_desc = gpt_l0_base[GPT_L0_IDX(base)];
1372 	if (GPT_L0_TYPE(gpt_l0_desc) != GPT_L0_TYPE_TBL_DESC) {
1373 		VERBOSE("GPT: Granule is not covered by a table descriptor!\n");
1374 		VERBOSE("      Base=0x%"PRIx64"\n", base);
1375 		return -EINVAL;
1376 	}
1377 
1378 	/* Get the table index and GPI shift from PA */
1379 	gpi_info->gpt_l1_addr = GPT_L0_TBLD_ADDR(gpt_l0_desc);
1380 	gpi_info->idx = (unsigned int)GPT_L1_INDEX(base);
1381 	gpi_info->gpi_shift = GPT_L1_GPI_IDX(gpt_config.p, base) << 2;
1382 
1383 #if (RME_GPT_BITLOCK_BLOCK != 0)
1384 	/* Block index */
1385 	block_idx = (unsigned int)(base / (RME_GPT_BITLOCK_BLOCK * SZ_512M));
1386 
1387 	/* Bitlock address and mask */
1388 	gpi_info->lock = &gpt_bitlock_base[block_idx / LOCK_BITS];
1389 	gpi_info->mask = 1U << (block_idx & (LOCK_BITS - 1U));
1390 #endif
1391 	return 0;
1392 }
1393 
1394 /*
1395  * Helper to retrieve the gpt_l1_desc and GPI information from gpi_info.
1396  * This function is called with bitlock or spinlock acquired.
1397  */
1398 static void read_gpi(gpi_info_t *gpi_info)
1399 {
1400 	gpi_info->gpt_l1_desc = (gpi_info->gpt_l1_addr)[gpi_info->idx];
1401 
1402 	if ((gpi_info->gpt_l1_desc & GPT_L1_TYPE_CONT_DESC_MASK) ==
1403 				 GPT_L1_TYPE_CONT_DESC) {
1404 		/* Read GPI from Contiguous descriptor */
1405 		gpi_info->gpi = (unsigned int)GPT_L1_CONT_GPI(gpi_info->gpt_l1_desc);
1406 	} else {
1407 		/* Read GPI from Granules descriptor */
1408 		gpi_info->gpi = (unsigned int)((gpi_info->gpt_l1_desc >> gpi_info->gpi_shift) &
1409 						GPT_L1_GRAN_DESC_GPI_MASK);
1410 	}
1411 }
1412 
1413 static void flush_page_to_popa(uintptr_t addr)
1414 {
1415 	size_t size = GPT_PGS_ACTUAL_SIZE(gpt_config.p);
1416 
1417 	if (is_feat_mte2_supported()) {
1418 		flush_dcache_to_popa_range_mte2(addr, size);
1419 	} else {
1420 		flush_dcache_to_popa_range(addr, size);
1421 	}
1422 }
1423 
1424 /*
1425  * Helper function to check if all L1 entries in 2MB block have
1426  * the same Granules descriptor value.
1427  *
1428  * Parameters
1429  *   base		Base address of the region to be checked
1430  *   gpi_info		Pointer to 'gpt_config_t' structure
1431  *   l1_desc		GPT Granules descriptor with all entries
1432  *			set to the same GPI.
1433  *
1434  * Return
1435  *   true if L1 all entries have the same descriptor value, false otherwise.
1436  */
1437 __unused static bool check_fuse_2mb(uint64_t base, const gpi_info_t *gpi_info,
1438 					uint64_t l1_desc)
1439 {
1440 	/* Last L1 entry index in 2MB block */
1441 	unsigned int long idx = GPT_L1_INDEX(ALIGN_2MB(base)) +
1442 						gpt_l1_cnt_2mb - 1UL;
1443 
1444 	/* Number of L1 entries in 2MB block */
1445 	unsigned int cnt = gpt_l1_cnt_2mb;
1446 
1447 	/*
1448 	 * Start check from the last L1 entry and continue until the first
1449 	 * non-matching to the passed Granules descriptor value is found.
1450 	 */
1451 	while (cnt-- != 0U) {
1452 		if (gpi_info->gpt_l1_addr[idx--] != l1_desc) {
1453 			/* Non-matching L1 entry found */
1454 			return false;
1455 		}
1456 	}
1457 
1458 	return true;
1459 }
1460 
1461 __unused static void fuse_2mb(uint64_t base, const gpi_info_t *gpi_info,
1462 				uint64_t l1_desc)
1463 {
1464 	/* L1 entry index of the start of 2MB block */
1465 	unsigned long idx_2 = GPT_L1_INDEX(ALIGN_2MB(base));
1466 
1467 	/* 2MB Contiguous descriptor */
1468 	uint64_t l1_cont_desc = GPT_L1_CONT_DESC(l1_desc, 2MB);
1469 
1470 	VERBOSE("GPT: %s(0x%"PRIxPTR" 0x%"PRIx64")\n", __func__, base, l1_desc);
1471 
1472 	fill_desc(&gpi_info->gpt_l1_addr[idx_2], l1_cont_desc, L1_QWORDS_2MB);
1473 }
1474 
1475 /*
1476  * Helper function to check if all 1st L1 entries of 2MB blocks
1477  * in 32MB have the same 2MB Contiguous descriptor value.
1478  *
1479  * Parameters
1480  *   base		Base address of the region to be checked
1481  *   gpi_info		Pointer to 'gpt_config_t' structure
1482  *   l1_desc		GPT Granules descriptor.
1483  *
1484  * Return
1485  *   true if all L1 entries have the same descriptor value, false otherwise.
1486  */
1487 __unused static bool check_fuse_32mb(uint64_t base, const gpi_info_t *gpi_info,
1488 					uint64_t l1_desc)
1489 {
1490 	/* The 1st L1 entry index of the last 2MB block in 32MB */
1491 	unsigned long idx = GPT_L1_INDEX(ALIGN_32MB(base)) +
1492 					(15UL * gpt_l1_cnt_2mb);
1493 
1494 	/* 2MB Contiguous descriptor */
1495 	uint64_t l1_cont_desc = GPT_L1_CONT_DESC(l1_desc, 2MB);
1496 
1497 	/* Number of 2MB blocks in 32MB */
1498 	unsigned int cnt = 16U;
1499 
1500 	/* Set the first L1 entry to 2MB Contiguous descriptor */
1501 	gpi_info->gpt_l1_addr[GPT_L1_INDEX(ALIGN_2MB(base))] = l1_cont_desc;
1502 
1503 	/*
1504 	 * Start check from the 1st L1 entry of the last 2MB block and
1505 	 * continue until the first non-matching to 2MB Contiguous descriptor
1506 	 * value is found.
1507 	 */
1508 	while (cnt-- != 0U) {
1509 		if (gpi_info->gpt_l1_addr[idx] != l1_cont_desc) {
1510 			/* Non-matching L1 entry found */
1511 			return false;
1512 		}
1513 		idx -= gpt_l1_cnt_2mb;
1514 	}
1515 
1516 	return true;
1517 }
1518 
1519 __unused static void fuse_32mb(uint64_t base, const gpi_info_t *gpi_info,
1520 				uint64_t l1_desc)
1521 {
1522 	/* L1 entry index of the start of 32MB block */
1523 	unsigned long idx_32 = GPT_L1_INDEX(ALIGN_32MB(base));
1524 
1525 	/* 32MB Contiguous descriptor */
1526 	uint64_t l1_cont_desc = GPT_L1_CONT_DESC(l1_desc, 32MB);
1527 
1528 	VERBOSE("GPT: %s(0x%"PRIxPTR" 0x%"PRIx64")\n", __func__, base, l1_desc);
1529 
1530 	fill_desc(&gpi_info->gpt_l1_addr[idx_32], l1_cont_desc, L1_QWORDS_32MB);
1531 }
1532 
1533 /*
1534  * Helper function to check if all 1st L1 entries of 32MB blocks
1535  * in 512MB have the same 32MB Contiguous descriptor value.
1536  *
1537  * Parameters
1538  *   base		Base address of the region to be checked
1539  *   gpi_info		Pointer to 'gpt_config_t' structure
1540  *   l1_desc		GPT Granules descriptor.
1541  *
1542  * Return
1543  *   true if all L1 entries have the same descriptor value, false otherwise.
1544  */
1545 __unused static bool check_fuse_512mb(uint64_t base, const gpi_info_t *gpi_info,
1546 					uint64_t l1_desc)
1547 {
1548 	/* The 1st L1 entry index of the last 32MB block in 512MB */
1549 	unsigned long idx = GPT_L1_INDEX(ALIGN_512MB(base)) +
1550 					(15UL * 16UL * gpt_l1_cnt_2mb);
1551 
1552 	/* 32MB Contiguous descriptor */
1553 	uint64_t l1_cont_desc = GPT_L1_CONT_DESC(l1_desc, 32MB);
1554 
1555 	/* Number of 32MB blocks in 512MB */
1556 	unsigned int cnt = 16U;
1557 
1558 	/* Set the first L1 entry to 2MB Contiguous descriptor */
1559 	gpi_info->gpt_l1_addr[GPT_L1_INDEX(ALIGN_32MB(base))] = l1_cont_desc;
1560 
1561 	/*
1562 	 * Start check from the 1st L1 entry of the last 32MB block and
1563 	 * continue until the first non-matching to 32MB Contiguous descriptor
1564 	 * value is found.
1565 	 */
1566 	while (cnt-- != 0U) {
1567 		if (gpi_info->gpt_l1_addr[idx] != l1_cont_desc) {
1568 			/* Non-matching L1 entry found */
1569 			return false;
1570 		}
1571 		idx -= 16UL * gpt_l1_cnt_2mb;
1572 	}
1573 
1574 	return true;
1575 }
1576 
1577 __unused static void fuse_512mb(uint64_t base, const gpi_info_t *gpi_info,
1578 				uint64_t l1_desc)
1579 {
1580 	/* L1 entry index of the start of 512MB block */
1581 	unsigned long idx_512 = GPT_L1_INDEX(ALIGN_512MB(base));
1582 
1583 	/* 512MB Contiguous descriptor */
1584 	uint64_t l1_cont_desc = GPT_L1_CONT_DESC(l1_desc, 512MB);
1585 
1586 	VERBOSE("GPT: %s(0x%"PRIxPTR" 0x%"PRIx64")\n", __func__, base, l1_desc);
1587 
1588 	fill_desc(&gpi_info->gpt_l1_addr[idx_512], l1_cont_desc, L1_QWORDS_512MB);
1589 }
1590 
1591 /*
1592  * Helper function to convert GPI entries in a single L1 table
1593  * from Granules to Contiguous descriptor.
1594  *
1595  * Parameters
1596  *   base		Base address of the region to be written
1597  *   gpi_info		Pointer to 'gpt_config_t' structure
1598  *   l1_desc		GPT Granules descriptor with all entries
1599  *			set to the same GPI.
1600  */
1601 __unused static void fuse_block(uint64_t base, const gpi_info_t *gpi_info,
1602 				uint64_t l1_desc)
1603 {
1604 	/* Start with check for 2MB block */
1605 	if (!check_fuse_2mb(base, gpi_info, l1_desc)) {
1606 		/* Check for 2MB fusing failed */
1607 		return;
1608 	}
1609 
1610 #if (RME_GPT_MAX_BLOCK == 2)
1611 	fuse_2mb(base, gpi_info, l1_desc);
1612 #else
1613 	/* Check for 32MB block */
1614 	if (!check_fuse_32mb(base, gpi_info, l1_desc)) {
1615 		/* Check for 32MB fusing failed, fuse to 2MB */
1616 		fuse_2mb(base, gpi_info, l1_desc);
1617 		return;
1618 	}
1619 
1620 #if (RME_GPT_MAX_BLOCK == 32)
1621 	fuse_32mb(base, gpi_info, l1_desc);
1622 #else
1623 	/* Check for 512MB block */
1624 	if (!check_fuse_512mb(base, gpi_info, l1_desc)) {
1625 		/* Check for 512MB fusing failed, fuse to 32MB */
1626 		fuse_32mb(base, gpi_info, l1_desc);
1627 		return;
1628 	}
1629 
1630 	/* Fuse to 512MB */
1631 	fuse_512mb(base, gpi_info, l1_desc);
1632 
1633 #endif	/* RME_GPT_MAX_BLOCK == 32 */
1634 #endif	/* RME_GPT_MAX_BLOCK == 2 */
1635 }
1636 
1637 /*
1638  * Helper function to convert GPI entries in a single L1 table
1639  * from Contiguous to Granules descriptor. This function updates
1640  * descriptor to Granules in passed 'gpt_config_t' structure as
1641  * the result of shuttering.
1642  *
1643  * Parameters
1644  *   base		Base address of the region to be written
1645  *   gpi_info		Pointer to 'gpt_config_t' structure
1646  *   l1_desc		GPT Granules descriptor set this range to.
1647  */
1648 __unused static void shatter_block(uint64_t base, gpi_info_t *gpi_info,
1649 				   uint64_t l1_desc)
1650 {
1651 	/* Look-up table for 2MB, 32MB and 512MB locks shattering */
1652 	static const gpt_shatter_func gpt_shatter_lookup[] = {
1653 		shatter_2mb,
1654 		shatter_32mb,
1655 		shatter_512mb
1656 	};
1657 
1658 	/* Look-up table for invalidation TLBs for 2MB, 32MB and 512MB blocks */
1659 	static const gpt_tlbi_lookup_t tlbi_lookup[] = {
1660 		{ tlbirpalos_2m, ~(SZ_2M - 1UL) },
1661 		{ tlbirpalos_32m, ~(SZ_32M - 1UL) },
1662 		{ tlbirpalos_512m, ~(SZ_512M - 1UL) }
1663 	};
1664 
1665 	/* Get shattering level from Contig field of Contiguous descriptor */
1666 	unsigned long level = GPT_L1_CONT_CONTIG(gpi_info->gpt_l1_desc) - 1UL;
1667 
1668 	/* Shatter contiguous block */
1669 	gpt_shatter_lookup[level](base, gpi_info, l1_desc);
1670 
1671 	tlbi_lookup[level].function(base & tlbi_lookup[level].mask);
1672 	dsbosh();
1673 
1674 	/*
1675 	 * Update 'gpt_config_t' structure's descriptor to Granules to reflect
1676 	 * the shattered GPI back to caller.
1677 	 */
1678 	gpi_info->gpt_l1_desc = l1_desc;
1679 }
1680 
1681 /*
1682  * This function is the granule transition delegate service. When a granule
1683  * transition request occurs it is routed to this function to have the request,
1684  * if valid, fulfilled following A1.1.1 Delegate of RME supplement.
1685  *
1686  * TODO: implement support for transitioning multiple granules at once.
1687  *
1688  * Parameters
1689  *   base		Base address of the region to transition, must be
1690  *			aligned to granule size.
1691  *   size		Size of region to transition, must be aligned to granule
1692  *			size.
1693  *   src_sec_state	Security state of the caller.
1694  *
1695  * Return
1696  *   Negative Linux error code in the event of a failure, 0 for success.
1697  */
1698 int gpt_delegate_pas(uint64_t base, size_t size, unsigned int src_sec_state)
1699 {
1700 	gpi_info_t gpi_info;
1701 	uint64_t nse, __unused l1_desc;
1702 	unsigned int target_pas;
1703 	int res;
1704 
1705 	/* Ensure that the tables have been set up before taking requests */
1706 	assert(gpt_config.plat_gpt_l0_base != 0UL);
1707 
1708 	/* Ensure that caches are enabled */
1709 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0UL);
1710 
1711 	/* See if this is a single or a range of granule transition */
1712 	if (size != GPT_PGS_ACTUAL_SIZE(gpt_config.p)) {
1713 		return -EINVAL;
1714 	}
1715 
1716 	/* Check that base and size are valid */
1717 	if ((ULONG_MAX - base) < size) {
1718 		VERBOSE("GPT: Transition request address overflow!\n");
1719 		VERBOSE("      Base=0x%"PRIx64"\n", base);
1720 		VERBOSE("      Size=0x%lx\n", size);
1721 		return -EINVAL;
1722 	}
1723 
1724 	/* Make sure base and size are valid */
1725 	if (((base & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) != 0UL) ||
1726 	    ((size & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) != 0UL) ||
1727 	    (size == 0UL) ||
1728 	    ((base + size) >= GPT_PPS_ACTUAL_SIZE(gpt_config.t))) {
1729 		VERBOSE("GPT: Invalid granule transition address range!\n");
1730 		VERBOSE("      Base=0x%"PRIx64"\n", base);
1731 		VERBOSE("      Size=0x%lx\n", size);
1732 		return -EINVAL;
1733 	}
1734 
1735 	/* Delegate request can only come from REALM or SECURE */
1736 	if ((src_sec_state != SMC_FROM_REALM) &&
1737 	    (src_sec_state != SMC_FROM_SECURE)) {
1738 		VERBOSE("GPT: Invalid caller security state 0x%x\n",
1739 							src_sec_state);
1740 		return -EINVAL;
1741 	}
1742 
1743 	if (src_sec_state == SMC_FROM_REALM) {
1744 		target_pas = GPT_GPI_REALM;
1745 		nse = (uint64_t)GPT_NSE_REALM << GPT_NSE_SHIFT;
1746 		l1_desc = GPT_L1_REALM_DESC;
1747 	} else {
1748 		target_pas = GPT_GPI_SECURE;
1749 		nse = (uint64_t)GPT_NSE_SECURE << GPT_NSE_SHIFT;
1750 		l1_desc = GPT_L1_SECURE_DESC;
1751 	}
1752 
1753 	res = get_gpi_params(base, &gpi_info);
1754 	if (res != 0) {
1755 		return res;
1756 	}
1757 
1758 	/*
1759 	 * Access to GPT is controlled by a lock to ensure that no more
1760 	 * than one CPU is allowed to make changes at any given time.
1761 	 */
1762 	GPT_LOCK;
1763 	read_gpi(&gpi_info);
1764 
1765 	/* Check that the current address is in NS state */
1766 	if (gpi_info.gpi != GPT_GPI_NS) {
1767 		VERBOSE("GPT: Only Granule in NS state can be delegated.\n");
1768 		VERBOSE("      Caller: %u, Current GPI: %u\n", src_sec_state,
1769 			gpi_info.gpi);
1770 		GPT_UNLOCK;
1771 		return -EPERM;
1772 	}
1773 
1774 #if (RME_GPT_MAX_BLOCK != 0)
1775 	/* Check for Contiguous descriptor */
1776 	if ((gpi_info.gpt_l1_desc & GPT_L1_TYPE_CONT_DESC_MASK) ==
1777 					GPT_L1_TYPE_CONT_DESC) {
1778 		shatter_block(base, &gpi_info, GPT_L1_NS_DESC);
1779 	}
1780 #endif
1781 	/*
1782 	 * In order to maintain mutual distrust between Realm and Secure
1783 	 * states, remove any data speculatively fetched into the target
1784 	 * physical address space.
1785 	 * Issue DC CIPAPA or DC_CIGDPAPA on implementations with FEAT_MTE2.
1786 	 */
1787 	flush_page_to_popa(base | nse);
1788 
1789 	write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
1790 		  gpi_info.gpi_shift, gpi_info.idx, target_pas);
1791 
1792 	/* Ensure that all agents observe the new configuration */
1793 	tlbi_page_dsbosh(base);
1794 
1795 	nse = (uint64_t)GPT_NSE_NS << GPT_NSE_SHIFT;
1796 
1797 	/* Ensure that the scrubbed data have made it past the PoPA */
1798 	flush_page_to_popa(base | nse);
1799 
1800 #if (RME_GPT_MAX_BLOCK != 0)
1801 	if (gpi_info.gpt_l1_desc == l1_desc) {
1802 		/* Try to fuse */
1803 		fuse_block(base, &gpi_info, l1_desc);
1804 	}
1805 #endif
1806 
1807 	/* Unlock the lock to GPT */
1808 	GPT_UNLOCK;
1809 
1810 	/*
1811 	 * The isb() will be done as part of context
1812 	 * synchronization when returning to lower EL.
1813 	 */
1814 	VERBOSE("GPT: Granule 0x%"PRIx64" GPI 0x%x->0x%x\n",
1815 		base, gpi_info.gpi, target_pas);
1816 
1817 	return 0;
1818 }
1819 
1820 /*
1821  * This function is the granule transition undelegate service. When a granule
1822  * transition request occurs it is routed to this function where the request is
1823  * validated then fulfilled if possible.
1824  *
1825  * TODO: implement support for transitioning multiple granules at once.
1826  *
1827  * Parameters
1828  *   base		Base address of the region to transition, must be
1829  *			aligned to granule size.
1830  *   size		Size of region to transition, must be aligned to granule
1831  *			size.
1832  *   src_sec_state	Security state of the caller.
1833  *
1834  * Return
1835  *    Negative Linux error code in the event of a failure, 0 for success.
1836  */
1837 int gpt_undelegate_pas(uint64_t base, size_t size, unsigned int src_sec_state)
1838 {
1839 	gpi_info_t gpi_info;
1840 	uint64_t nse, __unused l1_desc;
1841 	int res;
1842 
1843 	/* Ensure that the tables have been set up before taking requests */
1844 	assert(gpt_config.plat_gpt_l0_base != 0UL);
1845 
1846 	/* Ensure that MMU and caches are enabled */
1847 	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0UL);
1848 
1849 	/* See if this is a single or a range of granule transition */
1850 	if (size != GPT_PGS_ACTUAL_SIZE(gpt_config.p)) {
1851 		return -EINVAL;
1852 	}
1853 
1854 	/* Check that base and size are valid */
1855 	if ((ULONG_MAX - base) < size) {
1856 		VERBOSE("GPT: Transition request address overflow!\n");
1857 		VERBOSE("      Base=0x%"PRIx64"\n", base);
1858 		VERBOSE("      Size=0x%lx\n", size);
1859 		return -EINVAL;
1860 	}
1861 
1862 	/* Make sure base and size are valid */
1863 	if (((base & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) != 0UL) ||
1864 	    ((size & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1UL)) != 0UL) ||
1865 	    (size == 0UL) ||
1866 	    ((base + size) >= GPT_PPS_ACTUAL_SIZE(gpt_config.t))) {
1867 		VERBOSE("GPT: Invalid granule transition address range!\n");
1868 		VERBOSE("      Base=0x%"PRIx64"\n", base);
1869 		VERBOSE("      Size=0x%lx\n", size);
1870 		return -EINVAL;
1871 	}
1872 
1873 	res = get_gpi_params(base, &gpi_info);
1874 	if (res != 0) {
1875 		return res;
1876 	}
1877 
1878 	/*
1879 	 * Access to GPT is controlled by a lock to ensure that no more
1880 	 * than one CPU is allowed to make changes at any given time.
1881 	 */
1882 	GPT_LOCK;
1883 	read_gpi(&gpi_info);
1884 
1885 	/* Check that the current address is in the delegated state */
1886 	if ((src_sec_state == SMC_FROM_REALM) &&
1887 		(gpi_info.gpi == GPT_GPI_REALM)) {
1888 		l1_desc = GPT_L1_REALM_DESC;
1889 		nse = (uint64_t)GPT_NSE_REALM << GPT_NSE_SHIFT;
1890 	} else if ((src_sec_state == SMC_FROM_SECURE) &&
1891 		(gpi_info.gpi == GPT_GPI_SECURE)) {
1892 		l1_desc = GPT_L1_SECURE_DESC;
1893 		nse = (uint64_t)GPT_NSE_SECURE << GPT_NSE_SHIFT;
1894 	} else {
1895 		VERBOSE("GPT: Only Granule in REALM or SECURE state can be undelegated\n");
1896 		VERBOSE("      Caller: %u Current GPI: %u\n", src_sec_state,
1897 			gpi_info.gpi);
1898 		GPT_UNLOCK;
1899 		return -EPERM;
1900 	}
1901 
1902 #if (RME_GPT_MAX_BLOCK != 0)
1903 	/* Check for Contiguous descriptor */
1904 	if ((gpi_info.gpt_l1_desc & GPT_L1_TYPE_CONT_DESC_MASK) ==
1905 					GPT_L1_TYPE_CONT_DESC) {
1906 		shatter_block(base, &gpi_info, l1_desc);
1907 	}
1908 #endif
1909 	/*
1910 	 * In order to maintain mutual distrust between Realm and Secure
1911 	 * states, remove access now, in order to guarantee that writes
1912 	 * to the currently-accessible physical address space will not
1913 	 * later become observable.
1914 	 */
1915 	write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
1916 		  gpi_info.gpi_shift, gpi_info.idx, GPT_GPI_NO_ACCESS);
1917 
1918 	/* Ensure that all agents observe the new NO_ACCESS configuration */
1919 	tlbi_page_dsbosh(base);
1920 
1921 	/* Ensure that the scrubbed data have made it past the PoPA */
1922 	flush_page_to_popa(base | nse);
1923 
1924 	/*
1925 	 * Remove any data loaded speculatively in NS space from before
1926 	 * the scrubbing.
1927 	 */
1928 	nse = (uint64_t)GPT_NSE_NS << GPT_NSE_SHIFT;
1929 
1930 	flush_page_to_popa(base | nse);
1931 
1932 	/* Clear existing GPI encoding and transition granule */
1933 	write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
1934 		  gpi_info.gpi_shift, gpi_info.idx, GPT_GPI_NS);
1935 
1936 	/* Ensure that all agents observe the new NS configuration */
1937 	tlbi_page_dsbosh(base);
1938 
1939 #if (RME_GPT_MAX_BLOCK != 0)
1940 	if (gpi_info.gpt_l1_desc == GPT_L1_NS_DESC) {
1941 		/* Try to fuse */
1942 		fuse_block(base, &gpi_info, GPT_L1_NS_DESC);
1943 	}
1944 #endif
1945 	/* Unlock the lock to GPT */
1946 	GPT_UNLOCK;
1947 
1948 	/*
1949 	 * The isb() will be done as part of context
1950 	 * synchronization when returning to lower EL.
1951 	 */
1952 	VERBOSE("GPT: Granule 0x%"PRIx64" GPI 0x%x->0x%x\n",
1953 		base, gpi_info.gpi, GPT_GPI_NS);
1954 
1955 	return 0;
1956 }
1957