xref: /rk3399_ARM-atf/lib/extensions/spe/spe.c (revision b67e984664a8644d6cfd1812cabaa02cf24f09c9)
1 /*
2  * Copyright (c) 2017-2025, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <stdbool.h>
8 
9 #include <arch.h>
10 #include <arch_features.h>
11 #include <arch_helpers.h>
12 #include <lib/extensions/spe.h>
13 
14 #include <plat/common/platform.h>
15 
16 /*
17  * SPE is an unusual feature. Its enable is split into two:
18  *  - (NSPBE, NSPB[0]) - the security state bits - determines which security
19  *    state owns the profiling buffer.
20  *  - NSPB[1] - the enable bit - determines if the security state that owns the
21  *    buffer may access SPE registers.
22  *
23  * There is a secondary id register PMBIDR_EL1 that is more granular than
24  * ID_AA64DFR0_EL1. When a security state owns the buffer, PMBIDR_EL1.P will
25  * report that SPE programming is allowed. This means that the usual assumption
26  * that leaving all bits to a default of zero will disable the feature may not
27  * work correctly. To correctly disable SPE, the current security state must NOT
28  * own the buffer, irrespective of the enable bit. Then, to play nicely with
29  * SMCCC_ARCH_FEATURE_AVAILABILITY, the enable bit should correspond to the
30  * enable status. The feature is architected this way to allow for lazy context
31  * switching of the buffer - a world can be made owner of the buffer (with
32  * PMBIDR_EL1.P reporting full access) without giving it access to the registers
33  * (by trapping to EL3). Then context switching can be deferred until a world
34  * tries to use SPE at which point access can be given and the trapping
35  * instruction repeated.
36  *
37  * This can be simplified to the following rules:
38  * 1. To enable SPE for world X:
39  *    * world X owns the buffer ((NSPBE, NSPB[0]) == SCR_EL3.{NSE, NS})
40  *    * trapping disabled (NSPB[0] == 1)
41  * 2. To disable SPE for world X:
42  *    * world X does not own the buffer ((NSPBE, NSPB[0]) != SCR_EL3.{NSE, NS})
43  *    * trapping enabled (NSPB[0] == 0)
44  */
45 
46 /*
47  * MDCR_EL3.EnPMSN (ARM v8.7) and MDCR_EL3.EnPMS3: Do not trap access to
48  * PMSNEVFR_EL1 or PMSDSFR_EL1 register at NS-EL1 or NS-EL2 to EL3 if
49  * FEAT_SPEv1p2 or FEAT_SPE_FDS are implemented. Setting these bits to 1 doesn't
50  * have any effect on it when the features aren't implemented.
51  */
52 void spe_enable_ns(cpu_context_t *ctx)
53 {
54 	el3_state_t *state = get_el3state_ctx(ctx);
55 	u_register_t mdcr_el3_val = read_ctx_reg(state, CTX_MDCR_EL3);
56 
57 	mdcr_el3_val |= MDCR_NSPB_EN_BIT | MDCR_NSPB_SS_BIT | MDCR_EnPMSN_BIT | MDCR_EnPMS3_BIT;
58 	mdcr_el3_val &= ~(MDCR_NSPBE_BIT);
59 
60 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3_val);
61 }
62 
63 /*
64  * MDCR_EL3.EnPMSN (ARM v8.7) and MDCR_EL3.EnPMS3: Clear the bits to trap access
65  * of PMSNEVFR_EL1 and PMSDSFR_EL1 from EL2/EL1 to EL3.
66  */
67 static void spe_disable_others(cpu_context_t *ctx)
68 {
69 	el3_state_t *state = get_el3state_ctx(ctx);
70 	u_register_t mdcr_el3_val = read_ctx_reg(state, CTX_MDCR_EL3);
71 
72 	mdcr_el3_val |= MDCR_NSPB_SS_BIT;
73 	mdcr_el3_val &= ~(MDCR_NSPB_EN_BIT | MDCR_NSPBE_BIT | MDCR_EnPMSN_BIT |
74 			  MDCR_EnPMS3_BIT);
75 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3_val);
76 }
77 
78 void spe_disable_secure(cpu_context_t *ctx)
79 {
80 	spe_disable_others(ctx);
81 }
82 
83 void spe_disable_realm(cpu_context_t *ctx)
84 {
85 	spe_disable_others(ctx);
86 }
87 
88 void spe_init_el2_unused(void)
89 {
90 	uint64_t v;
91 
92 	/*
93 	 * MDCR_EL2.TPMS (ARM v8.2): Do not trap statistical
94 	 * profiling controls to EL2.
95 	 *
96 	 * MDCR_EL2.E2PB (ARM v8.2): SPE enabled in Non-secure
97 	 * state. Accesses to profiling buffer controls at
98 	 * Non-secure EL1 are not trapped to EL2.
99 	 */
100 	v = read_mdcr_el2();
101 	v &= ~MDCR_EL2_TPMS;
102 	v |= MDCR_EL2_E2PB(MDCR_EL2_E2PB_EL1);
103 	write_mdcr_el2(v);
104 }
105