xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision f3ecd836afa13c560d63b49c0f05e913011a20b2)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/debug_v8p9.h>
30 #include <lib/extensions/fgt2.h>
31 #include <lib/extensions/fpmr.h>
32 #include <lib/extensions/mpam.h>
33 #include <lib/extensions/pauth.h>
34 #include <lib/extensions/pmuv3.h>
35 #include <lib/extensions/sme.h>
36 #include <lib/extensions/spe.h>
37 #include <lib/extensions/sve.h>
38 #include <lib/extensions/sysreg128.h>
39 #include <lib/extensions/sys_reg_trace.h>
40 #include <lib/extensions/tcr2.h>
41 #include <lib/extensions/trbe.h>
42 #include <lib/extensions/trf.h>
43 #include <lib/utils.h>
44 
45 #if ENABLE_FEAT_TWED
46 /* Make sure delay value fits within the range(0-15) */
47 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
48 #endif /* ENABLE_FEAT_TWED */
49 
50 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
51 static bool has_secure_perworld_init;
52 
53 static void manage_extensions_nonsecure(cpu_context_t *ctx);
54 static void manage_extensions_secure(cpu_context_t *ctx);
55 static void manage_extensions_secure_per_world(void);
56 
57 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
58 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
59 {
60 	u_register_t sctlr_elx, actlr_elx;
61 
62 	/*
63 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
64 	 * execution state setting all fields rather than relying on the hw.
65 	 * Some fields have architecturally UNKNOWN reset values and these are
66 	 * set to zero.
67 	 *
68 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
69 	 *
70 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
71 	 * required by PSCI specification)
72 	 */
73 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
74 	if (GET_RW(ep->spsr) == MODE_RW_64) {
75 		sctlr_elx |= SCTLR_EL1_RES1;
76 	} else {
77 		/*
78 		 * If the target execution state is AArch32 then the following
79 		 * fields need to be set.
80 		 *
81 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
82 		 *  instructions are not trapped to EL1.
83 		 *
84 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
85 		 *  instructions are not trapped to EL1.
86 		 *
87 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
88 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
89 		 */
90 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
91 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
92 	}
93 
94 	/*
95 	 * If workaround of errata 764081 for Cortex-A75 is used then set
96 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
97 	 */
98 	if (errata_a75_764081_applies()) {
99 		sctlr_elx |= SCTLR_IESB_BIT;
100 	}
101 
102 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
103 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
104 
105 	/*
106 	 * Base the context ACTLR_EL1 on the current value, as it is
107 	 * implementation defined. The context restore process will write
108 	 * the value from the context to the actual register and can cause
109 	 * problems for processor cores that don't expect certain bits to
110 	 * be zero.
111 	 */
112 	actlr_elx = read_actlr_el1();
113 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
114 }
115 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
116 
117 /******************************************************************************
118  * This function performs initializations that are specific to SECURE state
119  * and updates the cpu context specified by 'ctx'.
120  *****************************************************************************/
121 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
122 {
123 	u_register_t scr_el3;
124 	el3_state_t *state;
125 
126 	state = get_el3state_ctx(ctx);
127 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
128 
129 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
130 	/*
131 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
132 	 * indicated by the interrupt routing model for BL31.
133 	 */
134 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
135 #endif
136 
137 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
138 	if (is_feat_mte2_supported()) {
139 		scr_el3 |= SCR_ATA_BIT;
140 	}
141 
142 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
143 
144 	/*
145 	 * Initialize EL1 context registers unless SPMC is running
146 	 * at S-EL2.
147 	 */
148 #if (!SPMD_SPM_AT_SEL2)
149 	setup_el1_context(ctx, ep);
150 #endif
151 
152 	manage_extensions_secure(ctx);
153 
154 	/**
155 	 * manage_extensions_secure_per_world api has to be executed once,
156 	 * as the registers getting initialised, maintain constant value across
157 	 * all the cpus for the secure world.
158 	 * Henceforth, this check ensures that the registers are initialised once
159 	 * and avoids re-initialization from multiple cores.
160 	 */
161 	if (!has_secure_perworld_init) {
162 		manage_extensions_secure_per_world();
163 	}
164 }
165 
166 #if ENABLE_RME
167 /******************************************************************************
168  * This function performs initializations that are specific to REALM state
169  * and updates the cpu context specified by 'ctx'.
170  *****************************************************************************/
171 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
172 {
173 	u_register_t scr_el3;
174 	el3_state_t *state;
175 
176 	state = get_el3state_ctx(ctx);
177 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
178 
179 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
180 
181 	/* CSV2 version 2 and above */
182 	if (is_feat_csv2_2_supported()) {
183 		/* Enable access to the SCXTNUM_ELx registers. */
184 		scr_el3 |= SCR_EnSCXT_BIT;
185 	}
186 
187 	if (is_feat_sctlr2_supported()) {
188 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
189 		 * SCTLR2_ELx registers.
190 		 */
191 		scr_el3 |= SCR_SCTLR2En_BIT;
192 	}
193 
194 	if (is_feat_d128_supported()) {
195 		/*
196 		 * Set the D128En bit in SCR_EL3 to enable access to 128-bit
197 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
198 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
199 		 */
200 		scr_el3 |= SCR_D128En_BIT;
201 	}
202 
203 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
204 
205 	if (is_feat_fgt2_supported()) {
206 		fgt2_enable(ctx);
207 	}
208 
209 	if (is_feat_debugv8p9_supported()) {
210 		debugv8p9_extended_bp_wp_enable(ctx);
211 	}
212 
213 	if (is_feat_brbe_supported()) {
214 		brbe_enable(ctx);
215 	}
216 
217 }
218 #endif /* ENABLE_RME */
219 
220 /******************************************************************************
221  * This function performs initializations that are specific to NON-SECURE state
222  * and updates the cpu context specified by 'ctx'.
223  *****************************************************************************/
224 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
225 {
226 	u_register_t scr_el3;
227 	el3_state_t *state;
228 
229 	state = get_el3state_ctx(ctx);
230 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
231 
232 	/* SCR_NS: Set the NS bit */
233 	scr_el3 |= SCR_NS_BIT;
234 
235 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
236 	if (is_feat_mte2_supported()) {
237 		scr_el3 |= SCR_ATA_BIT;
238 	}
239 
240 	/*
241 	 * Pointer Authentication feature, if present, is always enabled by
242 	 * default for Non secure lower exception levels. We do not have an
243 	 * explicit flag to set it. To prevent the leakage between the worlds
244 	 * during world switch, we enable it only for the non-secure world.
245 	 *
246 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
247 	 * exception levels of secure and realm worlds.
248 	 *
249 	 * If the Secure/realm world wants to use pointer authentication,
250 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
251 	 * it will be enabled globally for all the contexts.
252 	 *
253 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
254 	 *  other than EL3
255 	 *
256 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
257 	 *  than EL3
258 	 */
259 	if (!is_ctx_pauth_supported()) {
260 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
261 	}
262 
263 #if HANDLE_EA_EL3_FIRST_NS
264 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
265 	scr_el3 |= SCR_EA_BIT;
266 #endif
267 
268 #if RAS_TRAP_NS_ERR_REC_ACCESS
269 	/*
270 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
271 	 * and RAS ERX registers from EL1 and EL2(from any security state)
272 	 * are trapped to EL3.
273 	 * Set here to trap only for NS EL1/EL2
274 	 */
275 	scr_el3 |= SCR_TERR_BIT;
276 #endif
277 
278 	/* CSV2 version 2 and above */
279 	if (is_feat_csv2_2_supported()) {
280 		/* Enable access to the SCXTNUM_ELx registers. */
281 		scr_el3 |= SCR_EnSCXT_BIT;
282 	}
283 
284 #ifdef IMAGE_BL31
285 	/*
286 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
287 	 *  indicated by the interrupt routing model for BL31.
288 	 */
289 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
290 #endif
291 
292 	if (is_feat_the_supported()) {
293 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
294 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
295 		 */
296 		scr_el3 |= SCR_RCWMASKEn_BIT;
297 	}
298 
299 	if (is_feat_sctlr2_supported()) {
300 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
301 		 * SCTLR2_ELx registers.
302 		 */
303 		scr_el3 |= SCR_SCTLR2En_BIT;
304 	}
305 
306 	if (is_feat_d128_supported()) {
307 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
308 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
309 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
310 		 */
311 		scr_el3 |= SCR_D128En_BIT;
312 	}
313 
314 	if (is_feat_fpmr_supported()) {
315 		/* Set the EnFPM bit in SCR_EL3 to enable access to FPMR
316 		 * register.
317 		 */
318 		scr_el3 |= SCR_EnFPM_BIT;
319 	}
320 
321 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
322 
323 	/* Initialize EL2 context registers */
324 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
325 
326 	/*
327 	 * Initialize SCTLR_EL2 context register with reset value.
328 	 */
329 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
330 
331 	if (is_feat_hcx_supported()) {
332 		/*
333 		 * Initialize register HCRX_EL2 with its init value.
334 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
335 		 * chance that this can lead to unexpected behavior in lower
336 		 * ELs that have not been updated since the introduction of
337 		 * this feature if not properly initialized, especially when
338 		 * it comes to those bits that enable/disable traps.
339 		 */
340 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
341 			HCRX_EL2_INIT_VAL);
342 	}
343 
344 	if (is_feat_fgt_supported()) {
345 		/*
346 		 * Initialize HFG*_EL2 registers with a default value so legacy
347 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
348 		 * of initialization for this feature.
349 		 */
350 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
351 			HFGITR_EL2_INIT_VAL);
352 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
353 			HFGRTR_EL2_INIT_VAL);
354 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
355 			HFGWTR_EL2_INIT_VAL);
356 	}
357 #else
358 	/* Initialize EL1 context registers */
359 	setup_el1_context(ctx, ep);
360 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
361 
362 	manage_extensions_nonsecure(ctx);
363 }
364 
365 /*******************************************************************************
366  * The following function performs initialization of the cpu_context 'ctx'
367  * for first use that is common to all security states, and sets the
368  * initial entrypoint state as specified by the entry_point_info structure.
369  *
370  * The EE and ST attributes are used to configure the endianness and secure
371  * timer availability for the new execution context.
372  ******************************************************************************/
373 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
374 {
375 	u_register_t scr_el3;
376 	u_register_t mdcr_el3;
377 	el3_state_t *state;
378 	gp_regs_t *gp_regs;
379 
380 	state = get_el3state_ctx(ctx);
381 
382 	/* Clear any residual register values from the context */
383 	zeromem(ctx, sizeof(*ctx));
384 
385 	/*
386 	 * The lower-EL context is zeroed so that no stale values leak to a world.
387 	 * It is assumed that an all-zero lower-EL context is good enough for it
388 	 * to boot correctly. However, there are very few registers where this
389 	 * is not true and some values need to be recreated.
390 	 */
391 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
392 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
393 
394 	/*
395 	 * These bits are set in the gicv3 driver. Losing them (especially the
396 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
397 	 */
398 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
399 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
400 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
401 
402 	/*
403 	 * The actlr_el2 register can be initialized in platform's reset handler
404 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
405 	 */
406 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
407 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
408 
409 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
410 	scr_el3 = SCR_RESET_VAL;
411 
412 	/*
413 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
414 	 *  EL2, EL1 and EL0 are not trapped to EL3.
415 	 *
416 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
417 	 *  EL2, EL1 and EL0 are not trapped to EL3.
418 	 *
419 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
420 	 *  both Security states and both Execution states.
421 	 *
422 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
423 	 *  Non-secure memory.
424 	 */
425 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
426 
427 	scr_el3 |= SCR_SIF_BIT;
428 
429 	/*
430 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
431 	 *  Exception level as specified by SPSR.
432 	 */
433 	if (GET_RW(ep->spsr) == MODE_RW_64) {
434 		scr_el3 |= SCR_RW_BIT;
435 	}
436 
437 	/*
438 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
439 	 * Secure timer registers to EL3, from AArch64 state only, if specified
440 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
441 	 * bit always behaves as 1 (i.e. secure physical timer register access
442 	 * is not trapped)
443 	 */
444 	if (EP_GET_ST(ep->h.attr) != 0U) {
445 		scr_el3 |= SCR_ST_BIT;
446 	}
447 
448 	/*
449 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
450 	 * SCR_EL3.HXEn.
451 	 */
452 	if (is_feat_hcx_supported()) {
453 		scr_el3 |= SCR_HXEn_BIT;
454 	}
455 
456 	/*
457 	 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by
458 	 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting
459 	 * SCR_EL3.EnAS0.
460 	 */
461 	if (is_feat_ls64_accdata_supported()) {
462 		scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT;
463 	}
464 
465 	/*
466 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
467 	 * registers are trapped to EL3.
468 	 */
469 	if (is_feat_rng_trap_supported()) {
470 		scr_el3 |= SCR_TRNDR_BIT;
471 	}
472 
473 #if FAULT_INJECTION_SUPPORT
474 	/* Enable fault injection from lower ELs */
475 	scr_el3 |= SCR_FIEN_BIT;
476 #endif
477 
478 	/*
479 	 * Enable Pointer Authentication globally for all the worlds.
480 	 *
481 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
482 	 *  other than EL3
483 	 *
484 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
485 	 *  than EL3
486 	 */
487 	if (is_ctx_pauth_supported()) {
488 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
489 	}
490 
491 	/*
492 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
493 	 * registers for AArch64 if present.
494 	 */
495 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
496 		scr_el3 |= SCR_PIEN_BIT;
497 	}
498 
499 	/*
500 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
501 	 */
502 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
503 		scr_el3 |= SCR_GCSEn_BIT;
504 	}
505 
506 	/*
507 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
508 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
509 	 * next mode is Hyp.
510 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
511 	 * same conditions as HVC instructions and when the processor supports
512 	 * ARMv8.6-FGT.
513 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
514 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
515 	 * and when the processor supports ECV.
516 	 */
517 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
518 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
519 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
520 		scr_el3 |= SCR_HCE_BIT;
521 
522 		if (is_feat_fgt_supported()) {
523 			scr_el3 |= SCR_FGTEN_BIT;
524 		}
525 
526 		if (is_feat_ecv_supported()) {
527 			scr_el3 |= SCR_ECVEN_BIT;
528 		}
529 	}
530 
531 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
532 	if (is_feat_twed_supported()) {
533 		/* Set delay in SCR_EL3 */
534 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
535 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
536 				<< SCR_TWEDEL_SHIFT);
537 
538 		/* Enable WFE delay */
539 		scr_el3 |= SCR_TWEDEn_BIT;
540 	}
541 
542 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
543 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
544 	if (is_feat_sel2_supported()) {
545 		scr_el3 |= SCR_EEL2_BIT;
546 	}
547 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
548 
549 	if (is_feat_mec_supported()) {
550 		scr_el3 |= SCR_MECEn_BIT;
551 	}
552 
553 	/*
554 	 * Populate EL3 state so that we've the right context
555 	 * before doing ERET
556 	 */
557 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
558 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
559 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
560 
561 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
562 	mdcr_el3 = MDCR_EL3_RESET_VAL;
563 
564 	/* ---------------------------------------------------------------------
565 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
566 	 * Some fields are architecturally UNKNOWN on reset.
567 	 *
568 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
569 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
570 	 *  disabled from all ELs in Secure state.
571 	 *
572 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
573 	 *  privileged debug from S-EL1.
574 	 *
575 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
576 	 *  access to the powerdown debug registers do not trap to EL3.
577 	 *
578 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
579 	 *  debug registers, other than those registers that are controlled by
580 	 *  MDCR_EL3.TDOSA.
581 	 */
582 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
583 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
584 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
585 
586 #if IMAGE_BL31
587 	/* Enable FEAT_TRF for Non-Secure and prohibit for Secure state. */
588 	if (is_feat_trf_supported()) {
589 		trf_enable(ctx);
590 	}
591 
592 	if (is_feat_tcr2_supported()) {
593 		tcr2_enable(ctx);
594 	}
595 
596 	pmuv3_enable(ctx);
597 #endif /* IMAGE_BL31 */
598 
599 	/*
600 	 * Store the X0-X7 value from the entrypoint into the context
601 	 * Use memcpy as we are in control of the layout of the structures
602 	 */
603 	gp_regs = get_gpregs_ctx(ctx);
604 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
605 }
606 
607 /*******************************************************************************
608  * Context management library initialization routine. This library is used by
609  * runtime services to share pointers to 'cpu_context' structures for secure
610  * non-secure and realm states. Management of the structures and their associated
611  * memory is not done by the context management library e.g. the PSCI service
612  * manages the cpu context used for entry from and exit to the non-secure state.
613  * The Secure payload dispatcher service manages the context(s) corresponding to
614  * the secure state. It also uses this library to get access to the non-secure
615  * state cpu context pointers.
616  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
617  * which will be used for programming an entry into a lower EL. The same context
618  * will be used to save state upon exception entry from that EL.
619  ******************************************************************************/
620 void __init cm_init(void)
621 {
622 	/*
623 	 * The context management library has only global data to initialize, but
624 	 * that will be done when the BSS is zeroed out.
625 	 */
626 }
627 
628 /*******************************************************************************
629  * This is the high-level function used to initialize the cpu_context 'ctx' for
630  * first use. It performs initializations that are common to all security states
631  * and initializations specific to the security state specified in 'ep'
632  ******************************************************************************/
633 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
634 {
635 	unsigned int security_state;
636 
637 	assert(ctx != NULL);
638 
639 	/*
640 	 * Perform initializations that are common
641 	 * to all security states
642 	 */
643 	setup_context_common(ctx, ep);
644 
645 	security_state = GET_SECURITY_STATE(ep->h.attr);
646 
647 	/* Perform security state specific initializations */
648 	switch (security_state) {
649 	case SECURE:
650 		setup_secure_context(ctx, ep);
651 		break;
652 #if ENABLE_RME
653 	case REALM:
654 		setup_realm_context(ctx, ep);
655 		break;
656 #endif
657 	case NON_SECURE:
658 		setup_ns_context(ctx, ep);
659 		break;
660 	default:
661 		ERROR("Invalid security state\n");
662 		panic();
663 		break;
664 	}
665 }
666 
667 /*******************************************************************************
668  * Enable architecture extensions for EL3 execution. This function only updates
669  * registers in-place which are expected to either never change or be
670  * overwritten by el3_exit. Expects the core_pos of the current core as argument.
671  ******************************************************************************/
672 #if IMAGE_BL31
673 void cm_manage_extensions_el3(unsigned int my_idx)
674 {
675 	if (is_feat_sve_supported()) {
676 		sve_init_el3();
677 	}
678 
679 	if (is_feat_amu_supported()) {
680 		amu_init_el3(my_idx);
681 	}
682 
683 	if (is_feat_sme_supported()) {
684 		sme_init_el3();
685 	}
686 
687 	pmuv3_init_el3();
688 }
689 #endif /* IMAGE_BL31 */
690 
691 /******************************************************************************
692  * Function to initialise the registers with the RESET values in the context
693  * memory, which are maintained per world.
694  ******************************************************************************/
695 #if IMAGE_BL31
696 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
697 {
698 	/*
699 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
700 	 *
701 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
702 	 *  by Advanced SIMD, floating-point or SVE instructions (if
703 	 *  implemented) do not trap to EL3.
704 	 *
705 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
706 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
707 	 */
708 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
709 
710 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
711 
712 	/*
713 	 * Initialize MPAM3_EL3 to its default reset value
714 	 *
715 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
716 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
717 	 */
718 
719 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
720 }
721 #endif /* IMAGE_BL31 */
722 
723 /*******************************************************************************
724  * Initialise per_world_context for Non-Secure world.
725  * This function enables the architecture extensions, which have same value
726  * across the cores for the non-secure world.
727  ******************************************************************************/
728 #if IMAGE_BL31
729 void manage_extensions_nonsecure_per_world(void)
730 {
731 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
732 
733 	if (is_feat_sme_supported()) {
734 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
735 	}
736 
737 	if (is_feat_sve_supported()) {
738 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
739 	}
740 
741 	if (is_feat_amu_supported()) {
742 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
743 	}
744 
745 	if (is_feat_sys_reg_trace_supported()) {
746 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
747 	}
748 
749 	if (is_feat_mpam_supported()) {
750 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
751 	}
752 
753 	if (is_feat_fpmr_supported()) {
754 		fpmr_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
755 	}
756 }
757 #endif /* IMAGE_BL31 */
758 
759 /*******************************************************************************
760  * Initialise per_world_context for Secure world.
761  * This function enables the architecture extensions, which have same value
762  * across the cores for the secure world.
763  ******************************************************************************/
764 static void manage_extensions_secure_per_world(void)
765 {
766 #if IMAGE_BL31
767 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
768 
769 	if (is_feat_sme_supported()) {
770 
771 		if (ENABLE_SME_FOR_SWD) {
772 		/*
773 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
774 		 * SME, SVE, and FPU/SIMD context properly managed.
775 		 */
776 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
777 		} else {
778 		/*
779 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
780 		 * world can safely use the associated registers.
781 		 */
782 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
783 		}
784 	}
785 	if (is_feat_sve_supported()) {
786 		if (ENABLE_SVE_FOR_SWD) {
787 		/*
788 		 * Enable SVE and FPU in secure context, SPM must ensure
789 		 * that the SVE and FPU register contexts are properly managed.
790 		 */
791 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
792 		} else {
793 		/*
794 		 * Disable SVE and FPU in secure context so non-secure world
795 		 * can safely use them.
796 		 */
797 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
798 		}
799 	}
800 
801 	/* NS can access this but Secure shouldn't */
802 	if (is_feat_sys_reg_trace_supported()) {
803 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
804 	}
805 
806 	has_secure_perworld_init = true;
807 #endif /* IMAGE_BL31 */
808 }
809 
810 /*******************************************************************************
811  * Enable architecture extensions on first entry to Non-secure world.
812  ******************************************************************************/
813 static void manage_extensions_nonsecure(cpu_context_t *ctx)
814 {
815 #if IMAGE_BL31
816 	/* NOTE: registers are not context switched */
817 	if (is_feat_amu_supported()) {
818 		amu_enable(ctx);
819 	}
820 
821 	if (is_feat_sme_supported()) {
822 		sme_enable(ctx);
823 	}
824 
825 	if (is_feat_fgt2_supported()) {
826 		fgt2_enable(ctx);
827 	}
828 
829 	if (is_feat_debugv8p9_supported()) {
830 		debugv8p9_extended_bp_wp_enable(ctx);
831 	}
832 
833 	/*
834 	 * SPE, TRBE, and BRBE have multi-field enables that affect which world
835 	 * they apply to. Despite this, it is useful to ignore these for
836 	 * simplicity in determining the feature's per world enablement status.
837 	 * This is only possible when context is written per-world. Relied on
838 	 * by SMCCC_ARCH_FEATURE_AVAILABILITY
839 	 */
840 	if (is_feat_spe_supported()) {
841 		spe_enable(ctx);
842 	}
843 
844 	if (!check_if_trbe_disable_affected_core()) {
845 		if (is_feat_trbe_supported()) {
846 			trbe_enable(ctx);
847 		}
848 	}
849 
850 	if (is_feat_brbe_supported()) {
851 		brbe_enable(ctx);
852 	}
853 #endif /* IMAGE_BL31 */
854 }
855 
856 #if INIT_UNUSED_NS_EL2
857 /*******************************************************************************
858  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
859  * world when EL2 is empty and unused.
860  ******************************************************************************/
861 static void manage_extensions_nonsecure_el2_unused(void)
862 {
863 #if IMAGE_BL31
864 	if (is_feat_spe_supported()) {
865 		spe_init_el2_unused();
866 	}
867 
868 	if (is_feat_amu_supported()) {
869 		amu_init_el2_unused();
870 	}
871 
872 	if (is_feat_mpam_supported()) {
873 		mpam_init_el2_unused();
874 	}
875 
876 	if (is_feat_trbe_supported()) {
877 		trbe_init_el2_unused();
878 	}
879 
880 	if (is_feat_sys_reg_trace_supported()) {
881 		sys_reg_trace_init_el2_unused();
882 	}
883 
884 	if (is_feat_trf_supported()) {
885 		trf_init_el2_unused();
886 	}
887 
888 	pmuv3_init_el2_unused();
889 
890 	if (is_feat_sve_supported()) {
891 		sve_init_el2_unused();
892 	}
893 
894 	if (is_feat_sme_supported()) {
895 		sme_init_el2_unused();
896 	}
897 
898 	if (is_feat_mops_supported() && is_feat_hcx_supported()) {
899 		write_hcrx_el2(read_hcrx_el2() | HCRX_EL2_MSCEn_BIT);
900 	}
901 
902 	if (is_feat_pauth_supported()) {
903 		pauth_enable_el2();
904 	}
905 #endif /* IMAGE_BL31 */
906 }
907 #endif /* INIT_UNUSED_NS_EL2 */
908 
909 /*******************************************************************************
910  * Enable architecture extensions on first entry to Secure world.
911  ******************************************************************************/
912 static void manage_extensions_secure(cpu_context_t *ctx)
913 {
914 #if IMAGE_BL31
915 	if (is_feat_sme_supported()) {
916 		if (ENABLE_SME_FOR_SWD) {
917 		/*
918 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
919 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
920 		 */
921 			sme_init_el3();
922 			sme_enable(ctx);
923 		} else {
924 		/*
925 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
926 		 * world can safely use the associated registers.
927 		 */
928 			sme_disable(ctx);
929 		}
930 	}
931 
932 	/*
933 	 * SPE and TRBE cannot be fully disabled from EL3 registers alone, only
934 	 * sysreg access can. In case the EL1 controls leave them active on
935 	 * context switch, we want the owning security state to be NS so Secure
936 	 * can't be DOSed.
937 	 */
938 	if (is_feat_spe_supported()) {
939 		spe_disable(ctx);
940 	}
941 
942 	if (is_feat_trbe_supported()) {
943 		trbe_disable(ctx);
944 	}
945 #endif /* IMAGE_BL31 */
946 }
947 
948 /*******************************************************************************
949  * The following function initializes the cpu_context for the current CPU
950  * for first use, and sets the initial entrypoint state as specified by the
951  * entry_point_info structure.
952  ******************************************************************************/
953 void cm_init_my_context(const entry_point_info_t *ep)
954 {
955 	cpu_context_t *ctx;
956 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
957 	cm_setup_context(ctx, ep);
958 }
959 
960 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
961 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
962 {
963 #if INIT_UNUSED_NS_EL2
964 	u_register_t hcr_el2 = HCR_RESET_VAL;
965 	u_register_t mdcr_el2;
966 	u_register_t scr_el3;
967 
968 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
969 
970 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
971 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
972 		hcr_el2 |= HCR_RW_BIT;
973 	}
974 
975 	write_hcr_el2(hcr_el2);
976 
977 	/*
978 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
979 	 * All fields have architecturally UNKNOWN reset values.
980 	 */
981 	write_cptr_el2(CPTR_EL2_RESET_VAL);
982 
983 	/*
984 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
985 	 * reset and are set to zero except for field(s) listed below.
986 	 *
987 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
988 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
989 	 *
990 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
991 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
992 	 */
993 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
994 
995 	/*
996 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
997 	 * UNKNOWN value.
998 	 */
999 	write_cntvoff_el2(0);
1000 
1001 	/*
1002 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
1003 	 * respectively.
1004 	 */
1005 	write_vpidr_el2(read_midr_el1());
1006 	write_vmpidr_el2(read_mpidr_el1());
1007 
1008 	/*
1009 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
1010 	 *
1011 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
1012 	 * translation is disabled, cache maintenance operations depend on the
1013 	 * VMID.
1014 	 *
1015 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
1016 	 * disabled.
1017 	 */
1018 	write_vttbr_el2(VTTBR_RESET_VAL &
1019 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1020 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1021 
1022 	/*
1023 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1024 	 * Some fields are architecturally UNKNOWN on reset.
1025 	 *
1026 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1027 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1028 	 *
1029 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1030 	 * accesses to the powerdown debug registers are not trapped to EL2.
1031 	 *
1032 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1033 	 * debug registers do not trap to EL2.
1034 	 *
1035 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1036 	 * EL2.
1037 	 */
1038 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1039 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1040 		   MDCR_EL2_TDE_BIT);
1041 
1042 	write_mdcr_el2(mdcr_el2);
1043 
1044 	/*
1045 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1046 	 *
1047 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1048 	 * EL1 accesses to System registers do not trap to EL2.
1049 	 */
1050 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1051 
1052 	/*
1053 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1054 	 * reset.
1055 	 *
1056 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1057 	 * and prevent timer interrupts.
1058 	 */
1059 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1060 
1061 	manage_extensions_nonsecure_el2_unused();
1062 #endif /* INIT_UNUSED_NS_EL2 */
1063 }
1064 
1065 /*******************************************************************************
1066  * Prepare the CPU system registers for first entry into realm, secure, or
1067  * normal world.
1068  *
1069  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1070  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1071  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1072  * For all entries, the EL1 registers are initialized from the cpu_context
1073  ******************************************************************************/
1074 void cm_prepare_el3_exit(uint32_t security_state)
1075 {
1076 	u_register_t sctlr_el2, scr_el3;
1077 	cpu_context_t *ctx = cm_get_context(security_state);
1078 
1079 	assert(ctx != NULL);
1080 
1081 	if (security_state == NON_SECURE) {
1082 		uint64_t el2_implemented = el_implemented(2);
1083 
1084 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1085 						 CTX_SCR_EL3);
1086 
1087 		if (el2_implemented != EL_IMPL_NONE) {
1088 
1089 			/*
1090 			 * If context is not being used for EL2, initialize
1091 			 * HCRX_EL2 with its init value here.
1092 			 */
1093 			if (is_feat_hcx_supported()) {
1094 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1095 			}
1096 
1097 			/*
1098 			 * Initialize Fine-grained trap registers introduced
1099 			 * by FEAT_FGT so all traps are initially disabled when
1100 			 * switching to EL2 or a lower EL, preventing undesired
1101 			 * behavior.
1102 			 */
1103 			if (is_feat_fgt_supported()) {
1104 				/*
1105 				 * Initialize HFG*_EL2 registers with a default
1106 				 * value so legacy systems unaware of FEAT_FGT
1107 				 * do not get trapped due to their lack of
1108 				 * initialization for this feature.
1109 				 */
1110 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1111 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1112 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1113 			}
1114 
1115 			/* Condition to ensure EL2 is being used. */
1116 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1117 				/* Initialize SCTLR_EL2 register with reset value. */
1118 				sctlr_el2 = SCTLR_EL2_RES1;
1119 
1120 				/*
1121 				 * If workaround of errata 764081 for Cortex-A75
1122 				 * is used then set SCTLR_EL2.IESB to enable
1123 				 * Implicit Error Synchronization Barrier.
1124 				 */
1125 				if (errata_a75_764081_applies()) {
1126 					sctlr_el2 |= SCTLR_IESB_BIT;
1127 				}
1128 
1129 				write_sctlr_el2(sctlr_el2);
1130 			} else {
1131 				/*
1132 				 * (scr_el3 & SCR_HCE_BIT==0)
1133 				 * EL2 implemented but unused.
1134 				 */
1135 				init_nonsecure_el2_unused(ctx);
1136 			}
1137 		}
1138 	}
1139 #if (!CTX_INCLUDE_EL2_REGS)
1140 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1141 	cm_el1_sysregs_context_restore(security_state);
1142 #endif
1143 	cm_set_next_eret_context(security_state);
1144 }
1145 
1146 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1147 
1148 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1149 {
1150 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1151 	if (is_feat_amu_supported()) {
1152 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1153 	}
1154 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1155 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1156 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1157 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1158 }
1159 
1160 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1161 {
1162 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1163 	if (is_feat_amu_supported()) {
1164 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1165 	}
1166 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1167 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1168 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1169 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1170 }
1171 
1172 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1173 {
1174 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1175 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1176 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1177 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1178 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1179 }
1180 
1181 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1182 {
1183 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1184 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1185 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1186 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1187 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1188 }
1189 
1190 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1191 {
1192 	u_register_t mpam_idr = read_mpamidr_el1();
1193 
1194 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1195 
1196 	/*
1197 	 * The context registers that we intend to save would be part of the
1198 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1199 	 */
1200 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1201 		return;
1202 	}
1203 
1204 	/*
1205 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1206 	 * MPAMIDR_HAS_HCR_BIT == 1.
1207 	 */
1208 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1209 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1210 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1211 
1212 	/*
1213 	 * The number of MPAMVPM registers is implementation defined, their
1214 	 * number is stored in the MPAMIDR_EL1 register.
1215 	 */
1216 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1217 	case 7:
1218 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1219 		__fallthrough;
1220 	case 6:
1221 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1222 		__fallthrough;
1223 	case 5:
1224 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1225 		__fallthrough;
1226 	case 4:
1227 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1228 		__fallthrough;
1229 	case 3:
1230 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1231 		__fallthrough;
1232 	case 2:
1233 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1234 		__fallthrough;
1235 	case 1:
1236 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1237 		break;
1238 	}
1239 }
1240 
1241 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1242 {
1243 	u_register_t mpam_idr = read_mpamidr_el1();
1244 
1245 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1246 
1247 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1248 		return;
1249 	}
1250 
1251 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1252 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1253 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1254 
1255 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1256 	case 7:
1257 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1258 		__fallthrough;
1259 	case 6:
1260 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1261 		__fallthrough;
1262 	case 5:
1263 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1264 		__fallthrough;
1265 	case 4:
1266 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1267 		__fallthrough;
1268 	case 3:
1269 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1270 		__fallthrough;
1271 	case 2:
1272 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1273 		__fallthrough;
1274 	case 1:
1275 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1276 		break;
1277 	}
1278 }
1279 
1280 /* ---------------------------------------------------------------------------
1281  * The following registers are not added:
1282  * ICH_AP0R<n>_EL2
1283  * ICH_AP1R<n>_EL2
1284  * ICH_LR<n>_EL2
1285  *
1286  * NOTE: For a system with S-EL2 present but not enabled, accessing
1287  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1288  * SCR_EL3.NS = 1 before accessing this register.
1289  * ---------------------------------------------------------------------------
1290  */
1291 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx, uint32_t security_state)
1292 {
1293 	u_register_t scr_el3 = read_scr_el3();
1294 
1295 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1296 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1297 #else
1298 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1299 	isb();
1300 
1301 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1302 
1303 	write_scr_el3(scr_el3);
1304 	isb();
1305 #endif
1306 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1307 
1308 	if (errata_ich_vmcr_el2_applies()) {
1309 		if (security_state == SECURE) {
1310 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1311 		} else {
1312 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1313 		}
1314 		isb();
1315 	}
1316 
1317 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1318 
1319 	if (errata_ich_vmcr_el2_applies()) {
1320 		write_scr_el3(scr_el3);
1321 		isb();
1322 	}
1323 }
1324 
1325 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx, uint32_t security_state)
1326 {
1327 	u_register_t scr_el3 = read_scr_el3();
1328 
1329 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1330 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1331 #else
1332 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1333 	isb();
1334 
1335 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1336 
1337 	write_scr_el3(scr_el3);
1338 	isb();
1339 #endif
1340 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1341 
1342 	if (errata_ich_vmcr_el2_applies()) {
1343 		if (security_state == SECURE) {
1344 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1345 		} else {
1346 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1347 		}
1348 		isb();
1349 	}
1350 
1351 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1352 
1353 	if (errata_ich_vmcr_el2_applies()) {
1354 		write_scr_el3(scr_el3);
1355 		isb();
1356 	}
1357 }
1358 
1359 /* -----------------------------------------------------
1360  * The following registers are not added:
1361  * AMEVCNTVOFF0<n>_EL2
1362  * AMEVCNTVOFF1<n>_EL2
1363  * -----------------------------------------------------
1364  */
1365 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1366 {
1367 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1368 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1369 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1370 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1371 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1372 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1373 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1374 	if (CTX_INCLUDE_AARCH32_REGS) {
1375 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1376 	}
1377 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1378 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1379 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1380 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1381 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1382 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1383 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1384 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1385 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1386 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1387 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1388 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1389 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1390 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1391 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1392 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1393 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1394 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1395 
1396 	write_el2_ctx_common_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1397 	write_el2_ctx_common_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1398 }
1399 
1400 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1401 {
1402 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1403 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1404 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1405 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1406 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1407 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1408 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1409 	if (CTX_INCLUDE_AARCH32_REGS) {
1410 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1411 	}
1412 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1413 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1414 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1415 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1416 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1417 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1418 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1419 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1420 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1421 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1422 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1423 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1424 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1425 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1426 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1427 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1428 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1429 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1430 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1431 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1432 }
1433 
1434 /*******************************************************************************
1435  * Save EL2 sysreg context
1436  ******************************************************************************/
1437 void cm_el2_sysregs_context_save(uint32_t security_state)
1438 {
1439 	cpu_context_t *ctx;
1440 	el2_sysregs_t *el2_sysregs_ctx;
1441 
1442 	ctx = cm_get_context(security_state);
1443 	assert(ctx != NULL);
1444 
1445 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1446 
1447 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1448 	el2_sysregs_context_save_gic(el2_sysregs_ctx, security_state);
1449 
1450 	if (is_feat_mte2_supported()) {
1451 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1452 	}
1453 
1454 	if (is_feat_mpam_supported()) {
1455 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1456 	}
1457 
1458 	if (is_feat_fgt_supported()) {
1459 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1460 	}
1461 
1462 	if (is_feat_fgt2_supported()) {
1463 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1464 	}
1465 
1466 	if (is_feat_ecv_v2_supported()) {
1467 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1468 	}
1469 
1470 	if (is_feat_vhe_supported()) {
1471 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1472 					read_contextidr_el2());
1473 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1474 	}
1475 
1476 	if (is_feat_ras_supported()) {
1477 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1478 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1479 	}
1480 
1481 	if (is_feat_nv2_supported()) {
1482 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1483 	}
1484 
1485 	if (is_feat_trf_supported()) {
1486 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1487 	}
1488 
1489 	if (is_feat_csv2_2_supported()) {
1490 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1491 					read_scxtnum_el2());
1492 	}
1493 
1494 	if (is_feat_hcx_supported()) {
1495 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1496 	}
1497 
1498 	if (is_feat_tcr2_supported()) {
1499 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1500 	}
1501 
1502 	if (is_feat_sxpie_supported()) {
1503 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1504 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1505 	}
1506 
1507 	if (is_feat_sxpoe_supported()) {
1508 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1509 	}
1510 
1511 	if (is_feat_brbe_supported()) {
1512 		write_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2, read_brbcr_el2());
1513 	}
1514 
1515 	if (is_feat_s2pie_supported()) {
1516 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1517 	}
1518 
1519 	if (is_feat_gcs_supported()) {
1520 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1521 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1522 	}
1523 
1524 	if (is_feat_sctlr2_supported()) {
1525 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1526 	}
1527 }
1528 
1529 /*******************************************************************************
1530  * Restore EL2 sysreg context
1531  ******************************************************************************/
1532 void cm_el2_sysregs_context_restore(uint32_t security_state)
1533 {
1534 	cpu_context_t *ctx;
1535 	el2_sysregs_t *el2_sysregs_ctx;
1536 
1537 	ctx = cm_get_context(security_state);
1538 	assert(ctx != NULL);
1539 
1540 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1541 
1542 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1543 	el2_sysregs_context_restore_gic(el2_sysregs_ctx, security_state);
1544 
1545 	if (is_feat_mte2_supported()) {
1546 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1547 	}
1548 
1549 	if (is_feat_mpam_supported()) {
1550 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1551 	}
1552 
1553 	if (is_feat_fgt_supported()) {
1554 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1555 	}
1556 
1557 	if (is_feat_fgt2_supported()) {
1558 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1559 	}
1560 
1561 	if (is_feat_ecv_v2_supported()) {
1562 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1563 	}
1564 
1565 	if (is_feat_vhe_supported()) {
1566 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1567 					contextidr_el2));
1568 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1569 	}
1570 
1571 	if (is_feat_ras_supported()) {
1572 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1573 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1574 	}
1575 
1576 	if (is_feat_nv2_supported()) {
1577 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1578 	}
1579 
1580 	if (is_feat_trf_supported()) {
1581 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1582 	}
1583 
1584 	if (is_feat_csv2_2_supported()) {
1585 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1586 					scxtnum_el2));
1587 	}
1588 
1589 	if (is_feat_hcx_supported()) {
1590 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1591 	}
1592 
1593 	if (is_feat_tcr2_supported()) {
1594 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1595 	}
1596 
1597 	if (is_feat_sxpie_supported()) {
1598 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1599 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1600 	}
1601 
1602 	if (is_feat_sxpoe_supported()) {
1603 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1604 	}
1605 
1606 	if (is_feat_s2pie_supported()) {
1607 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1608 	}
1609 
1610 	if (is_feat_gcs_supported()) {
1611 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1612 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1613 	}
1614 
1615 	if (is_feat_sctlr2_supported()) {
1616 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1617 	}
1618 
1619 	if (is_feat_brbe_supported()) {
1620 		write_brbcr_el2(read_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2));
1621 	}
1622 }
1623 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1624 
1625 /*******************************************************************************
1626  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1627  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1628  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1629  * cm_prepare_el3_exit function.
1630  ******************************************************************************/
1631 void cm_prepare_el3_exit_ns(void)
1632 {
1633 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1634 #if ENABLE_ASSERTIONS
1635 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1636 	assert(ctx != NULL);
1637 
1638 	/* Assert that EL2 is used. */
1639 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1640 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1641 			(el_implemented(2U) != EL_IMPL_NONE));
1642 #endif /* ENABLE_ASSERTIONS */
1643 
1644 	/* Restore EL2 sysreg contexts */
1645 	cm_el2_sysregs_context_restore(NON_SECURE);
1646 	cm_set_next_eret_context(NON_SECURE);
1647 #else
1648 	cm_prepare_el3_exit(NON_SECURE);
1649 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1650 }
1651 
1652 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1653 /*******************************************************************************
1654  * The next set of six functions are used by runtime services to save and restore
1655  * EL1 context on the 'cpu_context' structure for the specified security state.
1656  ******************************************************************************/
1657 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1658 {
1659 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1660 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1661 
1662 #if (!ERRATA_SPECULATIVE_AT)
1663 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1664 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1665 #endif /* (!ERRATA_SPECULATIVE_AT) */
1666 
1667 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1668 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1669 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1670 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1671 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1672 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1673 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1674 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1675 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1676 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1677 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1678 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1679 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1680 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1681 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1682 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1683 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1684 
1685 	write_el1_ctx_common_sysreg128(ctx, par_el1, read_par_el1());
1686 	write_el1_ctx_common_sysreg128(ctx, ttbr0_el1, read_ttbr0_el1());
1687 	write_el1_ctx_common_sysreg128(ctx, ttbr1_el1, read_ttbr1_el1());
1688 
1689 	if (CTX_INCLUDE_AARCH32_REGS) {
1690 		/* Save Aarch32 registers */
1691 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1692 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1693 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1694 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1695 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1696 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1697 	}
1698 
1699 	if (NS_TIMER_SWITCH) {
1700 		/* Save NS Timer registers */
1701 		write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1702 		write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1703 		write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1704 		write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1705 		write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1706 	}
1707 
1708 	if (is_feat_mte2_supported()) {
1709 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1710 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1711 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1712 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1713 	}
1714 
1715 	if (is_feat_ras_supported()) {
1716 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1717 	}
1718 
1719 	if (is_feat_s1pie_supported()) {
1720 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1721 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1722 	}
1723 
1724 	if (is_feat_s1poe_supported()) {
1725 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1726 	}
1727 
1728 	if (is_feat_s2poe_supported()) {
1729 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1730 	}
1731 
1732 	if (is_feat_tcr2_supported()) {
1733 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1734 	}
1735 
1736 	if (is_feat_trf_supported()) {
1737 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1738 	}
1739 
1740 	if (is_feat_csv2_2_supported()) {
1741 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1742 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1743 	}
1744 
1745 	if (is_feat_gcs_supported()) {
1746 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1747 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1748 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1749 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1750 	}
1751 
1752 	if (is_feat_the_supported()) {
1753 		write_el1_ctx_the_sysreg128(ctx, rcwmask_el1, read_rcwmask_el1());
1754 		write_el1_ctx_the_sysreg128(ctx, rcwsmask_el1, read_rcwsmask_el1());
1755 	}
1756 
1757 	if (is_feat_sctlr2_supported()) {
1758 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1759 	}
1760 
1761 	if (is_feat_ls64_accdata_supported()) {
1762 		write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1());
1763 	}
1764 }
1765 
1766 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1767 {
1768 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1769 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1770 
1771 #if (!ERRATA_SPECULATIVE_AT)
1772 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1773 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1774 #endif /* (!ERRATA_SPECULATIVE_AT) */
1775 
1776 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1777 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1778 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1779 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1780 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1781 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1782 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1783 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1784 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1785 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1786 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1787 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1788 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1789 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1790 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1791 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1792 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1793 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1794 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1795 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1796 
1797 	if (CTX_INCLUDE_AARCH32_REGS) {
1798 		/* Restore Aarch32 registers */
1799 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1800 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1801 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1802 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1803 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1804 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1805 	}
1806 
1807 	if (NS_TIMER_SWITCH) {
1808 		/* Restore NS Timer registers */
1809 		write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1810 		write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1811 		write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1812 		write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1813 		write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1814 	}
1815 
1816 	if (is_feat_mte2_supported()) {
1817 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1818 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1819 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1820 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1821 	}
1822 
1823 	if (is_feat_ras_supported()) {
1824 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1825 	}
1826 
1827 	if (is_feat_s1pie_supported()) {
1828 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1829 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1830 	}
1831 
1832 	if (is_feat_s1poe_supported()) {
1833 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1834 	}
1835 
1836 	if (is_feat_s2poe_supported()) {
1837 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1838 	}
1839 
1840 	if (is_feat_tcr2_supported()) {
1841 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1842 	}
1843 
1844 	if (is_feat_trf_supported()) {
1845 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1846 	}
1847 
1848 	if (is_feat_csv2_2_supported()) {
1849 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1850 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1851 	}
1852 
1853 	if (is_feat_gcs_supported()) {
1854 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1855 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1856 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1857 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1858 	}
1859 
1860 	if (is_feat_the_supported()) {
1861 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1862 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1863 	}
1864 
1865 	if (is_feat_sctlr2_supported()) {
1866 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1867 	}
1868 
1869 	if (is_feat_ls64_accdata_supported()) {
1870 		write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1));
1871 	}
1872 }
1873 
1874 /*******************************************************************************
1875  * The next couple of functions are used by runtime services to save and restore
1876  * EL1 context on the 'cpu_context' structure for the specified security state.
1877  ******************************************************************************/
1878 void cm_el1_sysregs_context_save(uint32_t security_state)
1879 {
1880 	cpu_context_t *ctx;
1881 
1882 	ctx = cm_get_context(security_state);
1883 	assert(ctx != NULL);
1884 
1885 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1886 
1887 #if IMAGE_BL31
1888 	if (security_state == SECURE) {
1889 		PUBLISH_EVENT(cm_exited_secure_world);
1890 	} else {
1891 		PUBLISH_EVENT(cm_exited_normal_world);
1892 	}
1893 #endif
1894 }
1895 
1896 void cm_el1_sysregs_context_restore(uint32_t security_state)
1897 {
1898 	cpu_context_t *ctx;
1899 
1900 	ctx = cm_get_context(security_state);
1901 	assert(ctx != NULL);
1902 
1903 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1904 
1905 #if IMAGE_BL31
1906 	if (security_state == SECURE) {
1907 		PUBLISH_EVENT(cm_entering_secure_world);
1908 	} else {
1909 		PUBLISH_EVENT(cm_entering_normal_world);
1910 	}
1911 #endif
1912 }
1913 
1914 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1915 
1916 /*******************************************************************************
1917  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1918  * given security state with the given entrypoint
1919  ******************************************************************************/
1920 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1921 {
1922 	cpu_context_t *ctx;
1923 	el3_state_t *state;
1924 
1925 	ctx = cm_get_context(security_state);
1926 	assert(ctx != NULL);
1927 
1928 	/* Populate EL3 state so that ERET jumps to the correct entry */
1929 	state = get_el3state_ctx(ctx);
1930 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1931 }
1932 
1933 /*******************************************************************************
1934  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1935  * pertaining to the given security state
1936  ******************************************************************************/
1937 void cm_set_elr_spsr_el3(uint32_t security_state,
1938 			uintptr_t entrypoint, uint32_t spsr)
1939 {
1940 	cpu_context_t *ctx;
1941 	el3_state_t *state;
1942 
1943 	ctx = cm_get_context(security_state);
1944 	assert(ctx != NULL);
1945 
1946 	/* Populate EL3 state so that ERET jumps to the correct entry */
1947 	state = get_el3state_ctx(ctx);
1948 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1949 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1950 }
1951 
1952 /*******************************************************************************
1953  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1954  * pertaining to the given security state using the value and bit position
1955  * specified in the parameters. It preserves all other bits.
1956  ******************************************************************************/
1957 void cm_write_scr_el3_bit(uint32_t security_state,
1958 			  uint32_t bit_pos,
1959 			  uint32_t value)
1960 {
1961 	cpu_context_t *ctx;
1962 	el3_state_t *state;
1963 	u_register_t scr_el3;
1964 
1965 	ctx = cm_get_context(security_state);
1966 	assert(ctx != NULL);
1967 
1968 	/* Ensure that the bit position is a valid one */
1969 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1970 
1971 	/* Ensure that the 'value' is only a bit wide */
1972 	assert(value <= 1U);
1973 
1974 	/*
1975 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1976 	 * and set it to its new value.
1977 	 */
1978 	state = get_el3state_ctx(ctx);
1979 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1980 	scr_el3 &= ~(1UL << bit_pos);
1981 	scr_el3 |= (u_register_t)value << bit_pos;
1982 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1983 }
1984 
1985 /*******************************************************************************
1986  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1987  * given security state.
1988  ******************************************************************************/
1989 u_register_t cm_get_scr_el3(uint32_t security_state)
1990 {
1991 	const cpu_context_t *ctx;
1992 	const el3_state_t *state;
1993 
1994 	ctx = cm_get_context(security_state);
1995 	assert(ctx != NULL);
1996 
1997 	/* Populate EL3 state so that ERET jumps to the correct entry */
1998 	state = get_el3state_ctx(ctx);
1999 	return read_ctx_reg(state, CTX_SCR_EL3);
2000 }
2001 
2002 /*******************************************************************************
2003  * This function is used to program the context that's used for exception
2004  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
2005  * the required security state
2006  ******************************************************************************/
2007 void cm_set_next_eret_context(uint32_t security_state)
2008 {
2009 	cpu_context_t *ctx;
2010 
2011 	ctx = cm_get_context(security_state);
2012 	assert(ctx != NULL);
2013 
2014 	cm_set_next_context(ctx);
2015 }
2016