xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision ed8f06ddda52bc0333f79e9ff798419e67771ae5)
1 /*
2  * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/pubsub_events.h>
24 #include <lib/extensions/amu.h>
25 #include <lib/extensions/brbe.h>
26 #include <lib/extensions/mpam.h>
27 #include <lib/extensions/pmuv3.h>
28 #include <lib/extensions/sme.h>
29 #include <lib/extensions/spe.h>
30 #include <lib/extensions/sve.h>
31 #include <lib/extensions/sys_reg_trace.h>
32 #include <lib/extensions/trbe.h>
33 #include <lib/extensions/trf.h>
34 #include <lib/utils.h>
35 
36 #if ENABLE_FEAT_TWED
37 /* Make sure delay value fits within the range(0-15) */
38 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
39 #endif /* ENABLE_FEAT_TWED */
40 
41 static void manage_extensions_nonsecure(cpu_context_t *ctx);
42 static void manage_extensions_secure(cpu_context_t *ctx);
43 
44 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
45 {
46 	u_register_t sctlr_elx, actlr_elx;
47 
48 	/*
49 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
50 	 * execution state setting all fields rather than relying on the hw.
51 	 * Some fields have architecturally UNKNOWN reset values and these are
52 	 * set to zero.
53 	 *
54 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
55 	 *
56 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
57 	 * required by PSCI specification)
58 	 */
59 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
60 	if (GET_RW(ep->spsr) == MODE_RW_64) {
61 		sctlr_elx |= SCTLR_EL1_RES1;
62 	} else {
63 		/*
64 		 * If the target execution state is AArch32 then the following
65 		 * fields need to be set.
66 		 *
67 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
68 		 *  instructions are not trapped to EL1.
69 		 *
70 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
71 		 *  instructions are not trapped to EL1.
72 		 *
73 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
74 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
75 		 */
76 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
77 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
78 	}
79 
80 #if ERRATA_A75_764081
81 	/*
82 	 * If workaround of errata 764081 for Cortex-A75 is used then set
83 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
84 	 */
85 	sctlr_elx |= SCTLR_IESB_BIT;
86 #endif
87 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
88 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
89 
90 	/*
91 	 * Base the context ACTLR_EL1 on the current value, as it is
92 	 * implementation defined. The context restore process will write
93 	 * the value from the context to the actual register and can cause
94 	 * problems for processor cores that don't expect certain bits to
95 	 * be zero.
96 	 */
97 	actlr_elx = read_actlr_el1();
98 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
99 }
100 
101 /******************************************************************************
102  * This function performs initializations that are specific to SECURE state
103  * and updates the cpu context specified by 'ctx'.
104  *****************************************************************************/
105 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
106 {
107 	u_register_t scr_el3;
108 	el3_state_t *state;
109 
110 	state = get_el3state_ctx(ctx);
111 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
112 
113 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
114 	/*
115 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
116 	 * indicated by the interrupt routing model for BL31.
117 	 */
118 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
119 #endif
120 
121 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
122 	/* Get Memory Tagging Extension support level */
123 	unsigned int mte = get_armv8_5_mte_support();
124 #endif
125 	/*
126 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
127 	 * is set, or when MTE is only implemented at EL0.
128 	 */
129 #if CTX_INCLUDE_MTE_REGS
130 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
131 	scr_el3 |= SCR_ATA_BIT;
132 #else
133 	if (mte == MTE_IMPLEMENTED_EL0) {
134 		scr_el3 |= SCR_ATA_BIT;
135 	}
136 #endif /* CTX_INCLUDE_MTE_REGS */
137 
138 	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
139 	if ((GET_EL(ep->spsr) == MODE_EL2) && is_feat_sel2_supported()) {
140 		if (GET_RW(ep->spsr) != MODE_RW_64) {
141 			ERROR("S-EL2 can not be used in AArch32\n.");
142 			panic();
143 		}
144 
145 		scr_el3 |= SCR_EEL2_BIT;
146 	}
147 
148 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
149 
150 	/*
151 	 * Initialize EL1 context registers unless SPMC is running
152 	 * at S-EL2.
153 	 */
154 #if !SPMD_SPM_AT_SEL2
155 	setup_el1_context(ctx, ep);
156 #endif
157 
158 	manage_extensions_secure(ctx);
159 }
160 
161 #if ENABLE_RME
162 /******************************************************************************
163  * This function performs initializations that are specific to REALM state
164  * and updates the cpu context specified by 'ctx'.
165  *****************************************************************************/
166 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
167 {
168 	u_register_t scr_el3;
169 	el3_state_t *state;
170 
171 	state = get_el3state_ctx(ctx);
172 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
173 
174 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
175 
176 	if (is_feat_csv2_2_supported()) {
177 		/* Enable access to the SCXTNUM_ELx registers. */
178 		scr_el3 |= SCR_EnSCXT_BIT;
179 	}
180 
181 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
182 }
183 #endif /* ENABLE_RME */
184 
185 /******************************************************************************
186  * This function performs initializations that are specific to NON-SECURE state
187  * and updates the cpu context specified by 'ctx'.
188  *****************************************************************************/
189 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
190 {
191 	u_register_t scr_el3;
192 	el3_state_t *state;
193 
194 	state = get_el3state_ctx(ctx);
195 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
196 
197 	/* SCR_NS: Set the NS bit */
198 	scr_el3 |= SCR_NS_BIT;
199 
200 #if !CTX_INCLUDE_PAUTH_REGS
201 	/*
202 	 * If the pointer authentication registers aren't saved during world
203 	 * switches the value of the registers can be leaked from the Secure to
204 	 * the Non-secure world. To prevent this, rather than enabling pointer
205 	 * authentication everywhere, we only enable it in the Non-secure world.
206 	 *
207 	 * If the Secure world wants to use pointer authentication,
208 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
209 	 */
210 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
211 #endif /* !CTX_INCLUDE_PAUTH_REGS */
212 
213 	/* Allow access to Allocation Tags when MTE is implemented. */
214 	scr_el3 |= SCR_ATA_BIT;
215 
216 #if HANDLE_EA_EL3_FIRST_NS
217 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
218 	scr_el3 |= SCR_EA_BIT;
219 #endif
220 
221 #if RAS_TRAP_NS_ERR_REC_ACCESS
222 	/*
223 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
224 	 * and RAS ERX registers from EL1 and EL2(from any security state)
225 	 * are trapped to EL3.
226 	 * Set here to trap only for NS EL1/EL2
227 	 *
228 	 */
229 	scr_el3 |= SCR_TERR_BIT;
230 #endif
231 
232 	if (is_feat_csv2_2_supported()) {
233 		/* Enable access to the SCXTNUM_ELx registers. */
234 		scr_el3 |= SCR_EnSCXT_BIT;
235 	}
236 
237 #ifdef IMAGE_BL31
238 	/*
239 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
240 	 *  indicated by the interrupt routing model for BL31.
241 	 */
242 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
243 #endif
244 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
245 
246 	/* Initialize EL1 context registers */
247 	setup_el1_context(ctx, ep);
248 
249 	/* Initialize EL2 context registers */
250 #if CTX_INCLUDE_EL2_REGS
251 
252 	/*
253 	 * Initialize SCTLR_EL2 context register using Endianness value
254 	 * taken from the entrypoint attribute.
255 	 */
256 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
257 	sctlr_el2 |= SCTLR_EL2_RES1;
258 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
259 			sctlr_el2);
260 
261 	/*
262 	 * Program the ICC_SRE_EL2 to make sure the correct bits are set
263 	 * when restoring NS context.
264 	 */
265 	u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
266 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
267 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2,
268 			icc_sre_el2);
269 
270 	if (is_feat_hcx_supported()) {
271 		/*
272 		 * Initialize register HCRX_EL2 with its init value.
273 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
274 		 * chance that this can lead to unexpected behavior in lower
275 		 * ELs that have not been updated since the introduction of
276 		 * this feature if not properly initialized, especially when
277 		 * it comes to those bits that enable/disable traps.
278 		 */
279 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HCRX_EL2,
280 			HCRX_EL2_INIT_VAL);
281 	}
282 
283 	if (is_feat_fgt_supported()) {
284 		/*
285 		 * Initialize HFG*_EL2 registers with a default value so legacy
286 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
287 		 * of initialization for this feature.
288 		 */
289 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGITR_EL2,
290 			HFGITR_EL2_INIT_VAL);
291 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGRTR_EL2,
292 			HFGRTR_EL2_INIT_VAL);
293 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGWTR_EL2,
294 			HFGWTR_EL2_INIT_VAL);
295 	}
296 #endif /* CTX_INCLUDE_EL2_REGS */
297 
298 	manage_extensions_nonsecure(ctx);
299 }
300 
301 /*******************************************************************************
302  * The following function performs initialization of the cpu_context 'ctx'
303  * for first use that is common to all security states, and sets the
304  * initial entrypoint state as specified by the entry_point_info structure.
305  *
306  * The EE and ST attributes are used to configure the endianness and secure
307  * timer availability for the new execution context.
308  ******************************************************************************/
309 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
310 {
311 	u_register_t scr_el3;
312 	el3_state_t *state;
313 	gp_regs_t *gp_regs;
314 
315 	/* Clear any residual register values from the context */
316 	zeromem(ctx, sizeof(*ctx));
317 
318 	/*
319 	 * SCR_EL3 was initialised during reset sequence in macro
320 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
321 	 * affect the next EL.
322 	 *
323 	 * The following fields are initially set to zero and then updated to
324 	 * the required value depending on the state of the SPSR_EL3 and the
325 	 * Security state and entrypoint attributes of the next EL.
326 	 */
327 	scr_el3 = read_scr();
328 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_EA_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
329 			SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
330 
331 	/*
332 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
333 	 *  Exception level as specified by SPSR.
334 	 */
335 	if (GET_RW(ep->spsr) == MODE_RW_64) {
336 		scr_el3 |= SCR_RW_BIT;
337 	}
338 
339 	/*
340 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
341 	 * Secure timer registers to EL3, from AArch64 state only, if specified
342 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
343 	 * bit always behaves as 1 (i.e. secure physical timer register access
344 	 * is not trapped)
345 	 */
346 	if (EP_GET_ST(ep->h.attr) != 0U) {
347 		scr_el3 |= SCR_ST_BIT;
348 	}
349 
350 	/*
351 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
352 	 * SCR_EL3.HXEn.
353 	 */
354 	if (is_feat_hcx_supported()) {
355 		scr_el3 |= SCR_HXEn_BIT;
356 	}
357 
358 	/*
359 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
360 	 * registers are trapped to EL3.
361 	 */
362 #if ENABLE_FEAT_RNG_TRAP
363 	scr_el3 |= SCR_TRNDR_BIT;
364 #endif
365 
366 #if FAULT_INJECTION_SUPPORT
367 	/* Enable fault injection from lower ELs */
368 	scr_el3 |= SCR_FIEN_BIT;
369 #endif
370 
371 	/*
372 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
373 	 */
374 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
375 		scr_el3 |= SCR_TCR2EN_BIT;
376 	}
377 
378 	/*
379 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
380 	 * registers for AArch64 if present.
381 	 */
382 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
383 		scr_el3 |= SCR_PIEN_BIT;
384 	}
385 
386 	/*
387 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
388 	 */
389 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
390 		scr_el3 |= SCR_GCSEn_BIT;
391 	}
392 
393 	/*
394 	 * CPTR_EL3 was initialized out of reset, copy that value to the
395 	 * context register.
396 	 */
397 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
398 
399 	/*
400 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
401 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
402 	 * next mode is Hyp.
403 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
404 	 * same conditions as HVC instructions and when the processor supports
405 	 * ARMv8.6-FGT.
406 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
407 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
408 	 * and when the processor supports ECV.
409 	 */
410 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
411 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
412 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
413 		scr_el3 |= SCR_HCE_BIT;
414 
415 		if (is_feat_fgt_supported()) {
416 			scr_el3 |= SCR_FGTEN_BIT;
417 		}
418 
419 		if (is_feat_ecv_supported()) {
420 			scr_el3 |= SCR_ECVEN_BIT;
421 		}
422 	}
423 
424 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
425 	if (is_feat_twed_supported()) {
426 		/* Set delay in SCR_EL3 */
427 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
428 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
429 				<< SCR_TWEDEL_SHIFT);
430 
431 		/* Enable WFE delay */
432 		scr_el3 |= SCR_TWEDEn_BIT;
433 	}
434 
435 	/*
436 	 * Populate EL3 state so that we've the right context
437 	 * before doing ERET
438 	 */
439 	state = get_el3state_ctx(ctx);
440 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
441 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
442 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
443 
444 	/*
445 	 * Store the X0-X7 value from the entrypoint into the context
446 	 * Use memcpy as we are in control of the layout of the structures
447 	 */
448 	gp_regs = get_gpregs_ctx(ctx);
449 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
450 }
451 
452 /*******************************************************************************
453  * Context management library initialization routine. This library is used by
454  * runtime services to share pointers to 'cpu_context' structures for secure
455  * non-secure and realm states. Management of the structures and their associated
456  * memory is not done by the context management library e.g. the PSCI service
457  * manages the cpu context used for entry from and exit to the non-secure state.
458  * The Secure payload dispatcher service manages the context(s) corresponding to
459  * the secure state. It also uses this library to get access to the non-secure
460  * state cpu context pointers.
461  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
462  * which will be used for programming an entry into a lower EL. The same context
463  * will be used to save state upon exception entry from that EL.
464  ******************************************************************************/
465 void __init cm_init(void)
466 {
467 	/*
468 	 * The context management library has only global data to initialize, but
469 	 * that will be done when the BSS is zeroed out.
470 	 */
471 }
472 
473 /*******************************************************************************
474  * This is the high-level function used to initialize the cpu_context 'ctx' for
475  * first use. It performs initializations that are common to all security states
476  * and initializations specific to the security state specified in 'ep'
477  ******************************************************************************/
478 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
479 {
480 	unsigned int security_state;
481 
482 	assert(ctx != NULL);
483 
484 	/*
485 	 * Perform initializations that are common
486 	 * to all security states
487 	 */
488 	setup_context_common(ctx, ep);
489 
490 	security_state = GET_SECURITY_STATE(ep->h.attr);
491 
492 	/* Perform security state specific initializations */
493 	switch (security_state) {
494 	case SECURE:
495 		setup_secure_context(ctx, ep);
496 		break;
497 #if ENABLE_RME
498 	case REALM:
499 		setup_realm_context(ctx, ep);
500 		break;
501 #endif
502 	case NON_SECURE:
503 		setup_ns_context(ctx, ep);
504 		break;
505 	default:
506 		ERROR("Invalid security state\n");
507 		panic();
508 		break;
509 	}
510 }
511 
512 /*******************************************************************************
513  * Enable architecture extensions for EL3 execution. This function only updates
514  * registers in-place which are expected to either never change or be
515  * overwritten by el3_exit.
516  ******************************************************************************/
517 #if IMAGE_BL31
518 void cm_manage_extensions_el3(void)
519 {
520 	if (is_feat_spe_supported()) {
521 		spe_init_el3();
522 	}
523 
524 	if (is_feat_amu_supported()) {
525 		amu_init_el3();
526 	}
527 
528 	if (is_feat_sme_supported()) {
529 		sme_init_el3();
530 	}
531 
532 	if (is_feat_mpam_supported()) {
533 		mpam_init_el3();
534 	}
535 
536 	if (is_feat_trbe_supported()) {
537 		trbe_init_el3();
538 	}
539 
540 	if (is_feat_brbe_supported()) {
541 		brbe_init_el3();
542 	}
543 
544 	if (is_feat_trf_supported()) {
545 		trf_init_el3();
546 	}
547 
548 	pmuv3_init_el3();
549 }
550 #endif /* IMAGE_BL31 */
551 
552 /*******************************************************************************
553  * Enable architecture extensions on first entry to Non-secure world.
554  ******************************************************************************/
555 static void manage_extensions_nonsecure(cpu_context_t *ctx)
556 {
557 #if IMAGE_BL31
558 	if (is_feat_amu_supported()) {
559 		amu_enable(ctx);
560 	}
561 
562 	/* Enable SVE and FPU/SIMD */
563 	if (is_feat_sve_supported()) {
564 		sve_enable(ctx);
565 	}
566 
567 	if (is_feat_sme_supported()) {
568 		sme_enable(ctx);
569 	}
570 
571 	if (is_feat_sys_reg_trace_supported()) {
572 		sys_reg_trace_enable(ctx);
573 	}
574 
575 	pmuv3_enable(ctx);
576 #endif /* IMAGE_BL31 */
577 }
578 
579 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
580 static __unused void enable_pauth_el2(void)
581 {
582 	u_register_t hcr_el2 = read_hcr_el2();
583 	/*
584 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
585 	 *  accessing key registers or using pointer authentication instructions
586 	 *  from lower ELs.
587 	 */
588 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
589 
590 	write_hcr_el2(hcr_el2);
591 }
592 
593 /*******************************************************************************
594  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
595  * world when EL2 is empty and unused.
596  ******************************************************************************/
597 static void manage_extensions_nonsecure_el2_unused(void)
598 {
599 #if IMAGE_BL31
600 	if (is_feat_spe_supported()) {
601 		spe_init_el2_unused();
602 	}
603 
604 	if (is_feat_amu_supported()) {
605 		amu_init_el2_unused();
606 	}
607 
608 	if (is_feat_mpam_supported()) {
609 		mpam_init_el2_unused();
610 	}
611 
612 	if (is_feat_trbe_supported()) {
613 		trbe_init_el2_unused();
614 	}
615 
616 	if (is_feat_sys_reg_trace_supported()) {
617 		sys_reg_trace_init_el2_unused();
618 	}
619 
620 	if (is_feat_trf_supported()) {
621 		trf_init_el2_unused();
622 	}
623 
624 	pmuv3_init_el2_unused();
625 
626 	if (is_feat_sve_supported()) {
627 		sve_init_el2_unused();
628 	}
629 
630 	if (is_feat_sme_supported()) {
631 		sme_init_el2_unused();
632 	}
633 
634 #if ENABLE_PAUTH
635 	enable_pauth_el2();
636 #endif /* ENABLE_PAUTH */
637 #endif /* IMAGE_BL31 */
638 }
639 
640 /*******************************************************************************
641  * Enable architecture extensions on first entry to Secure world.
642  ******************************************************************************/
643 static void manage_extensions_secure(cpu_context_t *ctx)
644 {
645 #if IMAGE_BL31
646 	if (is_feat_sve_supported()) {
647 		if (ENABLE_SVE_FOR_SWD) {
648 		/*
649 		 * Enable SVE and FPU in secure context, secure manager must
650 		 * ensure that the SVE and FPU register contexts are properly
651 		 * managed.
652 		 */
653 			sve_enable(ctx);
654 		} else {
655 		/*
656 		 * Disable SVE and FPU in secure context so non-secure world
657 		 * can safely use them.
658 		 */
659 			sve_disable(ctx);
660 		}
661 	}
662 
663 	if (is_feat_sme_supported()) {
664 		if (ENABLE_SME_FOR_SWD) {
665 		/*
666 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
667 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
668 		 */
669 			sme_init_el3();
670 			sme_enable(ctx);
671 		} else {
672 		/*
673 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
674 		 * world can safely use the associated registers.
675 		 */
676 			sme_disable(ctx);
677 		}
678 	}
679 
680 	/* NS can access this but Secure shouldn't */
681 	if (is_feat_sys_reg_trace_supported()) {
682 		sys_reg_trace_disable(ctx);
683 	}
684 #endif /* IMAGE_BL31 */
685 }
686 
687 /*******************************************************************************
688  * The following function initializes the cpu_context for a CPU specified by
689  * its `cpu_idx` for first use, and sets the initial entrypoint state as
690  * specified by the entry_point_info structure.
691  ******************************************************************************/
692 void cm_init_context_by_index(unsigned int cpu_idx,
693 			      const entry_point_info_t *ep)
694 {
695 	cpu_context_t *ctx;
696 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
697 	cm_setup_context(ctx, ep);
698 }
699 
700 /*******************************************************************************
701  * The following function initializes the cpu_context for the current CPU
702  * for first use, and sets the initial entrypoint state as specified by the
703  * entry_point_info structure.
704  ******************************************************************************/
705 void cm_init_my_context(const entry_point_info_t *ep)
706 {
707 	cpu_context_t *ctx;
708 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
709 	cm_setup_context(ctx, ep);
710 }
711 
712 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
713 static __unused void init_nonsecure_el2_unused(cpu_context_t *ctx)
714 {
715 	u_register_t hcr_el2 = HCR_RESET_VAL;
716 	u_register_t mdcr_el2;
717 	u_register_t scr_el3;
718 
719 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
720 
721 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
722 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
723 		hcr_el2 |= HCR_RW_BIT;
724 	}
725 
726 	write_hcr_el2(hcr_el2);
727 
728 	/*
729 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
730 	 * All fields have architecturally UNKNOWN reset values.
731 	 */
732 	write_cptr_el2(CPTR_EL2_RESET_VAL);
733 
734 	/*
735 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
736 	 * reset and are set to zero except for field(s) listed below.
737 	 *
738 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
739 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
740 	 *
741 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
742 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
743 	 */
744 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
745 
746 	/*
747 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
748 	 * UNKNOWN value.
749 	 */
750 	write_cntvoff_el2(0);
751 
752 	/*
753 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
754 	 * respectively.
755 	 */
756 	write_vpidr_el2(read_midr_el1());
757 	write_vmpidr_el2(read_mpidr_el1());
758 
759 	/*
760 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
761 	 *
762 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
763 	 * translation is disabled, cache maintenance operations depend on the
764 	 * VMID.
765 	 *
766 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
767 	 * disabled.
768 	 */
769 	write_vttbr_el2(VTTBR_RESET_VAL &
770 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
771 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
772 
773 	/*
774 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
775 	 * Some fields are architecturally UNKNOWN on reset.
776 	 *
777 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
778 	 * register accesses to the Debug ROM registers are not trapped to EL2.
779 	 *
780 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
781 	 * accesses to the powerdown debug registers are not trapped to EL2.
782 	 *
783 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
784 	 * debug registers do not trap to EL2.
785 	 *
786 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
787 	 * EL2.
788 	 */
789 	mdcr_el2 = MDCR_EL2_RESET_VAL &
790 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
791 		   MDCR_EL2_TDE_BIT);
792 
793 	write_mdcr_el2(mdcr_el2);
794 
795 	/*
796 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
797 	 *
798 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
799 	 * EL1 accesses to System registers do not trap to EL2.
800 	 */
801 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
802 
803 	/*
804 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
805 	 * reset.
806 	 *
807 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
808 	 * and prevent timer interrupts.
809 	 */
810 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
811 
812 	manage_extensions_nonsecure_el2_unused();
813 }
814 
815 /*******************************************************************************
816  * Prepare the CPU system registers for first entry into realm, secure, or
817  * normal world.
818  *
819  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
820  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
821  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
822  * For all entries, the EL1 registers are initialized from the cpu_context
823  ******************************************************************************/
824 void cm_prepare_el3_exit(uint32_t security_state)
825 {
826 	u_register_t sctlr_elx, scr_el3;
827 	cpu_context_t *ctx = cm_get_context(security_state);
828 
829 	assert(ctx != NULL);
830 
831 	if (security_state == NON_SECURE) {
832 		uint64_t el2_implemented = el_implemented(2);
833 
834 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
835 						 CTX_SCR_EL3);
836 
837 		if (((scr_el3 & SCR_HCE_BIT) != 0U)
838 			|| (el2_implemented != EL_IMPL_NONE)) {
839 			/*
840 			 * If context is not being used for EL2, initialize
841 			 * HCRX_EL2 with its init value here.
842 			 */
843 			if (is_feat_hcx_supported()) {
844 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
845 			}
846 
847 			/*
848 			 * Initialize Fine-grained trap registers introduced
849 			 * by FEAT_FGT so all traps are initially disabled when
850 			 * switching to EL2 or a lower EL, preventing undesired
851 			 * behavior.
852 			 */
853 			if (is_feat_fgt_supported()) {
854 				/*
855 				 * Initialize HFG*_EL2 registers with a default
856 				 * value so legacy systems unaware of FEAT_FGT
857 				 * do not get trapped due to their lack of
858 				 * initialization for this feature.
859 				 */
860 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
861 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
862 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
863 			}
864 		}
865 
866 
867 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
868 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
869 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
870 							   CTX_SCTLR_EL1);
871 			sctlr_elx &= SCTLR_EE_BIT;
872 			sctlr_elx |= SCTLR_EL2_RES1;
873 #if ERRATA_A75_764081
874 			/*
875 			 * If workaround of errata 764081 for Cortex-A75 is used
876 			 * then set SCTLR_EL2.IESB to enable Implicit Error
877 			 * Synchronization Barrier.
878 			 */
879 			sctlr_elx |= SCTLR_IESB_BIT;
880 #endif
881 			write_sctlr_el2(sctlr_elx);
882 		} else if (el2_implemented != EL_IMPL_NONE) {
883 			init_nonsecure_el2_unused(ctx);
884 		}
885 	}
886 
887 	cm_el1_sysregs_context_restore(security_state);
888 	cm_set_next_eret_context(security_state);
889 }
890 
891 #if CTX_INCLUDE_EL2_REGS
892 
893 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
894 {
895 	write_ctx_reg(ctx, CTX_HDFGRTR_EL2, read_hdfgrtr_el2());
896 	if (is_feat_amu_supported()) {
897 		write_ctx_reg(ctx, CTX_HAFGRTR_EL2, read_hafgrtr_el2());
898 	}
899 	write_ctx_reg(ctx, CTX_HDFGWTR_EL2, read_hdfgwtr_el2());
900 	write_ctx_reg(ctx, CTX_HFGITR_EL2, read_hfgitr_el2());
901 	write_ctx_reg(ctx, CTX_HFGRTR_EL2, read_hfgrtr_el2());
902 	write_ctx_reg(ctx, CTX_HFGWTR_EL2, read_hfgwtr_el2());
903 }
904 
905 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
906 {
907 	write_hdfgrtr_el2(read_ctx_reg(ctx, CTX_HDFGRTR_EL2));
908 	if (is_feat_amu_supported()) {
909 		write_hafgrtr_el2(read_ctx_reg(ctx, CTX_HAFGRTR_EL2));
910 	}
911 	write_hdfgwtr_el2(read_ctx_reg(ctx, CTX_HDFGWTR_EL2));
912 	write_hfgitr_el2(read_ctx_reg(ctx, CTX_HFGITR_EL2));
913 	write_hfgrtr_el2(read_ctx_reg(ctx, CTX_HFGRTR_EL2));
914 	write_hfgwtr_el2(read_ctx_reg(ctx, CTX_HFGWTR_EL2));
915 }
916 
917 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
918 {
919 	u_register_t mpam_idr = read_mpamidr_el1();
920 
921 	write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2());
922 
923 	/*
924 	 * The context registers that we intend to save would be part of the
925 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
926 	 */
927 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
928 		return;
929 	}
930 
931 	/*
932 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
933 	 * MPAMIDR_HAS_HCR_BIT == 1.
934 	 */
935 	write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2());
936 	write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2());
937 	write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2());
938 
939 	/*
940 	 * The number of MPAMVPM registers is implementation defined, their
941 	 * number is stored in the MPAMIDR_EL1 register.
942 	 */
943 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
944 	case 7:
945 		write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2());
946 		__fallthrough;
947 	case 6:
948 		write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2());
949 		__fallthrough;
950 	case 5:
951 		write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2());
952 		__fallthrough;
953 	case 4:
954 		write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2());
955 		__fallthrough;
956 	case 3:
957 		write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2());
958 		__fallthrough;
959 	case 2:
960 		write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2());
961 		__fallthrough;
962 	case 1:
963 		write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2());
964 		break;
965 	}
966 }
967 
968 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
969 {
970 	u_register_t mpam_idr = read_mpamidr_el1();
971 
972 	write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2));
973 
974 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
975 		return;
976 	}
977 
978 	write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2));
979 	write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2));
980 	write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2));
981 
982 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
983 	case 7:
984 		write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2));
985 		__fallthrough;
986 	case 6:
987 		write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2));
988 		__fallthrough;
989 	case 5:
990 		write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2));
991 		__fallthrough;
992 	case 4:
993 		write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2));
994 		__fallthrough;
995 	case 3:
996 		write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2));
997 		__fallthrough;
998 	case 2:
999 		write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2));
1000 		__fallthrough;
1001 	case 1:
1002 		write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2));
1003 		break;
1004 	}
1005 }
1006 
1007 /* -----------------------------------------------------
1008  * The following registers are not added:
1009  * AMEVCNTVOFF0<n>_EL2
1010  * AMEVCNTVOFF1<n>_EL2
1011  * ICH_AP0R<n>_EL2
1012  * ICH_AP1R<n>_EL2
1013  * ICH_LR<n>_EL2
1014  * -----------------------------------------------------
1015  */
1016 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1017 {
1018 	write_ctx_reg(ctx, CTX_ACTLR_EL2, read_actlr_el2());
1019 	write_ctx_reg(ctx, CTX_AFSR0_EL2, read_afsr0_el2());
1020 	write_ctx_reg(ctx, CTX_AFSR1_EL2, read_afsr1_el2());
1021 	write_ctx_reg(ctx, CTX_AMAIR_EL2, read_amair_el2());
1022 	write_ctx_reg(ctx, CTX_CNTHCTL_EL2, read_cnthctl_el2());
1023 	write_ctx_reg(ctx, CTX_CNTVOFF_EL2, read_cntvoff_el2());
1024 	write_ctx_reg(ctx, CTX_CPTR_EL2, read_cptr_el2());
1025 	if (CTX_INCLUDE_AARCH32_REGS) {
1026 		write_ctx_reg(ctx, CTX_DBGVCR32_EL2, read_dbgvcr32_el2());
1027 	}
1028 	write_ctx_reg(ctx, CTX_ELR_EL2, read_elr_el2());
1029 	write_ctx_reg(ctx, CTX_ESR_EL2, read_esr_el2());
1030 	write_ctx_reg(ctx, CTX_FAR_EL2, read_far_el2());
1031 	write_ctx_reg(ctx, CTX_HACR_EL2, read_hacr_el2());
1032 	write_ctx_reg(ctx, CTX_HCR_EL2, read_hcr_el2());
1033 	write_ctx_reg(ctx, CTX_HPFAR_EL2, read_hpfar_el2());
1034 	write_ctx_reg(ctx, CTX_HSTR_EL2, read_hstr_el2());
1035 	write_ctx_reg(ctx, CTX_ICC_SRE_EL2, read_icc_sre_el2());
1036 	write_ctx_reg(ctx, CTX_ICH_HCR_EL2, read_ich_hcr_el2());
1037 	write_ctx_reg(ctx, CTX_ICH_VMCR_EL2, read_ich_vmcr_el2());
1038 	write_ctx_reg(ctx, CTX_MAIR_EL2, read_mair_el2());
1039 	write_ctx_reg(ctx, CTX_MDCR_EL2, read_mdcr_el2());
1040 	write_ctx_reg(ctx, CTX_SCTLR_EL2, read_sctlr_el2());
1041 	write_ctx_reg(ctx, CTX_SPSR_EL2, read_spsr_el2());
1042 	write_ctx_reg(ctx, CTX_SP_EL2, read_sp_el2());
1043 	write_ctx_reg(ctx, CTX_TCR_EL2, read_tcr_el2());
1044 	write_ctx_reg(ctx, CTX_TPIDR_EL2, read_tpidr_el2());
1045 	write_ctx_reg(ctx, CTX_TTBR0_EL2, read_ttbr0_el2());
1046 	write_ctx_reg(ctx, CTX_VBAR_EL2, read_vbar_el2());
1047 	write_ctx_reg(ctx, CTX_VMPIDR_EL2, read_vmpidr_el2());
1048 	write_ctx_reg(ctx, CTX_VPIDR_EL2, read_vpidr_el2());
1049 	write_ctx_reg(ctx, CTX_VTCR_EL2, read_vtcr_el2());
1050 	write_ctx_reg(ctx, CTX_VTTBR_EL2, read_vttbr_el2());
1051 }
1052 
1053 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1054 {
1055 	write_actlr_el2(read_ctx_reg(ctx, CTX_ACTLR_EL2));
1056 	write_afsr0_el2(read_ctx_reg(ctx, CTX_AFSR0_EL2));
1057 	write_afsr1_el2(read_ctx_reg(ctx, CTX_AFSR1_EL2));
1058 	write_amair_el2(read_ctx_reg(ctx, CTX_AMAIR_EL2));
1059 	write_cnthctl_el2(read_ctx_reg(ctx, CTX_CNTHCTL_EL2));
1060 	write_cntvoff_el2(read_ctx_reg(ctx, CTX_CNTVOFF_EL2));
1061 	write_cptr_el2(read_ctx_reg(ctx, CTX_CPTR_EL2));
1062 	if (CTX_INCLUDE_AARCH32_REGS) {
1063 		write_dbgvcr32_el2(read_ctx_reg(ctx, CTX_DBGVCR32_EL2));
1064 	}
1065 	write_elr_el2(read_ctx_reg(ctx, CTX_ELR_EL2));
1066 	write_esr_el2(read_ctx_reg(ctx, CTX_ESR_EL2));
1067 	write_far_el2(read_ctx_reg(ctx, CTX_FAR_EL2));
1068 	write_hacr_el2(read_ctx_reg(ctx, CTX_HACR_EL2));
1069 	write_hcr_el2(read_ctx_reg(ctx, CTX_HCR_EL2));
1070 	write_hpfar_el2(read_ctx_reg(ctx, CTX_HPFAR_EL2));
1071 	write_hstr_el2(read_ctx_reg(ctx, CTX_HSTR_EL2));
1072 	write_icc_sre_el2(read_ctx_reg(ctx, CTX_ICC_SRE_EL2));
1073 	write_ich_hcr_el2(read_ctx_reg(ctx, CTX_ICH_HCR_EL2));
1074 	write_ich_vmcr_el2(read_ctx_reg(ctx, CTX_ICH_VMCR_EL2));
1075 	write_mair_el2(read_ctx_reg(ctx, CTX_MAIR_EL2));
1076 	write_mdcr_el2(read_ctx_reg(ctx, CTX_MDCR_EL2));
1077 	write_sctlr_el2(read_ctx_reg(ctx, CTX_SCTLR_EL2));
1078 	write_spsr_el2(read_ctx_reg(ctx, CTX_SPSR_EL2));
1079 	write_sp_el2(read_ctx_reg(ctx, CTX_SP_EL2));
1080 	write_tcr_el2(read_ctx_reg(ctx, CTX_TCR_EL2));
1081 	write_tpidr_el2(read_ctx_reg(ctx, CTX_TPIDR_EL2));
1082 	write_ttbr0_el2(read_ctx_reg(ctx, CTX_TTBR0_EL2));
1083 	write_vbar_el2(read_ctx_reg(ctx, CTX_VBAR_EL2));
1084 	write_vmpidr_el2(read_ctx_reg(ctx, CTX_VMPIDR_EL2));
1085 	write_vpidr_el2(read_ctx_reg(ctx, CTX_VPIDR_EL2));
1086 	write_vtcr_el2(read_ctx_reg(ctx, CTX_VTCR_EL2));
1087 	write_vttbr_el2(read_ctx_reg(ctx, CTX_VTTBR_EL2));
1088 }
1089 
1090 /*******************************************************************************
1091  * Save EL2 sysreg context
1092  ******************************************************************************/
1093 void cm_el2_sysregs_context_save(uint32_t security_state)
1094 {
1095 	u_register_t scr_el3 = read_scr();
1096 
1097 	/*
1098 	 * Always save the non-secure and realm EL2 context, only save the
1099 	 * S-EL2 context if S-EL2 is enabled.
1100 	 */
1101 	if ((security_state != SECURE) ||
1102 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
1103 		cpu_context_t *ctx;
1104 		el2_sysregs_t *el2_sysregs_ctx;
1105 
1106 		ctx = cm_get_context(security_state);
1107 		assert(ctx != NULL);
1108 
1109 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1110 
1111 		el2_sysregs_context_save_common(el2_sysregs_ctx);
1112 #if CTX_INCLUDE_MTE_REGS
1113 		write_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2, read_tfsr_el2());
1114 #endif
1115 		if (is_feat_mpam_supported()) {
1116 			el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1117 		}
1118 
1119 		if (is_feat_fgt_supported()) {
1120 			el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1121 		}
1122 
1123 		if (is_feat_ecv_v2_supported()) {
1124 			write_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2,
1125 				      read_cntpoff_el2());
1126 		}
1127 
1128 		if (is_feat_vhe_supported()) {
1129 			write_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2,
1130 				      read_contextidr_el2());
1131 			write_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2,
1132 				      read_ttbr1_el2());
1133 		}
1134 
1135 		if (is_feat_ras_supported()) {
1136 			write_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2,
1137 				      read_vdisr_el2());
1138 			write_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2,
1139 				      read_vsesr_el2());
1140 		}
1141 
1142 		if (is_feat_nv2_supported()) {
1143 			write_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2,
1144 				      read_vncr_el2());
1145 		}
1146 
1147 		if (is_feat_trf_supported()) {
1148 			write_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2, read_trfcr_el2());
1149 		}
1150 
1151 		if (is_feat_csv2_2_supported()) {
1152 			write_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2,
1153 				      read_scxtnum_el2());
1154 		}
1155 
1156 		if (is_feat_hcx_supported()) {
1157 			write_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2, read_hcrx_el2());
1158 		}
1159 		if (is_feat_tcr2_supported()) {
1160 			write_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2, read_tcr2_el2());
1161 		}
1162 		if (is_feat_sxpie_supported()) {
1163 			write_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2, read_pire0_el2());
1164 			write_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2, read_pir_el2());
1165 		}
1166 		if (is_feat_s2pie_supported()) {
1167 			write_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2, read_s2pir_el2());
1168 		}
1169 		if (is_feat_sxpoe_supported()) {
1170 			write_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2, read_por_el2());
1171 		}
1172 		if (is_feat_gcs_supported()) {
1173 			write_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2, read_gcspr_el2());
1174 			write_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2, read_gcscr_el2());
1175 		}
1176 	}
1177 }
1178 
1179 /*******************************************************************************
1180  * Restore EL2 sysreg context
1181  ******************************************************************************/
1182 void cm_el2_sysregs_context_restore(uint32_t security_state)
1183 {
1184 	u_register_t scr_el3 = read_scr();
1185 
1186 	/*
1187 	 * Always restore the non-secure and realm EL2 context, only restore the
1188 	 * S-EL2 context if S-EL2 is enabled.
1189 	 */
1190 	if ((security_state != SECURE) ||
1191 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
1192 		cpu_context_t *ctx;
1193 		el2_sysregs_t *el2_sysregs_ctx;
1194 
1195 		ctx = cm_get_context(security_state);
1196 		assert(ctx != NULL);
1197 
1198 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1199 
1200 		el2_sysregs_context_restore_common(el2_sysregs_ctx);
1201 #if CTX_INCLUDE_MTE_REGS
1202 		write_tfsr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2));
1203 #endif
1204 		if (is_feat_mpam_supported()) {
1205 			el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1206 		}
1207 
1208 		if (is_feat_fgt_supported()) {
1209 			el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1210 		}
1211 
1212 		if (is_feat_ecv_v2_supported()) {
1213 			write_cntpoff_el2(read_ctx_reg(el2_sysregs_ctx,
1214 						       CTX_CNTPOFF_EL2));
1215 		}
1216 
1217 		if (is_feat_vhe_supported()) {
1218 			write_contextidr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2));
1219 			write_ttbr1_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2));
1220 		}
1221 
1222 		if (is_feat_ras_supported()) {
1223 			write_vdisr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2));
1224 			write_vsesr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2));
1225 		}
1226 
1227 		if (is_feat_nv2_supported()) {
1228 			write_vncr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2));
1229 		}
1230 		if (is_feat_trf_supported()) {
1231 			write_trfcr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2));
1232 		}
1233 
1234 		if (is_feat_csv2_2_supported()) {
1235 			write_scxtnum_el2(read_ctx_reg(el2_sysregs_ctx,
1236 						       CTX_SCXTNUM_EL2));
1237 		}
1238 
1239 		if (is_feat_hcx_supported()) {
1240 			write_hcrx_el2(read_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2));
1241 		}
1242 		if (is_feat_tcr2_supported()) {
1243 			write_tcr2_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2));
1244 		}
1245 		if (is_feat_sxpie_supported()) {
1246 			write_pire0_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2));
1247 			write_pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2));
1248 		}
1249 		if (is_feat_s2pie_supported()) {
1250 			write_s2pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2));
1251 		}
1252 		if (is_feat_sxpoe_supported()) {
1253 			write_por_el2(read_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2));
1254 		}
1255 		if (is_feat_gcs_supported()) {
1256 			write_gcscr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2));
1257 			write_gcspr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2));
1258 		}
1259 	}
1260 }
1261 #endif /* CTX_INCLUDE_EL2_REGS */
1262 
1263 /*******************************************************************************
1264  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1265  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1266  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1267  * cm_prepare_el3_exit function.
1268  ******************************************************************************/
1269 void cm_prepare_el3_exit_ns(void)
1270 {
1271 #if CTX_INCLUDE_EL2_REGS
1272 #if ENABLE_ASSERTIONS
1273 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1274 	assert(ctx != NULL);
1275 
1276 	/* Assert that EL2 is used. */
1277 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1278 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1279 			(el_implemented(2U) != EL_IMPL_NONE));
1280 #endif /* ENABLE_ASSERTIONS */
1281 
1282 	/*
1283 	 * Set the NS bit to be able to access the ICC_SRE_EL2
1284 	 * register when restoring context.
1285 	 */
1286 	write_scr_el3(read_scr_el3() | SCR_NS_BIT);
1287 
1288 	/*
1289 	 * Ensure the NS bit change is committed before the EL2/EL1
1290 	 * state restoration.
1291 	 */
1292 	isb();
1293 
1294 	/* Restore EL2 and EL1 sysreg contexts */
1295 	cm_el2_sysregs_context_restore(NON_SECURE);
1296 	cm_el1_sysregs_context_restore(NON_SECURE);
1297 	cm_set_next_eret_context(NON_SECURE);
1298 #else
1299 	cm_prepare_el3_exit(NON_SECURE);
1300 #endif /* CTX_INCLUDE_EL2_REGS */
1301 }
1302 
1303 /*******************************************************************************
1304  * The next four functions are used by runtime services to save and restore
1305  * EL1 context on the 'cpu_context' structure for the specified security
1306  * state.
1307  ******************************************************************************/
1308 void cm_el1_sysregs_context_save(uint32_t security_state)
1309 {
1310 	cpu_context_t *ctx;
1311 
1312 	ctx = cm_get_context(security_state);
1313 	assert(ctx != NULL);
1314 
1315 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1316 
1317 #if IMAGE_BL31
1318 	if (security_state == SECURE)
1319 		PUBLISH_EVENT(cm_exited_secure_world);
1320 	else
1321 		PUBLISH_EVENT(cm_exited_normal_world);
1322 #endif
1323 }
1324 
1325 void cm_el1_sysregs_context_restore(uint32_t security_state)
1326 {
1327 	cpu_context_t *ctx;
1328 
1329 	ctx = cm_get_context(security_state);
1330 	assert(ctx != NULL);
1331 
1332 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1333 
1334 #if IMAGE_BL31
1335 	if (security_state == SECURE)
1336 		PUBLISH_EVENT(cm_entering_secure_world);
1337 	else
1338 		PUBLISH_EVENT(cm_entering_normal_world);
1339 #endif
1340 }
1341 
1342 /*******************************************************************************
1343  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1344  * given security state with the given entrypoint
1345  ******************************************************************************/
1346 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1347 {
1348 	cpu_context_t *ctx;
1349 	el3_state_t *state;
1350 
1351 	ctx = cm_get_context(security_state);
1352 	assert(ctx != NULL);
1353 
1354 	/* Populate EL3 state so that ERET jumps to the correct entry */
1355 	state = get_el3state_ctx(ctx);
1356 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1357 }
1358 
1359 /*******************************************************************************
1360  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1361  * pertaining to the given security state
1362  ******************************************************************************/
1363 void cm_set_elr_spsr_el3(uint32_t security_state,
1364 			uintptr_t entrypoint, uint32_t spsr)
1365 {
1366 	cpu_context_t *ctx;
1367 	el3_state_t *state;
1368 
1369 	ctx = cm_get_context(security_state);
1370 	assert(ctx != NULL);
1371 
1372 	/* Populate EL3 state so that ERET jumps to the correct entry */
1373 	state = get_el3state_ctx(ctx);
1374 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1375 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1376 }
1377 
1378 /*******************************************************************************
1379  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1380  * pertaining to the given security state using the value and bit position
1381  * specified in the parameters. It preserves all other bits.
1382  ******************************************************************************/
1383 void cm_write_scr_el3_bit(uint32_t security_state,
1384 			  uint32_t bit_pos,
1385 			  uint32_t value)
1386 {
1387 	cpu_context_t *ctx;
1388 	el3_state_t *state;
1389 	u_register_t scr_el3;
1390 
1391 	ctx = cm_get_context(security_state);
1392 	assert(ctx != NULL);
1393 
1394 	/* Ensure that the bit position is a valid one */
1395 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1396 
1397 	/* Ensure that the 'value' is only a bit wide */
1398 	assert(value <= 1U);
1399 
1400 	/*
1401 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1402 	 * and set it to its new value.
1403 	 */
1404 	state = get_el3state_ctx(ctx);
1405 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1406 	scr_el3 &= ~(1UL << bit_pos);
1407 	scr_el3 |= (u_register_t)value << bit_pos;
1408 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1409 }
1410 
1411 /*******************************************************************************
1412  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1413  * given security state.
1414  ******************************************************************************/
1415 u_register_t cm_get_scr_el3(uint32_t security_state)
1416 {
1417 	cpu_context_t *ctx;
1418 	el3_state_t *state;
1419 
1420 	ctx = cm_get_context(security_state);
1421 	assert(ctx != NULL);
1422 
1423 	/* Populate EL3 state so that ERET jumps to the correct entry */
1424 	state = get_el3state_ctx(ctx);
1425 	return read_ctx_reg(state, CTX_SCR_EL3);
1426 }
1427 
1428 /*******************************************************************************
1429  * This function is used to program the context that's used for exception
1430  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1431  * the required security state
1432  ******************************************************************************/
1433 void cm_set_next_eret_context(uint32_t security_state)
1434 {
1435 	cpu_context_t *ctx;
1436 
1437 	ctx = cm_get_context(security_state);
1438 	assert(ctx != NULL);
1439 
1440 	cm_set_next_context(ctx);
1441 }
1442