xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision ec767c1b99675fbb50ef1b2fdb2d38e881e4789d)
1 /*
2  * Copyright (c) 2013-2021, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/el3_runtime/pubsub_events.h>
21 #include <lib/extensions/amu.h>
22 #include <lib/extensions/mpam.h>
23 #include <lib/extensions/spe.h>
24 #include <lib/extensions/sve.h>
25 #include <lib/extensions/twed.h>
26 #include <lib/utils.h>
27 
28 
29 /*******************************************************************************
30  * Context management library initialisation routine. This library is used by
31  * runtime services to share pointers to 'cpu_context' structures for the secure
32  * and non-secure states. Management of the structures and their associated
33  * memory is not done by the context management library e.g. the PSCI service
34  * manages the cpu context used for entry from and exit to the non-secure state.
35  * The Secure payload dispatcher service manages the context(s) corresponding to
36  * the secure state. It also uses this library to get access to the non-secure
37  * state cpu context pointers.
38  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
39  * which will used for programming an entry into a lower EL. The same context
40  * will used to save state upon exception entry from that EL.
41  ******************************************************************************/
42 void __init cm_init(void)
43 {
44 	/*
45 	 * The context management library has only global data to intialize, but
46 	 * that will be done when the BSS is zeroed out
47 	 */
48 }
49 
50 /*******************************************************************************
51  * The following function initializes the cpu_context 'ctx' for
52  * first use, and sets the initial entrypoint state as specified by the
53  * entry_point_info structure.
54  *
55  * The security state to initialize is determined by the SECURE attribute
56  * of the entry_point_info.
57  *
58  * The EE and ST attributes are used to configure the endianness and secure
59  * timer availability for the new execution context.
60  *
61  * To prepare the register state for entry call cm_prepare_el3_exit() and
62  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
63  * cm_el1_sysregs_context_restore().
64  ******************************************************************************/
65 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
66 {
67 	unsigned int security_state;
68 	u_register_t scr_el3;
69 	el3_state_t *state;
70 	gp_regs_t *gp_regs;
71 	u_register_t sctlr_elx, actlr_elx;
72 
73 	assert(ctx != NULL);
74 
75 	security_state = GET_SECURITY_STATE(ep->h.attr);
76 
77 	/* Clear any residual register values from the context */
78 	zeromem(ctx, sizeof(*ctx));
79 
80 	/*
81 	 * SCR_EL3 was initialised during reset sequence in macro
82 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
83 	 * affect the next EL.
84 	 *
85 	 * The following fields are initially set to zero and then updated to
86 	 * the required value depending on the state of the SPSR_EL3 and the
87 	 * Security state and entrypoint attributes of the next EL.
88 	 */
89 	scr_el3 = read_scr();
90 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
91 			SCR_ST_BIT | SCR_HCE_BIT);
92 	/*
93 	 * SCR_NS: Set the security state of the next EL.
94 	 */
95 	if (security_state != SECURE)
96 		scr_el3 |= SCR_NS_BIT;
97 	/*
98 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
99 	 *  Exception level as specified by SPSR.
100 	 */
101 	if (GET_RW(ep->spsr) == MODE_RW_64)
102 		scr_el3 |= SCR_RW_BIT;
103 	/*
104 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
105 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
106 	 *  by the entrypoint attributes.
107 	 */
108 	if (EP_GET_ST(ep->h.attr) != 0U)
109 		scr_el3 |= SCR_ST_BIT;
110 
111 #if RAS_TRAP_LOWER_EL_ERR_ACCESS
112 	/*
113 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
114 	 * and RAS ERX registers from EL1 and EL2 are trapped to EL3.
115 	 */
116 	scr_el3 |= SCR_TERR_BIT;
117 #endif
118 
119 #if !HANDLE_EA_EL3_FIRST
120 	/*
121 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
122 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
123 	 *  Aborts are taken to EL3.
124 	 */
125 	scr_el3 &= ~SCR_EA_BIT;
126 #endif
127 
128 #if FAULT_INJECTION_SUPPORT
129 	/* Enable fault injection from lower ELs */
130 	scr_el3 |= SCR_FIEN_BIT;
131 #endif
132 
133 #if !CTX_INCLUDE_PAUTH_REGS
134 	/*
135 	 * If the pointer authentication registers aren't saved during world
136 	 * switches the value of the registers can be leaked from the Secure to
137 	 * the Non-secure world. To prevent this, rather than enabling pointer
138 	 * authentication everywhere, we only enable it in the Non-secure world.
139 	 *
140 	 * If the Secure world wants to use pointer authentication,
141 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
142 	 */
143 	if (security_state == NON_SECURE)
144 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
145 #endif /* !CTX_INCLUDE_PAUTH_REGS */
146 
147 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
148 	/* Get Memory Tagging Extension support level */
149 	unsigned int mte = get_armv8_5_mte_support();
150 #endif
151 	/*
152 	 * Enable MTE support. Support is enabled unilaterally for the normal
153 	 * world, and only for the secure world when CTX_INCLUDE_MTE_REGS is
154 	 * set.
155 	 */
156 #if CTX_INCLUDE_MTE_REGS
157 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
158 	scr_el3 |= SCR_ATA_BIT;
159 #else
160 	/*
161 	 * When MTE is only implemented at EL0, it can be enabled
162 	 * across both worlds as no MTE registers are used.
163 	 */
164 	if ((mte == MTE_IMPLEMENTED_EL0) ||
165 	/*
166 	 * When MTE is implemented at all ELs, it can be only enabled
167 	 * in Non-Secure world without register saving.
168 	 */
169 	  (((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY)) &&
170 	    (security_state == NON_SECURE))) {
171 		scr_el3 |= SCR_ATA_BIT;
172 	}
173 #endif	/* CTX_INCLUDE_MTE_REGS */
174 
175 #ifdef IMAGE_BL31
176 	/*
177 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
178 	 *  indicated by the interrupt routing model for BL31.
179 	 */
180 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
181 
182 #if ENABLE_SVE_FOR_NS
183 	if (security_state == NON_SECURE) {
184 		sve_enable(ctx);
185 	}
186 #endif
187 #if ENABLE_SVE_FOR_SWD
188 	if (security_state == SECURE) {
189 		sve_enable(ctx);
190 	}
191 #endif
192 
193 #endif
194 
195 	/*
196 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
197 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
198 	 * next mode is Hyp.
199 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
200 	 * same conditions as HVC instructions and when the processor supports
201 	 * ARMv8.6-FGT.
202 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
203 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
204 	 * and when the processor supports ECV.
205 	 */
206 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
207 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
208 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
209 		scr_el3 |= SCR_HCE_BIT;
210 
211 		if (is_armv8_6_fgt_present()) {
212 			scr_el3 |= SCR_FGTEN_BIT;
213 		}
214 
215 		if (get_armv8_6_ecv_support()
216 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
217 			scr_el3 |= SCR_ECVEN_BIT;
218 		}
219 	}
220 
221 	/* Enable S-EL2 if the next EL is EL2 and security state is secure */
222 	if ((security_state == SECURE) && (GET_EL(ep->spsr) == MODE_EL2)) {
223 		if (GET_RW(ep->spsr) != MODE_RW_64) {
224 			ERROR("S-EL2 can not be used in AArch32.");
225 			panic();
226 		}
227 
228 		scr_el3 |= SCR_EEL2_BIT;
229 	}
230 
231 	/*
232 	 * FEAT_AMUv1p1 virtual offset registers are only accessible from EL3
233 	 * and EL2, when clear, this bit traps accesses from EL2 so we set it
234 	 * to 1 when EL2 is present.
235 	 */
236 	if (is_armv8_6_feat_amuv1p1_present() &&
237 		(el_implemented(2) != EL_IMPL_NONE)) {
238 		scr_el3 |= SCR_AMVOFFEN_BIT;
239 	}
240 
241 	/*
242 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
243 	 * execution state setting all fields rather than relying of the hw.
244 	 * Some fields have architecturally UNKNOWN reset values and these are
245 	 * set to zero.
246 	 *
247 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
248 	 *
249 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
250 	 *  required by PSCI specification)
251 	 */
252 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
253 	if (GET_RW(ep->spsr) == MODE_RW_64)
254 		sctlr_elx |= SCTLR_EL1_RES1;
255 	else {
256 		/*
257 		 * If the target execution state is AArch32 then the following
258 		 * fields need to be set.
259 		 *
260 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
261 		 *  instructions are not trapped to EL1.
262 		 *
263 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
264 		 *  instructions are not trapped to EL1.
265 		 *
266 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
267 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
268 		 */
269 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
270 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
271 	}
272 
273 #if ERRATA_A75_764081
274 	/*
275 	 * If workaround of errata 764081 for Cortex-A75 is used then set
276 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
277 	 */
278 	sctlr_elx |= SCTLR_IESB_BIT;
279 #endif
280 
281 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
282 	if (is_armv8_6_twed_present()) {
283 		uint32_t delay = plat_arm_set_twedel_scr_el3();
284 
285 		if (delay != TWED_DISABLED) {
286 			/* Make sure delay value fits */
287 			assert((delay & ~SCR_TWEDEL_MASK) == 0U);
288 
289 			/* Set delay in SCR_EL3 */
290 			scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
291 			scr_el3 |= ((delay & SCR_TWEDEL_MASK)
292 					<< SCR_TWEDEL_SHIFT);
293 
294 			/* Enable WFE delay */
295 			scr_el3 |= SCR_TWEDEn_BIT;
296 		}
297 	}
298 
299 	/*
300 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
301 	 * and other EL2 registers are set up by cm_prepare_el3_exit() as they
302 	 * are not part of the stored cpu_context.
303 	 */
304 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
305 
306 	/*
307 	 * Base the context ACTLR_EL1 on the current value, as it is
308 	 * implementation defined. The context restore process will write
309 	 * the value from the context to the actual register and can cause
310 	 * problems for processor cores that don't expect certain bits to
311 	 * be zero.
312 	 */
313 	actlr_elx = read_actlr_el1();
314 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
315 
316 	/*
317 	 * Populate EL3 state so that we've the right context
318 	 * before doing ERET
319 	 */
320 	state = get_el3state_ctx(ctx);
321 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
322 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
323 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
324 
325 	/*
326 	 * Store the X0-X7 value from the entrypoint into the context
327 	 * Use memcpy as we are in control of the layout of the structures
328 	 */
329 	gp_regs = get_gpregs_ctx(ctx);
330 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
331 }
332 
333 /*******************************************************************************
334  * Enable architecture extensions on first entry to Non-secure world.
335  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
336  * it is zero.
337  ******************************************************************************/
338 static void enable_extensions_nonsecure(bool el2_unused)
339 {
340 #if IMAGE_BL31
341 #if ENABLE_SPE_FOR_LOWER_ELS
342 	spe_enable(el2_unused);
343 #endif
344 
345 #if ENABLE_AMU
346 	amu_enable(el2_unused);
347 #endif
348 
349 #if ENABLE_MPAM_FOR_LOWER_ELS
350 	mpam_enable(el2_unused);
351 #endif
352 #endif
353 }
354 
355 /*******************************************************************************
356  * The following function initializes the cpu_context for a CPU specified by
357  * its `cpu_idx` for first use, and sets the initial entrypoint state as
358  * specified by the entry_point_info structure.
359  ******************************************************************************/
360 void cm_init_context_by_index(unsigned int cpu_idx,
361 			      const entry_point_info_t *ep)
362 {
363 	cpu_context_t *ctx;
364 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
365 	cm_setup_context(ctx, ep);
366 }
367 
368 /*******************************************************************************
369  * The following function initializes the cpu_context for the current CPU
370  * for first use, and sets the initial entrypoint state as specified by the
371  * entry_point_info structure.
372  ******************************************************************************/
373 void cm_init_my_context(const entry_point_info_t *ep)
374 {
375 	cpu_context_t *ctx;
376 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
377 	cm_setup_context(ctx, ep);
378 }
379 
380 /*******************************************************************************
381  * Prepare the CPU system registers for first entry into secure or normal world
382  *
383  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
384  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
385  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
386  * For all entries, the EL1 registers are initialized from the cpu_context
387  ******************************************************************************/
388 void cm_prepare_el3_exit(uint32_t security_state)
389 {
390 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
391 	cpu_context_t *ctx = cm_get_context(security_state);
392 	bool el2_unused = false;
393 	uint64_t hcr_el2 = 0U;
394 
395 	assert(ctx != NULL);
396 
397 	if (security_state == NON_SECURE) {
398 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
399 						 CTX_SCR_EL3);
400 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
401 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
402 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
403 							   CTX_SCTLR_EL1);
404 			sctlr_elx &= SCTLR_EE_BIT;
405 			sctlr_elx |= SCTLR_EL2_RES1;
406 #if ERRATA_A75_764081
407 			/*
408 			 * If workaround of errata 764081 for Cortex-A75 is used
409 			 * then set SCTLR_EL2.IESB to enable Implicit Error
410 			 * Synchronization Barrier.
411 			 */
412 			sctlr_elx |= SCTLR_IESB_BIT;
413 #endif
414 			write_sctlr_el2(sctlr_elx);
415 		} else if (el_implemented(2) != EL_IMPL_NONE) {
416 			el2_unused = true;
417 
418 			/*
419 			 * EL2 present but unused, need to disable safely.
420 			 * SCTLR_EL2 can be ignored in this case.
421 			 *
422 			 * Set EL2 register width appropriately: Set HCR_EL2
423 			 * field to match SCR_EL3.RW.
424 			 */
425 			if ((scr_el3 & SCR_RW_BIT) != 0U)
426 				hcr_el2 |= HCR_RW_BIT;
427 
428 			/*
429 			 * For Armv8.3 pointer authentication feature, disable
430 			 * traps to EL2 when accessing key registers or using
431 			 * pointer authentication instructions from lower ELs.
432 			 */
433 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
434 
435 			write_hcr_el2(hcr_el2);
436 
437 			/*
438 			 * Initialise CPTR_EL2 setting all fields rather than
439 			 * relying on the hw. All fields have architecturally
440 			 * UNKNOWN reset values.
441 			 *
442 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
443 			 *  accesses to the CPACR_EL1 or CPACR from both
444 			 *  Execution states do not trap to EL2.
445 			 *
446 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
447 			 *  register accesses to the trace registers from both
448 			 *  Execution states do not trap to EL2.
449 			 *
450 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
451 			 *  to SIMD and floating-point functionality from both
452 			 *  Execution states do not trap to EL2.
453 			 */
454 			write_cptr_el2(CPTR_EL2_RESET_VAL &
455 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
456 					| CPTR_EL2_TFP_BIT));
457 
458 			/*
459 			 * Initialise CNTHCTL_EL2. All fields are
460 			 * architecturally UNKNOWN on reset and are set to zero
461 			 * except for field(s) listed below.
462 			 *
463 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
464 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
465 			 *  physical timer registers.
466 			 *
467 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
468 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
469 			 *  physical counter registers.
470 			 */
471 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
472 						EL1PCEN_BIT | EL1PCTEN_BIT);
473 
474 			/*
475 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
476 			 * architecturally UNKNOWN value.
477 			 */
478 			write_cntvoff_el2(0);
479 
480 			/*
481 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
482 			 * MPIDR_EL1 respectively.
483 			 */
484 			write_vpidr_el2(read_midr_el1());
485 			write_vmpidr_el2(read_mpidr_el1());
486 
487 			/*
488 			 * Initialise VTTBR_EL2. All fields are architecturally
489 			 * UNKNOWN on reset.
490 			 *
491 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
492 			 *  2 address translation is disabled, cache maintenance
493 			 *  operations depend on the VMID.
494 			 *
495 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
496 			 *  translation is disabled.
497 			 */
498 			write_vttbr_el2(VTTBR_RESET_VAL &
499 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
500 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
501 
502 			/*
503 			 * Initialise MDCR_EL2, setting all fields rather than
504 			 * relying on hw. Some fields are architecturally
505 			 * UNKNOWN on reset.
506 			 *
507 			 * MDCR_EL2.HLP: Set to one so that event counter
508 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
509 			 *  occurs on the increment that changes
510 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
511 			 *  implemented. This bit is RES0 in versions of the
512 			 *  architecture earlier than ARMv8.5, setting it to 1
513 			 *  doesn't have any effect on them.
514 			 *
515 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
516 			 *  Filter Control register TRFCR_EL1 at EL1 is not
517 			 *  trapped to EL2. This bit is RES0 in versions of
518 			 *  the architecture earlier than ARMv8.4.
519 			 *
520 			 * MDCR_EL2.HPMD: Set to one so that event counting is
521 			 *  prohibited at EL2. This bit is RES0 in versions of
522 			 *  the architecture earlier than ARMv8.1, setting it
523 			 *  to 1 doesn't have any effect on them.
524 			 *
525 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
526 			 *  Statistical Profiling control registers from EL1
527 			 *  do not trap to EL2. This bit is RES0 when SPE is
528 			 *  not implemented.
529 			 *
530 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
531 			 *  EL1 System register accesses to the Debug ROM
532 			 *  registers are not trapped to EL2.
533 			 *
534 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
535 			 *  System register accesses to the powerdown debug
536 			 *  registers are not trapped to EL2.
537 			 *
538 			 * MDCR_EL2.TDA: Set to zero so that System register
539 			 *  accesses to the debug registers do not trap to EL2.
540 			 *
541 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
542 			 *  are not routed to EL2.
543 			 *
544 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
545 			 *  Monitors.
546 			 *
547 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
548 			 *  EL1 accesses to all Performance Monitors registers
549 			 *  are not trapped to EL2.
550 			 *
551 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
552 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
553 			 *  trapped to EL2.
554 			 *
555 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
556 			 *  architecturally-defined reset value.
557 			 */
558 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
559 				     MDCR_EL2_HPMD) |
560 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
561 				   >> PMCR_EL0_N_SHIFT)) &
562 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
563 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
564 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
565 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
566 				     MDCR_EL2_TPMCR_BIT);
567 
568 			write_mdcr_el2(mdcr_el2);
569 
570 			/*
571 			 * Initialise HSTR_EL2. All fields are architecturally
572 			 * UNKNOWN on reset.
573 			 *
574 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
575 			 *  Non-secure EL0 or EL1 accesses to System registers
576 			 *  do not trap to EL2.
577 			 */
578 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
579 			/*
580 			 * Initialise CNTHP_CTL_EL2. All fields are
581 			 * architecturally UNKNOWN on reset.
582 			 *
583 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
584 			 *  physical timer and prevent timer interrupts.
585 			 */
586 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
587 						~(CNTHP_CTL_ENABLE_BIT));
588 		}
589 		enable_extensions_nonsecure(el2_unused);
590 	}
591 
592 	cm_el1_sysregs_context_restore(security_state);
593 	cm_set_next_eret_context(security_state);
594 }
595 
596 #if CTX_INCLUDE_EL2_REGS
597 /*******************************************************************************
598  * Save EL2 sysreg context
599  ******************************************************************************/
600 void cm_el2_sysregs_context_save(uint32_t security_state)
601 {
602 	u_register_t scr_el3 = read_scr();
603 
604 	/*
605 	 * Always save the non-secure EL2 context, only save the
606 	 * S-EL2 context if S-EL2 is enabled.
607 	 */
608 	if ((security_state == NON_SECURE) ||
609 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
610 		cpu_context_t *ctx;
611 
612 		ctx = cm_get_context(security_state);
613 		assert(ctx != NULL);
614 
615 		el2_sysregs_context_save(get_el2_sysregs_ctx(ctx));
616 	}
617 }
618 
619 /*******************************************************************************
620  * Restore EL2 sysreg context
621  ******************************************************************************/
622 void cm_el2_sysregs_context_restore(uint32_t security_state)
623 {
624 	u_register_t scr_el3 = read_scr();
625 
626 	/*
627 	 * Always restore the non-secure EL2 context, only restore the
628 	 * S-EL2 context if S-EL2 is enabled.
629 	 */
630 	if ((security_state == NON_SECURE) ||
631 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
632 		cpu_context_t *ctx;
633 
634 		ctx = cm_get_context(security_state);
635 		assert(ctx != NULL);
636 
637 		el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx));
638 	}
639 }
640 #endif /* CTX_INCLUDE_EL2_REGS */
641 
642 /*******************************************************************************
643  * The next four functions are used by runtime services to save and restore
644  * EL1 context on the 'cpu_context' structure for the specified security
645  * state.
646  ******************************************************************************/
647 void cm_el1_sysregs_context_save(uint32_t security_state)
648 {
649 	cpu_context_t *ctx;
650 
651 	ctx = cm_get_context(security_state);
652 	assert(ctx != NULL);
653 
654 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
655 
656 #if IMAGE_BL31
657 	if (security_state == SECURE)
658 		PUBLISH_EVENT(cm_exited_secure_world);
659 	else
660 		PUBLISH_EVENT(cm_exited_normal_world);
661 #endif
662 }
663 
664 void cm_el1_sysregs_context_restore(uint32_t security_state)
665 {
666 	cpu_context_t *ctx;
667 
668 	ctx = cm_get_context(security_state);
669 	assert(ctx != NULL);
670 
671 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
672 
673 #if IMAGE_BL31
674 	if (security_state == SECURE)
675 		PUBLISH_EVENT(cm_entering_secure_world);
676 	else
677 		PUBLISH_EVENT(cm_entering_normal_world);
678 #endif
679 }
680 
681 /*******************************************************************************
682  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
683  * given security state with the given entrypoint
684  ******************************************************************************/
685 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
686 {
687 	cpu_context_t *ctx;
688 	el3_state_t *state;
689 
690 	ctx = cm_get_context(security_state);
691 	assert(ctx != NULL);
692 
693 	/* Populate EL3 state so that ERET jumps to the correct entry */
694 	state = get_el3state_ctx(ctx);
695 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
696 }
697 
698 /*******************************************************************************
699  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
700  * pertaining to the given security state
701  ******************************************************************************/
702 void cm_set_elr_spsr_el3(uint32_t security_state,
703 			uintptr_t entrypoint, uint32_t spsr)
704 {
705 	cpu_context_t *ctx;
706 	el3_state_t *state;
707 
708 	ctx = cm_get_context(security_state);
709 	assert(ctx != NULL);
710 
711 	/* Populate EL3 state so that ERET jumps to the correct entry */
712 	state = get_el3state_ctx(ctx);
713 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
714 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
715 }
716 
717 /*******************************************************************************
718  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
719  * pertaining to the given security state using the value and bit position
720  * specified in the parameters. It preserves all other bits.
721  ******************************************************************************/
722 void cm_write_scr_el3_bit(uint32_t security_state,
723 			  uint32_t bit_pos,
724 			  uint32_t value)
725 {
726 	cpu_context_t *ctx;
727 	el3_state_t *state;
728 	u_register_t scr_el3;
729 
730 	ctx = cm_get_context(security_state);
731 	assert(ctx != NULL);
732 
733 	/* Ensure that the bit position is a valid one */
734 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
735 
736 	/* Ensure that the 'value' is only a bit wide */
737 	assert(value <= 1U);
738 
739 	/*
740 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
741 	 * and set it to its new value.
742 	 */
743 	state = get_el3state_ctx(ctx);
744 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
745 	scr_el3 &= ~(1UL << bit_pos);
746 	scr_el3 |= (u_register_t)value << bit_pos;
747 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
748 }
749 
750 /*******************************************************************************
751  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
752  * given security state.
753  ******************************************************************************/
754 u_register_t cm_get_scr_el3(uint32_t security_state)
755 {
756 	cpu_context_t *ctx;
757 	el3_state_t *state;
758 
759 	ctx = cm_get_context(security_state);
760 	assert(ctx != NULL);
761 
762 	/* Populate EL3 state so that ERET jumps to the correct entry */
763 	state = get_el3state_ctx(ctx);
764 	return read_ctx_reg(state, CTX_SCR_EL3);
765 }
766 
767 /*******************************************************************************
768  * This function is used to program the context that's used for exception
769  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
770  * the required security state
771  ******************************************************************************/
772 void cm_set_next_eret_context(uint32_t security_state)
773 {
774 	cpu_context_t *ctx;
775 
776 	ctx = cm_get_context(security_state);
777 	assert(ctx != NULL);
778 
779 	cm_set_next_context(ctx);
780 }
781