xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision af61b50c1077b6d936c8ed741c1d0b8e43eb2b19)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/debug_v8p9.h>
30 #include <lib/extensions/fgt2.h>
31 #include <lib/extensions/fpmr.h>
32 #include <lib/extensions/mpam.h>
33 #include <lib/extensions/pmuv3.h>
34 #include <lib/extensions/sme.h>
35 #include <lib/extensions/spe.h>
36 #include <lib/extensions/sve.h>
37 #include <lib/extensions/sysreg128.h>
38 #include <lib/extensions/sys_reg_trace.h>
39 #include <lib/extensions/tcr2.h>
40 #include <lib/extensions/trbe.h>
41 #include <lib/extensions/trf.h>
42 #include <lib/utils.h>
43 
44 #if ENABLE_FEAT_TWED
45 /* Make sure delay value fits within the range(0-15) */
46 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
47 #endif /* ENABLE_FEAT_TWED */
48 
49 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
50 static bool has_secure_perworld_init;
51 
52 static void manage_extensions_nonsecure(cpu_context_t *ctx);
53 static void manage_extensions_secure(cpu_context_t *ctx);
54 static void manage_extensions_secure_per_world(void);
55 
56 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
57 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
58 {
59 	u_register_t sctlr_elx, actlr_elx;
60 
61 	/*
62 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
63 	 * execution state setting all fields rather than relying on the hw.
64 	 * Some fields have architecturally UNKNOWN reset values and these are
65 	 * set to zero.
66 	 *
67 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
68 	 *
69 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
70 	 * required by PSCI specification)
71 	 */
72 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
73 	if (GET_RW(ep->spsr) == MODE_RW_64) {
74 		sctlr_elx |= SCTLR_EL1_RES1;
75 	} else {
76 		/*
77 		 * If the target execution state is AArch32 then the following
78 		 * fields need to be set.
79 		 *
80 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
81 		 *  instructions are not trapped to EL1.
82 		 *
83 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
84 		 *  instructions are not trapped to EL1.
85 		 *
86 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
87 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
88 		 */
89 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
90 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
91 	}
92 
93 	/*
94 	 * If workaround of errata 764081 for Cortex-A75 is used then set
95 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
96 	 */
97 	if (errata_a75_764081_applies()) {
98 		sctlr_elx |= SCTLR_IESB_BIT;
99 	}
100 
101 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
102 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
103 
104 	/*
105 	 * Base the context ACTLR_EL1 on the current value, as it is
106 	 * implementation defined. The context restore process will write
107 	 * the value from the context to the actual register and can cause
108 	 * problems for processor cores that don't expect certain bits to
109 	 * be zero.
110 	 */
111 	actlr_elx = read_actlr_el1();
112 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
113 }
114 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
115 
116 /******************************************************************************
117  * This function performs initializations that are specific to SECURE state
118  * and updates the cpu context specified by 'ctx'.
119  *****************************************************************************/
120 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
121 {
122 	u_register_t scr_el3;
123 	el3_state_t *state;
124 
125 	state = get_el3state_ctx(ctx);
126 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
127 
128 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
129 	/*
130 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
131 	 * indicated by the interrupt routing model for BL31.
132 	 */
133 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
134 #endif
135 
136 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
137 	if (is_feat_mte2_supported()) {
138 		scr_el3 |= SCR_ATA_BIT;
139 	}
140 
141 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
142 
143 	/*
144 	 * Initialize EL1 context registers unless SPMC is running
145 	 * at S-EL2.
146 	 */
147 #if (!SPMD_SPM_AT_SEL2)
148 	setup_el1_context(ctx, ep);
149 #endif
150 
151 	manage_extensions_secure(ctx);
152 
153 	/**
154 	 * manage_extensions_secure_per_world api has to be executed once,
155 	 * as the registers getting initialised, maintain constant value across
156 	 * all the cpus for the secure world.
157 	 * Henceforth, this check ensures that the registers are initialised once
158 	 * and avoids re-initialization from multiple cores.
159 	 */
160 	if (!has_secure_perworld_init) {
161 		manage_extensions_secure_per_world();
162 	}
163 }
164 
165 #if ENABLE_RME
166 /******************************************************************************
167  * This function performs initializations that are specific to REALM state
168  * and updates the cpu context specified by 'ctx'.
169  *****************************************************************************/
170 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
171 {
172 	u_register_t scr_el3;
173 	el3_state_t *state;
174 
175 	state = get_el3state_ctx(ctx);
176 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
177 
178 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
179 
180 	/* CSV2 version 2 and above */
181 	if (is_feat_csv2_2_supported()) {
182 		/* Enable access to the SCXTNUM_ELx registers. */
183 		scr_el3 |= SCR_EnSCXT_BIT;
184 	}
185 
186 	if (is_feat_sctlr2_supported()) {
187 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
188 		 * SCTLR2_ELx registers.
189 		 */
190 		scr_el3 |= SCR_SCTLR2En_BIT;
191 	}
192 
193 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
194 
195 	if (is_feat_fgt2_supported()) {
196 		fgt2_enable(ctx);
197 	}
198 
199 	if (is_feat_debugv8p9_supported()) {
200 		debugv8p9_extended_bp_wp_enable(ctx);
201 	}
202 
203 	if (is_feat_brbe_supported()) {
204 		brbe_enable(ctx);
205 	}
206 
207 }
208 #endif /* ENABLE_RME */
209 
210 /******************************************************************************
211  * This function performs initializations that are specific to NON-SECURE state
212  * and updates the cpu context specified by 'ctx'.
213  *****************************************************************************/
214 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
215 {
216 	u_register_t scr_el3;
217 	el3_state_t *state;
218 
219 	state = get_el3state_ctx(ctx);
220 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
221 
222 	/* SCR_NS: Set the NS bit */
223 	scr_el3 |= SCR_NS_BIT;
224 
225 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
226 	if (is_feat_mte2_supported()) {
227 		scr_el3 |= SCR_ATA_BIT;
228 	}
229 
230 #if !CTX_INCLUDE_PAUTH_REGS
231 	/*
232 	 * Pointer Authentication feature, if present, is always enabled by default
233 	 * for Non secure lower exception levels. We do not have an explicit
234 	 * flag to set it.
235 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
236 	 * exception levels of secure and realm worlds.
237 	 *
238 	 * To prevent the leakage between the worlds during world switch,
239 	 * we enable it only for the non-secure world.
240 	 *
241 	 * If the Secure/realm world wants to use pointer authentication,
242 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
243 	 * it will be enabled globally for all the contexts.
244 	 *
245 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
246 	 *  other than EL3
247 	 *
248 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
249 	 *  than EL3
250 	 */
251 	if (is_armv8_3_pauth_present()) {
252 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
253 	}
254 #endif /* CTX_INCLUDE_PAUTH_REGS */
255 
256 #if HANDLE_EA_EL3_FIRST_NS
257 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
258 	scr_el3 |= SCR_EA_BIT;
259 #endif
260 
261 #if RAS_TRAP_NS_ERR_REC_ACCESS
262 	/*
263 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
264 	 * and RAS ERX registers from EL1 and EL2(from any security state)
265 	 * are trapped to EL3.
266 	 * Set here to trap only for NS EL1/EL2
267 	 */
268 	scr_el3 |= SCR_TERR_BIT;
269 #endif
270 
271 	/* CSV2 version 2 and above */
272 	if (is_feat_csv2_2_supported()) {
273 		/* Enable access to the SCXTNUM_ELx registers. */
274 		scr_el3 |= SCR_EnSCXT_BIT;
275 	}
276 
277 #ifdef IMAGE_BL31
278 	/*
279 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
280 	 *  indicated by the interrupt routing model for BL31.
281 	 */
282 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
283 #endif
284 
285 	if (is_feat_the_supported()) {
286 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
287 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
288 		 */
289 		scr_el3 |= SCR_RCWMASKEn_BIT;
290 	}
291 
292 	if (is_feat_sctlr2_supported()) {
293 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
294 		 * SCTLR2_ELx registers.
295 		 */
296 		scr_el3 |= SCR_SCTLR2En_BIT;
297 	}
298 
299 	if (is_feat_d128_supported()) {
300 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
301 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
302 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
303 		 */
304 		scr_el3 |= SCR_D128En_BIT;
305 	}
306 
307 	if (is_feat_fpmr_supported()) {
308 		/* Set the EnFPM bit in SCR_EL3 to enable access to FPMR
309 		 * register.
310 		 */
311 		scr_el3 |= SCR_EnFPM_BIT;
312 	}
313 
314 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
315 
316 	/* Initialize EL2 context registers */
317 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
318 
319 	/*
320 	 * Initialize SCTLR_EL2 context register with reset value.
321 	 */
322 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
323 
324 	if (is_feat_hcx_supported()) {
325 		/*
326 		 * Initialize register HCRX_EL2 with its init value.
327 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
328 		 * chance that this can lead to unexpected behavior in lower
329 		 * ELs that have not been updated since the introduction of
330 		 * this feature if not properly initialized, especially when
331 		 * it comes to those bits that enable/disable traps.
332 		 */
333 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
334 			HCRX_EL2_INIT_VAL);
335 	}
336 
337 	if (is_feat_fgt_supported()) {
338 		/*
339 		 * Initialize HFG*_EL2 registers with a default value so legacy
340 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
341 		 * of initialization for this feature.
342 		 */
343 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
344 			HFGITR_EL2_INIT_VAL);
345 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
346 			HFGRTR_EL2_INIT_VAL);
347 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
348 			HFGWTR_EL2_INIT_VAL);
349 	}
350 #else
351 	/* Initialize EL1 context registers */
352 	setup_el1_context(ctx, ep);
353 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
354 
355 	manage_extensions_nonsecure(ctx);
356 }
357 
358 /*******************************************************************************
359  * The following function performs initialization of the cpu_context 'ctx'
360  * for first use that is common to all security states, and sets the
361  * initial entrypoint state as specified by the entry_point_info structure.
362  *
363  * The EE and ST attributes are used to configure the endianness and secure
364  * timer availability for the new execution context.
365  ******************************************************************************/
366 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
367 {
368 	u_register_t scr_el3;
369 	u_register_t mdcr_el3;
370 	el3_state_t *state;
371 	gp_regs_t *gp_regs;
372 
373 	state = get_el3state_ctx(ctx);
374 
375 	/* Clear any residual register values from the context */
376 	zeromem(ctx, sizeof(*ctx));
377 
378 	/*
379 	 * The lower-EL context is zeroed so that no stale values leak to a world.
380 	 * It is assumed that an all-zero lower-EL context is good enough for it
381 	 * to boot correctly. However, there are very few registers where this
382 	 * is not true and some values need to be recreated.
383 	 */
384 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
385 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
386 
387 	/*
388 	 * These bits are set in the gicv3 driver. Losing them (especially the
389 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
390 	 */
391 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
392 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
393 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
394 
395 	/*
396 	 * The actlr_el2 register can be initialized in platform's reset handler
397 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
398 	 */
399 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
400 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
401 
402 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
403 	scr_el3 = SCR_RESET_VAL;
404 
405 	/*
406 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
407 	 *  EL2, EL1 and EL0 are not trapped to EL3.
408 	 *
409 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
410 	 *  EL2, EL1 and EL0 are not trapped to EL3.
411 	 *
412 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
413 	 *  both Security states and both Execution states.
414 	 *
415 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
416 	 *  Non-secure memory.
417 	 */
418 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
419 
420 	scr_el3 |= SCR_SIF_BIT;
421 
422 	/*
423 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
424 	 *  Exception level as specified by SPSR.
425 	 */
426 	if (GET_RW(ep->spsr) == MODE_RW_64) {
427 		scr_el3 |= SCR_RW_BIT;
428 	}
429 
430 	/*
431 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
432 	 * Secure timer registers to EL3, from AArch64 state only, if specified
433 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
434 	 * bit always behaves as 1 (i.e. secure physical timer register access
435 	 * is not trapped)
436 	 */
437 	if (EP_GET_ST(ep->h.attr) != 0U) {
438 		scr_el3 |= SCR_ST_BIT;
439 	}
440 
441 	/*
442 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
443 	 * SCR_EL3.HXEn.
444 	 */
445 	if (is_feat_hcx_supported()) {
446 		scr_el3 |= SCR_HXEn_BIT;
447 	}
448 
449 	/*
450 	 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by
451 	 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting
452 	 * SCR_EL3.EnAS0.
453 	 */
454 	if (is_feat_ls64_accdata_supported()) {
455 		scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT;
456 	}
457 
458 	/*
459 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
460 	 * registers are trapped to EL3.
461 	 */
462 	if (is_feat_rng_trap_supported()) {
463 		scr_el3 |= SCR_TRNDR_BIT;
464 	}
465 
466 #if FAULT_INJECTION_SUPPORT
467 	/* Enable fault injection from lower ELs */
468 	scr_el3 |= SCR_FIEN_BIT;
469 #endif
470 
471 #if CTX_INCLUDE_PAUTH_REGS
472 	/*
473 	 * Enable Pointer Authentication globally for all the worlds.
474 	 *
475 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
476 	 *  other than EL3
477 	 *
478 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
479 	 *  than EL3
480 	 */
481 	if (is_armv8_3_pauth_present()) {
482 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
483 	}
484 #endif /* CTX_INCLUDE_PAUTH_REGS */
485 
486 	/*
487 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
488 	 */
489 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
490 		scr_el3 |= SCR_TCR2EN_BIT;
491 	}
492 
493 	/*
494 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
495 	 * registers for AArch64 if present.
496 	 */
497 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
498 		scr_el3 |= SCR_PIEN_BIT;
499 	}
500 
501 	/*
502 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
503 	 */
504 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
505 		scr_el3 |= SCR_GCSEn_BIT;
506 	}
507 
508 	/*
509 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
510 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
511 	 * next mode is Hyp.
512 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
513 	 * same conditions as HVC instructions and when the processor supports
514 	 * ARMv8.6-FGT.
515 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
516 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
517 	 * and when the processor supports ECV.
518 	 */
519 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
520 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
521 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
522 		scr_el3 |= SCR_HCE_BIT;
523 
524 		if (is_feat_fgt_supported()) {
525 			scr_el3 |= SCR_FGTEN_BIT;
526 		}
527 
528 		if (is_feat_ecv_supported()) {
529 			scr_el3 |= SCR_ECVEN_BIT;
530 		}
531 	}
532 
533 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
534 	if (is_feat_twed_supported()) {
535 		/* Set delay in SCR_EL3 */
536 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
537 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
538 				<< SCR_TWEDEL_SHIFT);
539 
540 		/* Enable WFE delay */
541 		scr_el3 |= SCR_TWEDEn_BIT;
542 	}
543 
544 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
545 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
546 	if (is_feat_sel2_supported()) {
547 		scr_el3 |= SCR_EEL2_BIT;
548 	}
549 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
550 
551 	if (is_feat_mec_supported()) {
552 		scr_el3 |= SCR_MECEn_BIT;
553 	}
554 
555 	/*
556 	 * Populate EL3 state so that we've the right context
557 	 * before doing ERET
558 	 */
559 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
560 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
561 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
562 
563 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
564 	mdcr_el3 = MDCR_EL3_RESET_VAL;
565 
566 	/* ---------------------------------------------------------------------
567 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
568 	 * Some fields are architecturally UNKNOWN on reset.
569 	 *
570 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
571 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
572 	 *  disabled from all ELs in Secure state.
573 	 *
574 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
575 	 *  privileged debug from S-EL1.
576 	 *
577 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
578 	 *  access to the powerdown debug registers do not trap to EL3.
579 	 *
580 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
581 	 *  debug registers, other than those registers that are controlled by
582 	 *  MDCR_EL3.TDOSA.
583 	 */
584 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
585 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
586 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
587 
588 #if IMAGE_BL31
589 	/* Enable FEAT_TRF for Non-Secure and prohibit for Secure state. */
590 	if (is_feat_trf_supported()) {
591 		trf_enable(ctx);
592 	}
593 
594 	pmuv3_enable(ctx);
595 #endif /* IMAGE_BL31 */
596 
597 	/*
598 	 * Store the X0-X7 value from the entrypoint into the context
599 	 * Use memcpy as we are in control of the layout of the structures
600 	 */
601 	gp_regs = get_gpregs_ctx(ctx);
602 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
603 }
604 
605 /*******************************************************************************
606  * Context management library initialization routine. This library is used by
607  * runtime services to share pointers to 'cpu_context' structures for secure
608  * non-secure and realm states. Management of the structures and their associated
609  * memory is not done by the context management library e.g. the PSCI service
610  * manages the cpu context used for entry from and exit to the non-secure state.
611  * The Secure payload dispatcher service manages the context(s) corresponding to
612  * the secure state. It also uses this library to get access to the non-secure
613  * state cpu context pointers.
614  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
615  * which will be used for programming an entry into a lower EL. The same context
616  * will be used to save state upon exception entry from that EL.
617  ******************************************************************************/
618 void __init cm_init(void)
619 {
620 	/*
621 	 * The context management library has only global data to initialize, but
622 	 * that will be done when the BSS is zeroed out.
623 	 */
624 }
625 
626 /*******************************************************************************
627  * This is the high-level function used to initialize the cpu_context 'ctx' for
628  * first use. It performs initializations that are common to all security states
629  * and initializations specific to the security state specified in 'ep'
630  ******************************************************************************/
631 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
632 {
633 	unsigned int security_state;
634 
635 	assert(ctx != NULL);
636 
637 	/*
638 	 * Perform initializations that are common
639 	 * to all security states
640 	 */
641 	setup_context_common(ctx, ep);
642 
643 	security_state = GET_SECURITY_STATE(ep->h.attr);
644 
645 	/* Perform security state specific initializations */
646 	switch (security_state) {
647 	case SECURE:
648 		setup_secure_context(ctx, ep);
649 		break;
650 #if ENABLE_RME
651 	case REALM:
652 		setup_realm_context(ctx, ep);
653 		break;
654 #endif
655 	case NON_SECURE:
656 		setup_ns_context(ctx, ep);
657 		break;
658 	default:
659 		ERROR("Invalid security state\n");
660 		panic();
661 		break;
662 	}
663 }
664 
665 /*******************************************************************************
666  * Enable architecture extensions for EL3 execution. This function only updates
667  * registers in-place which are expected to either never change or be
668  * overwritten by el3_exit. Expects the core_pos of the current core as argument.
669  ******************************************************************************/
670 #if IMAGE_BL31
671 void cm_manage_extensions_el3(unsigned int my_idx)
672 {
673 	if (is_feat_sve_supported()) {
674 		sve_init_el3();
675 	}
676 
677 	if (is_feat_amu_supported()) {
678 		amu_init_el3(my_idx);
679 	}
680 
681 	if (is_feat_sme_supported()) {
682 		sme_init_el3();
683 	}
684 
685 	pmuv3_init_el3();
686 }
687 #endif /* IMAGE_BL31 */
688 
689 /******************************************************************************
690  * Function to initialise the registers with the RESET values in the context
691  * memory, which are maintained per world.
692  ******************************************************************************/
693 #if IMAGE_BL31
694 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
695 {
696 	/*
697 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
698 	 *
699 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
700 	 *  by Advanced SIMD, floating-point or SVE instructions (if
701 	 *  implemented) do not trap to EL3.
702 	 *
703 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
704 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
705 	 */
706 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
707 
708 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
709 
710 	/*
711 	 * Initialize MPAM3_EL3 to its default reset value
712 	 *
713 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
714 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
715 	 */
716 
717 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
718 }
719 #endif /* IMAGE_BL31 */
720 
721 /*******************************************************************************
722  * Initialise per_world_context for Non-Secure world.
723  * This function enables the architecture extensions, which have same value
724  * across the cores for the non-secure world.
725  ******************************************************************************/
726 #if IMAGE_BL31
727 void manage_extensions_nonsecure_per_world(void)
728 {
729 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
730 
731 	if (is_feat_sme_supported()) {
732 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
733 	}
734 
735 	if (is_feat_sve_supported()) {
736 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
737 	}
738 
739 	if (is_feat_amu_supported()) {
740 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
741 	}
742 
743 	if (is_feat_sys_reg_trace_supported()) {
744 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
745 	}
746 
747 	if (is_feat_mpam_supported()) {
748 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
749 	}
750 
751 	if (is_feat_fpmr_supported()) {
752 		fpmr_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
753 	}
754 }
755 #endif /* IMAGE_BL31 */
756 
757 /*******************************************************************************
758  * Initialise per_world_context for Secure world.
759  * This function enables the architecture extensions, which have same value
760  * across the cores for the secure world.
761  ******************************************************************************/
762 static void manage_extensions_secure_per_world(void)
763 {
764 #if IMAGE_BL31
765 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
766 
767 	if (is_feat_sme_supported()) {
768 
769 		if (ENABLE_SME_FOR_SWD) {
770 		/*
771 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
772 		 * SME, SVE, and FPU/SIMD context properly managed.
773 		 */
774 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
775 		} else {
776 		/*
777 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
778 		 * world can safely use the associated registers.
779 		 */
780 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
781 		}
782 	}
783 	if (is_feat_sve_supported()) {
784 		if (ENABLE_SVE_FOR_SWD) {
785 		/*
786 		 * Enable SVE and FPU in secure context, SPM must ensure
787 		 * that the SVE and FPU register contexts are properly managed.
788 		 */
789 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
790 		} else {
791 		/*
792 		 * Disable SVE and FPU in secure context so non-secure world
793 		 * can safely use them.
794 		 */
795 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
796 		}
797 	}
798 
799 	/* NS can access this but Secure shouldn't */
800 	if (is_feat_sys_reg_trace_supported()) {
801 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
802 	}
803 
804 	has_secure_perworld_init = true;
805 #endif /* IMAGE_BL31 */
806 }
807 
808 /*******************************************************************************
809  * Enable architecture extensions on first entry to Non-secure world.
810  ******************************************************************************/
811 static void manage_extensions_nonsecure(cpu_context_t *ctx)
812 {
813 #if IMAGE_BL31
814 	/* NOTE: registers are not context switched */
815 	if (is_feat_amu_supported()) {
816 		amu_enable(ctx);
817 	}
818 
819 	if (is_feat_sme_supported()) {
820 		sme_enable(ctx);
821 	}
822 
823 	if (is_feat_fgt2_supported()) {
824 		fgt2_enable(ctx);
825 	}
826 
827 	if (is_feat_debugv8p9_supported()) {
828 		debugv8p9_extended_bp_wp_enable(ctx);
829 	}
830 
831 	/*
832 	 * SPE, TRBE, and BRBE have multi-field enables that affect which world
833 	 * they apply to. Despite this, it is useful to ignore these for
834 	 * simplicity in determining the feature's per world enablement status.
835 	 * This is only possible when context is written per-world. Relied on
836 	 * by SMCCC_ARCH_FEATURE_AVAILABILITY
837 	 */
838 	if (is_feat_spe_supported()) {
839 		spe_enable(ctx);
840 	}
841 
842 	if (is_feat_trbe_supported()) {
843 		trbe_enable(ctx);
844 	}
845 
846 	if (is_feat_brbe_supported()) {
847 		brbe_enable(ctx);
848 	}
849 #endif /* IMAGE_BL31 */
850 }
851 
852 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
853 static __unused void enable_pauth_el2(void)
854 {
855 	u_register_t hcr_el2 = read_hcr_el2();
856 	/*
857 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
858 	 *  accessing key registers or using pointer authentication instructions
859 	 *  from lower ELs.
860 	 */
861 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
862 
863 	write_hcr_el2(hcr_el2);
864 }
865 
866 #if INIT_UNUSED_NS_EL2
867 /*******************************************************************************
868  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
869  * world when EL2 is empty and unused.
870  ******************************************************************************/
871 static void manage_extensions_nonsecure_el2_unused(void)
872 {
873 #if IMAGE_BL31
874 	if (is_feat_spe_supported()) {
875 		spe_init_el2_unused();
876 	}
877 
878 	if (is_feat_amu_supported()) {
879 		amu_init_el2_unused();
880 	}
881 
882 	if (is_feat_mpam_supported()) {
883 		mpam_init_el2_unused();
884 	}
885 
886 	if (is_feat_trbe_supported()) {
887 		trbe_init_el2_unused();
888 	}
889 
890 	if (is_feat_sys_reg_trace_supported()) {
891 		sys_reg_trace_init_el2_unused();
892 	}
893 
894 	if (is_feat_trf_supported()) {
895 		trf_init_el2_unused();
896 	}
897 
898 	pmuv3_init_el2_unused();
899 
900 	if (is_feat_sve_supported()) {
901 		sve_init_el2_unused();
902 	}
903 
904 	if (is_feat_sme_supported()) {
905 		sme_init_el2_unused();
906 	}
907 
908 	if (is_feat_mops_supported()) {
909 		write_hcrx_el2(read_hcrx_el2() | HCRX_EL2_MSCEn_BIT);
910 	}
911 
912 #if ENABLE_PAUTH
913 	enable_pauth_el2();
914 #endif /* ENABLE_PAUTH */
915 #endif /* IMAGE_BL31 */
916 }
917 #endif /* INIT_UNUSED_NS_EL2 */
918 
919 /*******************************************************************************
920  * Enable architecture extensions on first entry to Secure world.
921  ******************************************************************************/
922 static void manage_extensions_secure(cpu_context_t *ctx)
923 {
924 #if IMAGE_BL31
925 	if (is_feat_sme_supported()) {
926 		if (ENABLE_SME_FOR_SWD) {
927 		/*
928 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
929 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
930 		 */
931 			sme_init_el3();
932 			sme_enable(ctx);
933 		} else {
934 		/*
935 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
936 		 * world can safely use the associated registers.
937 		 */
938 			sme_disable(ctx);
939 		}
940 	}
941 
942 	/*
943 	 * SPE and TRBE cannot be fully disabled from EL3 registers alone, only
944 	 * sysreg access can. In case the EL1 controls leave them active on
945 	 * context switch, we want the owning security state to be NS so Secure
946 	 * can't be DOSed.
947 	 */
948 	if (is_feat_spe_supported()) {
949 		spe_disable(ctx);
950 	}
951 
952 	if (is_feat_trbe_supported()) {
953 		trbe_disable(ctx);
954 	}
955 #endif /* IMAGE_BL31 */
956 }
957 
958 #if !IMAGE_BL1
959 /*******************************************************************************
960  * The following function initializes the cpu_context for a CPU specified by
961  * its `cpu_idx` for first use, and sets the initial entrypoint state as
962  * specified by the entry_point_info structure.
963  ******************************************************************************/
964 void cm_init_context_by_index(unsigned int cpu_idx,
965 			      const entry_point_info_t *ep)
966 {
967 	cpu_context_t *ctx;
968 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
969 	cm_setup_context(ctx, ep);
970 }
971 #endif /* !IMAGE_BL1 */
972 
973 /*******************************************************************************
974  * The following function initializes the cpu_context for the current CPU
975  * for first use, and sets the initial entrypoint state as specified by the
976  * entry_point_info structure.
977  ******************************************************************************/
978 void cm_init_my_context(const entry_point_info_t *ep)
979 {
980 	cpu_context_t *ctx;
981 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
982 	cm_setup_context(ctx, ep);
983 }
984 
985 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
986 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
987 {
988 #if INIT_UNUSED_NS_EL2
989 	u_register_t hcr_el2 = HCR_RESET_VAL;
990 	u_register_t mdcr_el2;
991 	u_register_t scr_el3;
992 
993 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
994 
995 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
996 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
997 		hcr_el2 |= HCR_RW_BIT;
998 	}
999 
1000 	write_hcr_el2(hcr_el2);
1001 
1002 	/*
1003 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
1004 	 * All fields have architecturally UNKNOWN reset values.
1005 	 */
1006 	write_cptr_el2(CPTR_EL2_RESET_VAL);
1007 
1008 	/*
1009 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
1010 	 * reset and are set to zero except for field(s) listed below.
1011 	 *
1012 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
1013 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
1014 	 *
1015 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
1016 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
1017 	 */
1018 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
1019 
1020 	/*
1021 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
1022 	 * UNKNOWN value.
1023 	 */
1024 	write_cntvoff_el2(0);
1025 
1026 	/*
1027 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
1028 	 * respectively.
1029 	 */
1030 	write_vpidr_el2(read_midr_el1());
1031 	write_vmpidr_el2(read_mpidr_el1());
1032 
1033 	/*
1034 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
1035 	 *
1036 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
1037 	 * translation is disabled, cache maintenance operations depend on the
1038 	 * VMID.
1039 	 *
1040 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
1041 	 * disabled.
1042 	 */
1043 	write_vttbr_el2(VTTBR_RESET_VAL &
1044 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1045 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1046 
1047 	/*
1048 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1049 	 * Some fields are architecturally UNKNOWN on reset.
1050 	 *
1051 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1052 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1053 	 *
1054 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1055 	 * accesses to the powerdown debug registers are not trapped to EL2.
1056 	 *
1057 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1058 	 * debug registers do not trap to EL2.
1059 	 *
1060 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1061 	 * EL2.
1062 	 */
1063 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1064 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1065 		   MDCR_EL2_TDE_BIT);
1066 
1067 	write_mdcr_el2(mdcr_el2);
1068 
1069 	/*
1070 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1071 	 *
1072 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1073 	 * EL1 accesses to System registers do not trap to EL2.
1074 	 */
1075 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1076 
1077 	/*
1078 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1079 	 * reset.
1080 	 *
1081 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1082 	 * and prevent timer interrupts.
1083 	 */
1084 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1085 
1086 	manage_extensions_nonsecure_el2_unused();
1087 #endif /* INIT_UNUSED_NS_EL2 */
1088 }
1089 
1090 /*******************************************************************************
1091  * Prepare the CPU system registers for first entry into realm, secure, or
1092  * normal world.
1093  *
1094  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1095  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1096  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1097  * For all entries, the EL1 registers are initialized from the cpu_context
1098  ******************************************************************************/
1099 void cm_prepare_el3_exit(uint32_t security_state)
1100 {
1101 	u_register_t sctlr_el2, scr_el3;
1102 	cpu_context_t *ctx = cm_get_context(security_state);
1103 
1104 	assert(ctx != NULL);
1105 
1106 	if (security_state == NON_SECURE) {
1107 		uint64_t el2_implemented = el_implemented(2);
1108 
1109 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1110 						 CTX_SCR_EL3);
1111 
1112 		if (el2_implemented != EL_IMPL_NONE) {
1113 
1114 			/*
1115 			 * If context is not being used for EL2, initialize
1116 			 * HCRX_EL2 with its init value here.
1117 			 */
1118 			if (is_feat_hcx_supported()) {
1119 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1120 			}
1121 
1122 			/*
1123 			 * Initialize Fine-grained trap registers introduced
1124 			 * by FEAT_FGT so all traps are initially disabled when
1125 			 * switching to EL2 or a lower EL, preventing undesired
1126 			 * behavior.
1127 			 */
1128 			if (is_feat_fgt_supported()) {
1129 				/*
1130 				 * Initialize HFG*_EL2 registers with a default
1131 				 * value so legacy systems unaware of FEAT_FGT
1132 				 * do not get trapped due to their lack of
1133 				 * initialization for this feature.
1134 				 */
1135 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1136 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1137 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1138 			}
1139 
1140 			/* Condition to ensure EL2 is being used. */
1141 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1142 				/* Initialize SCTLR_EL2 register with reset value. */
1143 				sctlr_el2 = SCTLR_EL2_RES1;
1144 
1145 				/*
1146 				 * If workaround of errata 764081 for Cortex-A75
1147 				 * is used then set SCTLR_EL2.IESB to enable
1148 				 * Implicit Error Synchronization Barrier.
1149 				 */
1150 				if (errata_a75_764081_applies()) {
1151 					sctlr_el2 |= SCTLR_IESB_BIT;
1152 				}
1153 
1154 				write_sctlr_el2(sctlr_el2);
1155 			} else {
1156 				/*
1157 				 * (scr_el3 & SCR_HCE_BIT==0)
1158 				 * EL2 implemented but unused.
1159 				 */
1160 				init_nonsecure_el2_unused(ctx);
1161 			}
1162 		}
1163 	}
1164 #if (!CTX_INCLUDE_EL2_REGS)
1165 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1166 	cm_el1_sysregs_context_restore(security_state);
1167 #endif
1168 	cm_set_next_eret_context(security_state);
1169 }
1170 
1171 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1172 
1173 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1174 {
1175 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1176 	if (is_feat_amu_supported()) {
1177 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1178 	}
1179 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1180 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1181 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1182 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1183 }
1184 
1185 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1186 {
1187 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1188 	if (is_feat_amu_supported()) {
1189 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1190 	}
1191 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1192 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1193 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1194 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1195 }
1196 
1197 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1198 {
1199 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1200 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1201 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1202 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1203 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1204 }
1205 
1206 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1207 {
1208 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1209 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1210 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1211 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1212 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1213 }
1214 
1215 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1216 {
1217 	u_register_t mpam_idr = read_mpamidr_el1();
1218 
1219 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1220 
1221 	/*
1222 	 * The context registers that we intend to save would be part of the
1223 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1224 	 */
1225 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1226 		return;
1227 	}
1228 
1229 	/*
1230 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1231 	 * MPAMIDR_HAS_HCR_BIT == 1.
1232 	 */
1233 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1234 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1235 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1236 
1237 	/*
1238 	 * The number of MPAMVPM registers is implementation defined, their
1239 	 * number is stored in the MPAMIDR_EL1 register.
1240 	 */
1241 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1242 	case 7:
1243 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1244 		__fallthrough;
1245 	case 6:
1246 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1247 		__fallthrough;
1248 	case 5:
1249 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1250 		__fallthrough;
1251 	case 4:
1252 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1253 		__fallthrough;
1254 	case 3:
1255 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1256 		__fallthrough;
1257 	case 2:
1258 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1259 		__fallthrough;
1260 	case 1:
1261 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1262 		break;
1263 	}
1264 }
1265 
1266 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1267 {
1268 	u_register_t mpam_idr = read_mpamidr_el1();
1269 
1270 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1271 
1272 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1273 		return;
1274 	}
1275 
1276 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1277 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1278 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1279 
1280 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1281 	case 7:
1282 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1283 		__fallthrough;
1284 	case 6:
1285 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1286 		__fallthrough;
1287 	case 5:
1288 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1289 		__fallthrough;
1290 	case 4:
1291 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1292 		__fallthrough;
1293 	case 3:
1294 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1295 		__fallthrough;
1296 	case 2:
1297 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1298 		__fallthrough;
1299 	case 1:
1300 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1301 		break;
1302 	}
1303 }
1304 
1305 /* ---------------------------------------------------------------------------
1306  * The following registers are not added:
1307  * ICH_AP0R<n>_EL2
1308  * ICH_AP1R<n>_EL2
1309  * ICH_LR<n>_EL2
1310  *
1311  * NOTE: For a system with S-EL2 present but not enabled, accessing
1312  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1313  * SCR_EL3.NS = 1 before accessing this register.
1314  * ---------------------------------------------------------------------------
1315  */
1316 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx, uint32_t security_state)
1317 {
1318 	u_register_t scr_el3 = read_scr_el3();
1319 
1320 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1321 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1322 #else
1323 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1324 	isb();
1325 
1326 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1327 
1328 	write_scr_el3(scr_el3);
1329 	isb();
1330 #endif
1331 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1332 
1333 	if (errata_ich_vmcr_el2_applies()) {
1334 		if (security_state == SECURE) {
1335 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1336 		} else {
1337 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1338 		}
1339 		isb();
1340 	}
1341 
1342 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1343 
1344 	if (errata_ich_vmcr_el2_applies()) {
1345 		write_scr_el3(scr_el3);
1346 		isb();
1347 	}
1348 }
1349 
1350 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx, uint32_t security_state)
1351 {
1352 	u_register_t scr_el3 = read_scr_el3();
1353 
1354 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1355 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1356 #else
1357 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1358 	isb();
1359 
1360 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1361 
1362 	write_scr_el3(scr_el3);
1363 	isb();
1364 #endif
1365 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1366 
1367 	if (errata_ich_vmcr_el2_applies()) {
1368 		if (security_state == SECURE) {
1369 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1370 		} else {
1371 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1372 		}
1373 		isb();
1374 	}
1375 
1376 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1377 
1378 	if (errata_ich_vmcr_el2_applies()) {
1379 		write_scr_el3(scr_el3);
1380 		isb();
1381 	}
1382 }
1383 
1384 /* -----------------------------------------------------
1385  * The following registers are not added:
1386  * AMEVCNTVOFF0<n>_EL2
1387  * AMEVCNTVOFF1<n>_EL2
1388  * -----------------------------------------------------
1389  */
1390 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1391 {
1392 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1393 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1394 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1395 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1396 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1397 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1398 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1399 	if (CTX_INCLUDE_AARCH32_REGS) {
1400 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1401 	}
1402 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1403 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1404 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1405 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1406 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1407 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1408 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1409 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1410 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1411 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1412 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1413 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1414 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1415 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1416 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1417 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1418 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1419 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1420 
1421 	write_el2_ctx_common_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1422 	write_el2_ctx_common_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1423 }
1424 
1425 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1426 {
1427 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1428 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1429 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1430 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1431 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1432 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1433 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1434 	if (CTX_INCLUDE_AARCH32_REGS) {
1435 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1436 	}
1437 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1438 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1439 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1440 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1441 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1442 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1443 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1444 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1445 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1446 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1447 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1448 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1449 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1450 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1451 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1452 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1453 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1454 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1455 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1456 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1457 }
1458 
1459 /*******************************************************************************
1460  * Save EL2 sysreg context
1461  ******************************************************************************/
1462 void cm_el2_sysregs_context_save(uint32_t security_state)
1463 {
1464 	cpu_context_t *ctx;
1465 	el2_sysregs_t *el2_sysregs_ctx;
1466 
1467 	ctx = cm_get_context(security_state);
1468 	assert(ctx != NULL);
1469 
1470 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1471 
1472 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1473 	el2_sysregs_context_save_gic(el2_sysregs_ctx, security_state);
1474 
1475 	if (is_feat_mte2_supported()) {
1476 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1477 	}
1478 
1479 	if (is_feat_mpam_supported()) {
1480 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1481 	}
1482 
1483 	if (is_feat_fgt_supported()) {
1484 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1485 	}
1486 
1487 	if (is_feat_fgt2_supported()) {
1488 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1489 	}
1490 
1491 	if (is_feat_ecv_v2_supported()) {
1492 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1493 	}
1494 
1495 	if (is_feat_vhe_supported()) {
1496 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1497 					read_contextidr_el2());
1498 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1499 	}
1500 
1501 	if (is_feat_ras_supported()) {
1502 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1503 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1504 	}
1505 
1506 	if (is_feat_nv2_supported()) {
1507 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1508 	}
1509 
1510 	if (is_feat_trf_supported()) {
1511 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1512 	}
1513 
1514 	if (is_feat_csv2_2_supported()) {
1515 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1516 					read_scxtnum_el2());
1517 	}
1518 
1519 	if (is_feat_hcx_supported()) {
1520 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1521 	}
1522 
1523 	if (is_feat_tcr2_supported()) {
1524 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1525 	}
1526 
1527 	if (is_feat_sxpie_supported()) {
1528 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1529 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1530 	}
1531 
1532 	if (is_feat_sxpoe_supported()) {
1533 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1534 	}
1535 
1536 	if (is_feat_brbe_supported()) {
1537 		write_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2, read_brbcr_el2());
1538 	}
1539 
1540 	if (is_feat_s2pie_supported()) {
1541 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1542 	}
1543 
1544 	if (is_feat_gcs_supported()) {
1545 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1546 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1547 	}
1548 
1549 	if (is_feat_sctlr2_supported()) {
1550 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1551 	}
1552 }
1553 
1554 /*******************************************************************************
1555  * Restore EL2 sysreg context
1556  ******************************************************************************/
1557 void cm_el2_sysregs_context_restore(uint32_t security_state)
1558 {
1559 	cpu_context_t *ctx;
1560 	el2_sysregs_t *el2_sysregs_ctx;
1561 
1562 	ctx = cm_get_context(security_state);
1563 	assert(ctx != NULL);
1564 
1565 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1566 
1567 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1568 	el2_sysregs_context_restore_gic(el2_sysregs_ctx, security_state);
1569 
1570 	if (is_feat_mte2_supported()) {
1571 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1572 	}
1573 
1574 	if (is_feat_mpam_supported()) {
1575 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1576 	}
1577 
1578 	if (is_feat_fgt_supported()) {
1579 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1580 	}
1581 
1582 	if (is_feat_fgt2_supported()) {
1583 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1584 	}
1585 
1586 	if (is_feat_ecv_v2_supported()) {
1587 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1588 	}
1589 
1590 	if (is_feat_vhe_supported()) {
1591 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1592 					contextidr_el2));
1593 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1594 	}
1595 
1596 	if (is_feat_ras_supported()) {
1597 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1598 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1599 	}
1600 
1601 	if (is_feat_nv2_supported()) {
1602 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1603 	}
1604 
1605 	if (is_feat_trf_supported()) {
1606 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1607 	}
1608 
1609 	if (is_feat_csv2_2_supported()) {
1610 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1611 					scxtnum_el2));
1612 	}
1613 
1614 	if (is_feat_hcx_supported()) {
1615 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1616 	}
1617 
1618 	if (is_feat_tcr2_supported()) {
1619 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1620 	}
1621 
1622 	if (is_feat_sxpie_supported()) {
1623 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1624 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1625 	}
1626 
1627 	if (is_feat_sxpoe_supported()) {
1628 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1629 	}
1630 
1631 	if (is_feat_s2pie_supported()) {
1632 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1633 	}
1634 
1635 	if (is_feat_gcs_supported()) {
1636 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1637 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1638 	}
1639 
1640 	if (is_feat_sctlr2_supported()) {
1641 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1642 	}
1643 
1644 	if (is_feat_brbe_supported()) {
1645 		write_brbcr_el2(read_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2));
1646 	}
1647 }
1648 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1649 
1650 #if IMAGE_BL31
1651 /*********************************************************************************
1652 * This function allows Architecture features asymmetry among cores.
1653 * TF-A assumes that all the cores in the platform has architecture feature parity
1654 * and hence the context is setup on different core (e.g. primary sets up the
1655 * context for secondary cores).This assumption may not be true for systems where
1656 * cores are not conforming to same Arch version or there is CPU Erratum which
1657 * requires certain feature to be be disabled only on a given core.
1658 *
1659 * This function is called on secondary cores to override any disparity in context
1660 * setup by primary, this would be called during warmboot path.
1661 *********************************************************************************/
1662 void cm_handle_asymmetric_features(void)
1663 {
1664 	cpu_context_t *ctx __maybe_unused = cm_get_context(NON_SECURE);
1665 
1666 	assert(ctx != NULL);
1667 
1668 #if ENABLE_SPE_FOR_NS == FEAT_STATE_CHECK_ASYMMETRIC
1669 	if (is_feat_spe_supported()) {
1670 		spe_enable(ctx);
1671 	} else {
1672 		spe_disable(ctx);
1673 	}
1674 #endif
1675 
1676 #if ERRATA_A520_2938996 || ERRATA_X4_2726228
1677 	if (check_if_affected_core() == ERRATA_APPLIES) {
1678 		if (is_feat_trbe_supported()) {
1679 			trbe_disable(ctx);
1680 		}
1681 	}
1682 #endif
1683 
1684 #if ENABLE_FEAT_TCR2 == FEAT_STATE_CHECK_ASYMMETRIC
1685 	el3_state_t *el3_state = get_el3state_ctx(ctx);
1686 	u_register_t spsr = read_ctx_reg(el3_state, CTX_SPSR_EL3);
1687 
1688 	if (is_feat_tcr2_supported() && (GET_RW(spsr) == MODE_RW_64)) {
1689 		tcr2_enable(ctx);
1690 	} else {
1691 		tcr2_disable(ctx);
1692 	}
1693 #endif
1694 
1695 }
1696 #endif
1697 
1698 /*******************************************************************************
1699  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1700  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1701  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1702  * cm_prepare_el3_exit function.
1703  ******************************************************************************/
1704 void cm_prepare_el3_exit_ns(void)
1705 {
1706 #if IMAGE_BL31
1707 	/*
1708 	 * Check and handle Architecture feature asymmetry among cores.
1709 	 *
1710 	 * In warmboot path secondary cores context is initialized on core which
1711 	 * did CPU_ON SMC call, if there is feature asymmetry in these cores handle
1712 	 * it in this function call.
1713 	 * For Symmetric cores this is an empty function.
1714 	 */
1715 	cm_handle_asymmetric_features();
1716 #endif
1717 
1718 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1719 #if ENABLE_ASSERTIONS
1720 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1721 	assert(ctx != NULL);
1722 
1723 	/* Assert that EL2 is used. */
1724 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1725 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1726 			(el_implemented(2U) != EL_IMPL_NONE));
1727 #endif /* ENABLE_ASSERTIONS */
1728 
1729 	/* Restore EL2 sysreg contexts */
1730 	cm_el2_sysregs_context_restore(NON_SECURE);
1731 	cm_set_next_eret_context(NON_SECURE);
1732 #else
1733 	cm_prepare_el3_exit(NON_SECURE);
1734 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1735 }
1736 
1737 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1738 /*******************************************************************************
1739  * The next set of six functions are used by runtime services to save and restore
1740  * EL1 context on the 'cpu_context' structure for the specified security state.
1741  ******************************************************************************/
1742 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1743 {
1744 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1745 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1746 
1747 #if (!ERRATA_SPECULATIVE_AT)
1748 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1749 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1750 #endif /* (!ERRATA_SPECULATIVE_AT) */
1751 
1752 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1753 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1754 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1755 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1756 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1757 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1758 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1759 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1760 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1761 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1762 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1763 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1764 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1765 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1766 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1767 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1768 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1769 
1770 	write_el1_ctx_common_sysreg128(ctx, par_el1, read_par_el1());
1771 	write_el1_ctx_common_sysreg128(ctx, ttbr0_el1, read_ttbr0_el1());
1772 	write_el1_ctx_common_sysreg128(ctx, ttbr1_el1, read_ttbr1_el1());
1773 
1774 	if (CTX_INCLUDE_AARCH32_REGS) {
1775 		/* Save Aarch32 registers */
1776 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1777 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1778 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1779 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1780 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1781 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1782 	}
1783 
1784 	if (NS_TIMER_SWITCH) {
1785 		/* Save NS Timer registers */
1786 		write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1787 		write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1788 		write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1789 		write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1790 		write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1791 	}
1792 
1793 	if (is_feat_mte2_supported()) {
1794 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1795 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1796 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1797 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1798 	}
1799 
1800 	if (is_feat_ras_supported()) {
1801 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1802 	}
1803 
1804 	if (is_feat_s1pie_supported()) {
1805 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1806 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1807 	}
1808 
1809 	if (is_feat_s1poe_supported()) {
1810 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1811 	}
1812 
1813 	if (is_feat_s2poe_supported()) {
1814 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1815 	}
1816 
1817 	if (is_feat_tcr2_supported()) {
1818 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1819 	}
1820 
1821 	if (is_feat_trf_supported()) {
1822 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1823 	}
1824 
1825 	if (is_feat_csv2_2_supported()) {
1826 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1827 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1828 	}
1829 
1830 	if (is_feat_gcs_supported()) {
1831 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1832 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1833 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1834 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1835 	}
1836 
1837 	if (is_feat_the_supported()) {
1838 		write_el1_ctx_the_sysreg128(ctx, rcwmask_el1, read_rcwmask_el1());
1839 		write_el1_ctx_the_sysreg128(ctx, rcwsmask_el1, read_rcwsmask_el1());
1840 	}
1841 
1842 	if (is_feat_sctlr2_supported()) {
1843 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1844 	}
1845 
1846 	if (is_feat_ls64_accdata_supported()) {
1847 		write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1());
1848 	}
1849 }
1850 
1851 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1852 {
1853 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1854 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1855 
1856 #if (!ERRATA_SPECULATIVE_AT)
1857 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1858 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1859 #endif /* (!ERRATA_SPECULATIVE_AT) */
1860 
1861 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1862 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1863 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1864 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1865 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1866 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1867 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1868 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1869 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1870 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1871 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1872 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1873 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1874 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1875 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1876 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1877 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1878 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1879 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1880 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1881 
1882 	if (CTX_INCLUDE_AARCH32_REGS) {
1883 		/* Restore Aarch32 registers */
1884 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1885 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1886 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1887 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1888 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1889 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1890 	}
1891 
1892 	if (NS_TIMER_SWITCH) {
1893 		/* Restore NS Timer registers */
1894 		write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1895 		write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1896 		write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1897 		write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1898 		write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1899 	}
1900 
1901 	if (is_feat_mte2_supported()) {
1902 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1903 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1904 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1905 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1906 	}
1907 
1908 	if (is_feat_ras_supported()) {
1909 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1910 	}
1911 
1912 	if (is_feat_s1pie_supported()) {
1913 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1914 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1915 	}
1916 
1917 	if (is_feat_s1poe_supported()) {
1918 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1919 	}
1920 
1921 	if (is_feat_s2poe_supported()) {
1922 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1923 	}
1924 
1925 	if (is_feat_tcr2_supported()) {
1926 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1927 	}
1928 
1929 	if (is_feat_trf_supported()) {
1930 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1931 	}
1932 
1933 	if (is_feat_csv2_2_supported()) {
1934 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1935 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1936 	}
1937 
1938 	if (is_feat_gcs_supported()) {
1939 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1940 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1941 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1942 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1943 	}
1944 
1945 	if (is_feat_the_supported()) {
1946 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1947 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1948 	}
1949 
1950 	if (is_feat_sctlr2_supported()) {
1951 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1952 	}
1953 
1954 	if (is_feat_ls64_accdata_supported()) {
1955 		write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1));
1956 	}
1957 }
1958 
1959 /*******************************************************************************
1960  * The next couple of functions are used by runtime services to save and restore
1961  * EL1 context on the 'cpu_context' structure for the specified security state.
1962  ******************************************************************************/
1963 void cm_el1_sysregs_context_save(uint32_t security_state)
1964 {
1965 	cpu_context_t *ctx;
1966 
1967 	ctx = cm_get_context(security_state);
1968 	assert(ctx != NULL);
1969 
1970 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1971 
1972 #if IMAGE_BL31
1973 	if (security_state == SECURE) {
1974 		PUBLISH_EVENT(cm_exited_secure_world);
1975 	} else {
1976 		PUBLISH_EVENT(cm_exited_normal_world);
1977 	}
1978 #endif
1979 }
1980 
1981 void cm_el1_sysregs_context_restore(uint32_t security_state)
1982 {
1983 	cpu_context_t *ctx;
1984 
1985 	ctx = cm_get_context(security_state);
1986 	assert(ctx != NULL);
1987 
1988 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1989 
1990 #if IMAGE_BL31
1991 	if (security_state == SECURE) {
1992 		PUBLISH_EVENT(cm_entering_secure_world);
1993 	} else {
1994 		PUBLISH_EVENT(cm_entering_normal_world);
1995 	}
1996 #endif
1997 }
1998 
1999 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
2000 
2001 /*******************************************************************************
2002  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
2003  * given security state with the given entrypoint
2004  ******************************************************************************/
2005 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
2006 {
2007 	cpu_context_t *ctx;
2008 	el3_state_t *state;
2009 
2010 	ctx = cm_get_context(security_state);
2011 	assert(ctx != NULL);
2012 
2013 	/* Populate EL3 state so that ERET jumps to the correct entry */
2014 	state = get_el3state_ctx(ctx);
2015 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2016 }
2017 
2018 /*******************************************************************************
2019  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
2020  * pertaining to the given security state
2021  ******************************************************************************/
2022 void cm_set_elr_spsr_el3(uint32_t security_state,
2023 			uintptr_t entrypoint, uint32_t spsr)
2024 {
2025 	cpu_context_t *ctx;
2026 	el3_state_t *state;
2027 
2028 	ctx = cm_get_context(security_state);
2029 	assert(ctx != NULL);
2030 
2031 	/* Populate EL3 state so that ERET jumps to the correct entry */
2032 	state = get_el3state_ctx(ctx);
2033 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2034 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
2035 }
2036 
2037 /*******************************************************************************
2038  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
2039  * pertaining to the given security state using the value and bit position
2040  * specified in the parameters. It preserves all other bits.
2041  ******************************************************************************/
2042 void cm_write_scr_el3_bit(uint32_t security_state,
2043 			  uint32_t bit_pos,
2044 			  uint32_t value)
2045 {
2046 	cpu_context_t *ctx;
2047 	el3_state_t *state;
2048 	u_register_t scr_el3;
2049 
2050 	ctx = cm_get_context(security_state);
2051 	assert(ctx != NULL);
2052 
2053 	/* Ensure that the bit position is a valid one */
2054 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
2055 
2056 	/* Ensure that the 'value' is only a bit wide */
2057 	assert(value <= 1U);
2058 
2059 	/*
2060 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
2061 	 * and set it to its new value.
2062 	 */
2063 	state = get_el3state_ctx(ctx);
2064 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
2065 	scr_el3 &= ~(1UL << bit_pos);
2066 	scr_el3 |= (u_register_t)value << bit_pos;
2067 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
2068 }
2069 
2070 /*******************************************************************************
2071  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
2072  * given security state.
2073  ******************************************************************************/
2074 u_register_t cm_get_scr_el3(uint32_t security_state)
2075 {
2076 	cpu_context_t *ctx;
2077 	el3_state_t *state;
2078 
2079 	ctx = cm_get_context(security_state);
2080 	assert(ctx != NULL);
2081 
2082 	/* Populate EL3 state so that ERET jumps to the correct entry */
2083 	state = get_el3state_ctx(ctx);
2084 	return read_ctx_reg(state, CTX_SCR_EL3);
2085 }
2086 
2087 /*******************************************************************************
2088  * This function is used to program the context that's used for exception
2089  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
2090  * the required security state
2091  ******************************************************************************/
2092 void cm_set_next_eret_context(uint32_t security_state)
2093 {
2094 	cpu_context_t *ctx;
2095 
2096 	ctx = cm_get_context(security_state);
2097 	assert(ctx != NULL);
2098 
2099 	cm_set_next_context(ctx);
2100 }
2101