xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 82cb2c1ad9897473743f08437d0a3995bed561b9)
1 /*
2  * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <bl_common.h>
11 #include <context.h>
12 #include <context_mgmt.h>
13 #include <interrupt_mgmt.h>
14 #include <platform.h>
15 #include <platform_def.h>
16 #include <smcc_helpers.h>
17 #include <string.h>
18 #include <utils.h>
19 
20 
21 /*******************************************************************************
22  * Context management library initialisation routine. This library is used by
23  * runtime services to share pointers to 'cpu_context' structures for the secure
24  * and non-secure states. Management of the structures and their associated
25  * memory is not done by the context management library e.g. the PSCI service
26  * manages the cpu context used for entry from and exit to the non-secure state.
27  * The Secure payload dispatcher service manages the context(s) corresponding to
28  * the secure state. It also uses this library to get access to the non-secure
29  * state cpu context pointers.
30  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
31  * which will used for programming an entry into a lower EL. The same context
32  * will used to save state upon exception entry from that EL.
33  ******************************************************************************/
34 void cm_init(void)
35 {
36 	/*
37 	 * The context management library has only global data to intialize, but
38 	 * that will be done when the BSS is zeroed out
39 	 */
40 }
41 
42 /*******************************************************************************
43  * The following function initializes the cpu_context 'ctx' for
44  * first use, and sets the initial entrypoint state as specified by the
45  * entry_point_info structure.
46  *
47  * The security state to initialize is determined by the SECURE attribute
48  * of the entry_point_info. The function returns a pointer to the initialized
49  * context and sets this as the next context to return to.
50  *
51  * The EE and ST attributes are used to configure the endianess and secure
52  * timer availability for the new execution context.
53  *
54  * To prepare the register state for entry call cm_prepare_el3_exit() and
55  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
56  * cm_e1_sysreg_context_restore().
57  ******************************************************************************/
58 static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
59 {
60 	unsigned int security_state;
61 	uint32_t scr_el3;
62 	el3_state_t *state;
63 	gp_regs_t *gp_regs;
64 	unsigned long sctlr_elx;
65 
66 	assert(ctx);
67 
68 	security_state = GET_SECURITY_STATE(ep->h.attr);
69 
70 	/* Clear any residual register values from the context */
71 	zeromem(ctx, sizeof(*ctx));
72 
73 	/*
74 	 * Base the context SCR on the current value, adjust for entry point
75 	 * specific requirements and set trap bits from the IMF
76 	 * TODO: provide the base/global SCR bits using another mechanism?
77 	 */
78 	scr_el3 = read_scr();
79 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
80 			SCR_ST_BIT | SCR_HCE_BIT);
81 
82 	if (security_state != SECURE)
83 		scr_el3 |= SCR_NS_BIT;
84 
85 	if (GET_RW(ep->spsr) == MODE_RW_64)
86 		scr_el3 |= SCR_RW_BIT;
87 
88 	if (EP_GET_ST(ep->h.attr))
89 		scr_el3 |= SCR_ST_BIT;
90 
91 #ifndef HANDLE_EA_EL3_FIRST
92 	/* Explicitly stop to trap aborts from lower exception levels. */
93 	scr_el3 &= ~SCR_EA_BIT;
94 #endif
95 
96 #ifdef IMAGE_BL31
97 	/*
98 	 * IRQ/FIQ bits only need setting if interrupt routing
99 	 * model has been set up for BL31.
100 	 */
101 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
102 #endif
103 
104 	/*
105 	 * Set up SCTLR_ELx for the target exception level:
106 	 * EE bit is taken from the entrypoint attributes
107 	 * M, C and I bits must be zero (as required by PSCI specification)
108 	 *
109 	 * The target exception level is based on the spsr mode requested.
110 	 * If execution is requested to EL2 or hyp mode, HVC is enabled
111 	 * via SCR_EL3.HCE.
112 	 *
113 	 * Always compute the SCTLR_EL1 value and save in the cpu_context
114 	 * - the EL2 registers are set up by cm_preapre_ns_entry() as they
115 	 * are not part of the stored cpu_context
116 	 *
117 	 * TODO: In debug builds the spsr should be validated and checked
118 	 * against the CPU support, security state, endianess and pc
119 	 */
120 	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
121 	if (GET_RW(ep->spsr) == MODE_RW_64)
122 		sctlr_elx |= SCTLR_EL1_RES1;
123 	else {
124 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1;
125 		/*
126 		 * If lower non-secure EL is AArch32, enable the CP15BEN, nTWI
127 		 * & nTWI bits. This aligns with SCTLR initialization on
128 		 * systems with an AArch32 EL3, where these bits
129 		 * architecturally reset to 1.
130 		 */
131 		if (security_state != SECURE)
132 			sctlr_elx |= SCTLR_CP15BEN_BIT | SCTLR_NTWI_BIT
133 						| SCTLR_NTWE_BIT;
134 	}
135 
136 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
137 
138 	if ((GET_RW(ep->spsr) == MODE_RW_64
139 	     && GET_EL(ep->spsr) == MODE_EL2)
140 	    || (GET_RW(ep->spsr) != MODE_RW_64
141 		&& GET_M32(ep->spsr) == MODE32_hyp)) {
142 		scr_el3 |= SCR_HCE_BIT;
143 	}
144 
145 	/* Populate EL3 state so that we've the right context before doing ERET */
146 	state = get_el3state_ctx(ctx);
147 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
148 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
149 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
150 
151 	/*
152 	 * Store the X0-X7 value from the entrypoint into the context
153 	 * Use memcpy as we are in control of the layout of the structures
154 	 */
155 	gp_regs = get_gpregs_ctx(ctx);
156 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
157 }
158 
159 /*******************************************************************************
160  * The following function initializes the cpu_context for a CPU specified by
161  * its `cpu_idx` for first use, and sets the initial entrypoint state as
162  * specified by the entry_point_info structure.
163  ******************************************************************************/
164 void cm_init_context_by_index(unsigned int cpu_idx,
165 			      const entry_point_info_t *ep)
166 {
167 	cpu_context_t *ctx;
168 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
169 	cm_init_context_common(ctx, ep);
170 }
171 
172 /*******************************************************************************
173  * The following function initializes the cpu_context for the current CPU
174  * for first use, and sets the initial entrypoint state as specified by the
175  * entry_point_info structure.
176  ******************************************************************************/
177 void cm_init_my_context(const entry_point_info_t *ep)
178 {
179 	cpu_context_t *ctx;
180 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
181 	cm_init_context_common(ctx, ep);
182 }
183 
184 /*******************************************************************************
185  * Prepare the CPU system registers for first entry into secure or normal world
186  *
187  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
188  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
189  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
190  * For all entries, the EL1 registers are initialized from the cpu_context
191  ******************************************************************************/
192 void cm_prepare_el3_exit(uint32_t security_state)
193 {
194 	uint32_t sctlr_elx, scr_el3, cptr_el2;
195 	cpu_context_t *ctx = cm_get_context(security_state);
196 
197 	assert(ctx);
198 
199 	if (security_state == NON_SECURE) {
200 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
201 		if (scr_el3 & SCR_HCE_BIT) {
202 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
203 			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
204 						 CTX_SCTLR_EL1);
205 			sctlr_elx &= ~SCTLR_EE_BIT;
206 			sctlr_elx |= SCTLR_EL2_RES1;
207 			write_sctlr_el2(sctlr_elx);
208 		} else if (read_id_aa64pfr0_el1() &
209 			   (ID_AA64PFR0_ELX_MASK << ID_AA64PFR0_EL2_SHIFT)) {
210 			/* EL2 present but unused, need to disable safely */
211 
212 			/* HCR_EL2 = 0, except RW bit set to match SCR_EL3 */
213 			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
214 
215 			/* SCTLR_EL2 : can be ignored when bypassing */
216 
217 			/* CPTR_EL2 : disable all traps TCPAC, TTA, TFP */
218 			cptr_el2 = read_cptr_el2();
219 			cptr_el2 &= ~(TCPAC_BIT | TTA_BIT | TFP_BIT);
220 			write_cptr_el2(cptr_el2);
221 
222 			/* Enable EL1 access to timer */
223 			write_cnthctl_el2(EL1PCEN_BIT | EL1PCTEN_BIT);
224 
225 			/* Reset CNTVOFF_EL2 */
226 			write_cntvoff_el2(0);
227 
228 			/* Set VPIDR, VMPIDR to match MIDR, MPIDR */
229 			write_vpidr_el2(read_midr_el1());
230 			write_vmpidr_el2(read_mpidr_el1());
231 
232 			/*
233 			 * Reset VTTBR_EL2.
234 			 * Needed because cache maintenance operations depend on
235 			 * the VMID even when non-secure EL1&0 stage 2 address
236 			 * translation are disabled.
237 			 */
238 			write_vttbr_el2(0);
239 			/*
240 			 * Avoid unexpected debug traps in case where MDCR_EL2
241 			 * is not completely reset by the hardware - set
242 			 * MDCR_EL2.HPMN to PMCR_EL0.N and zero the remaining
243 			 * bits.
244 			 * MDCR_EL2.HPMN and PMCR_EL0.N fields are the same size
245 			 * (5 bits) and HPMN is at offset zero within MDCR_EL2.
246 			 */
247 			write_mdcr_el2((read_pmcr_el0() & PMCR_EL0_N_BITS)
248 					>> PMCR_EL0_N_SHIFT);
249 			/*
250 			 * Avoid unexpected traps of non-secure access to
251 			 * certain system registers at EL1 or lower where
252 			 * HSTR_EL2 is not completely reset to zero by the
253 			 * hardware - zero the entire register.
254 			 */
255 			write_hstr_el2(0);
256 			/*
257 			 * Reset CNTHP_CTL_EL2 to disable the EL2 physical timer
258 			 * and therefore prevent timer interrupts.
259 			 */
260 			write_cnthp_ctl_el2(0);
261 		}
262 	}
263 
264 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
265 
266 	cm_set_next_context(ctx);
267 }
268 
269 /*******************************************************************************
270  * The next four functions are used by runtime services to save and restore
271  * EL1 context on the 'cpu_context' structure for the specified security
272  * state.
273  ******************************************************************************/
274 void cm_el1_sysregs_context_save(uint32_t security_state)
275 {
276 	cpu_context_t *ctx;
277 
278 	ctx = cm_get_context(security_state);
279 	assert(ctx);
280 
281 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
282 }
283 
284 void cm_el1_sysregs_context_restore(uint32_t security_state)
285 {
286 	cpu_context_t *ctx;
287 
288 	ctx = cm_get_context(security_state);
289 	assert(ctx);
290 
291 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
292 }
293 
294 /*******************************************************************************
295  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
296  * given security state with the given entrypoint
297  ******************************************************************************/
298 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
299 {
300 	cpu_context_t *ctx;
301 	el3_state_t *state;
302 
303 	ctx = cm_get_context(security_state);
304 	assert(ctx);
305 
306 	/* Populate EL3 state so that ERET jumps to the correct entry */
307 	state = get_el3state_ctx(ctx);
308 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
309 }
310 
311 /*******************************************************************************
312  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
313  * pertaining to the given security state
314  ******************************************************************************/
315 void cm_set_elr_spsr_el3(uint32_t security_state,
316 			uintptr_t entrypoint, uint32_t spsr)
317 {
318 	cpu_context_t *ctx;
319 	el3_state_t *state;
320 
321 	ctx = cm_get_context(security_state);
322 	assert(ctx);
323 
324 	/* Populate EL3 state so that ERET jumps to the correct entry */
325 	state = get_el3state_ctx(ctx);
326 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
327 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
328 }
329 
330 /*******************************************************************************
331  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
332  * pertaining to the given security state using the value and bit position
333  * specified in the parameters. It preserves all other bits.
334  ******************************************************************************/
335 void cm_write_scr_el3_bit(uint32_t security_state,
336 			  uint32_t bit_pos,
337 			  uint32_t value)
338 {
339 	cpu_context_t *ctx;
340 	el3_state_t *state;
341 	uint32_t scr_el3;
342 
343 	ctx = cm_get_context(security_state);
344 	assert(ctx);
345 
346 	/* Ensure that the bit position is a valid one */
347 	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
348 
349 	/* Ensure that the 'value' is only a bit wide */
350 	assert(value <= 1);
351 
352 	/*
353 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
354 	 * and set it to its new value.
355 	 */
356 	state = get_el3state_ctx(ctx);
357 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
358 	scr_el3 &= ~(1 << bit_pos);
359 	scr_el3 |= value << bit_pos;
360 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
361 }
362 
363 /*******************************************************************************
364  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
365  * given security state.
366  ******************************************************************************/
367 uint32_t cm_get_scr_el3(uint32_t security_state)
368 {
369 	cpu_context_t *ctx;
370 	el3_state_t *state;
371 
372 	ctx = cm_get_context(security_state);
373 	assert(ctx);
374 
375 	/* Populate EL3 state so that ERET jumps to the correct entry */
376 	state = get_el3state_ctx(ctx);
377 	return read_ctx_reg(state, CTX_SCR_EL3);
378 }
379 
380 /*******************************************************************************
381  * This function is used to program the context that's used for exception
382  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
383  * the required security state
384  ******************************************************************************/
385 void cm_set_next_eret_context(uint32_t security_state)
386 {
387 	cpu_context_t *ctx;
388 
389 	ctx = cm_get_context(security_state);
390 	assert(ctx);
391 
392 	cm_set_next_context(ctx);
393 }
394