1 /* 2 * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved. 3 * Copyright (c) 2022, NVIDIA Corporation. All rights reserved. 4 * 5 * SPDX-License-Identifier: BSD-3-Clause 6 */ 7 8 #include <assert.h> 9 #include <stdbool.h> 10 #include <string.h> 11 12 #include <platform_def.h> 13 14 #include <arch.h> 15 #include <arch_helpers.h> 16 #include <arch_features.h> 17 #include <bl31/interrupt_mgmt.h> 18 #include <common/bl_common.h> 19 #include <common/debug.h> 20 #include <context.h> 21 #include <drivers/arm/gicv3.h> 22 #include <lib/el3_runtime/context_mgmt.h> 23 #include <lib/el3_runtime/cpu_data.h> 24 #include <lib/el3_runtime/pubsub_events.h> 25 #include <lib/extensions/amu.h> 26 #include <lib/extensions/brbe.h> 27 #include <lib/extensions/mpam.h> 28 #include <lib/extensions/pmuv3.h> 29 #include <lib/extensions/sme.h> 30 #include <lib/extensions/spe.h> 31 #include <lib/extensions/sve.h> 32 #include <lib/extensions/sys_reg_trace.h> 33 #include <lib/extensions/trbe.h> 34 #include <lib/extensions/trf.h> 35 #include <lib/utils.h> 36 37 #if ENABLE_FEAT_TWED 38 /* Make sure delay value fits within the range(0-15) */ 39 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check); 40 #endif /* ENABLE_FEAT_TWED */ 41 42 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM]; 43 static bool has_secure_perworld_init; 44 45 static void manage_extensions_nonsecure(cpu_context_t *ctx); 46 static void manage_extensions_secure(cpu_context_t *ctx); 47 static void manage_extensions_secure_per_world(void); 48 49 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep) 50 { 51 u_register_t sctlr_elx, actlr_elx; 52 53 /* 54 * Initialise SCTLR_EL1 to the reset value corresponding to the target 55 * execution state setting all fields rather than relying on the hw. 56 * Some fields have architecturally UNKNOWN reset values and these are 57 * set to zero. 58 * 59 * SCTLR.EE: Endianness is taken from the entrypoint attributes. 60 * 61 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as 62 * required by PSCI specification) 63 */ 64 sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL; 65 if (GET_RW(ep->spsr) == MODE_RW_64) { 66 sctlr_elx |= SCTLR_EL1_RES1; 67 } else { 68 /* 69 * If the target execution state is AArch32 then the following 70 * fields need to be set. 71 * 72 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE 73 * instructions are not trapped to EL1. 74 * 75 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI 76 * instructions are not trapped to EL1. 77 * 78 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the 79 * CP15DMB, CP15DSB, and CP15ISB instructions. 80 */ 81 sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT 82 | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; 83 } 84 85 #if ERRATA_A75_764081 86 /* 87 * If workaround of errata 764081 for Cortex-A75 is used then set 88 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier. 89 */ 90 sctlr_elx |= SCTLR_IESB_BIT; 91 #endif 92 /* Store the initialised SCTLR_EL1 value in the cpu_context */ 93 write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); 94 95 /* 96 * Base the context ACTLR_EL1 on the current value, as it is 97 * implementation defined. The context restore process will write 98 * the value from the context to the actual register and can cause 99 * problems for processor cores that don't expect certain bits to 100 * be zero. 101 */ 102 actlr_elx = read_actlr_el1(); 103 write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx)); 104 } 105 106 /****************************************************************************** 107 * This function performs initializations that are specific to SECURE state 108 * and updates the cpu context specified by 'ctx'. 109 *****************************************************************************/ 110 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep) 111 { 112 u_register_t scr_el3; 113 el3_state_t *state; 114 115 state = get_el3state_ctx(ctx); 116 scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 117 118 #if defined(IMAGE_BL31) && !defined(SPD_spmd) 119 /* 120 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as 121 * indicated by the interrupt routing model for BL31. 122 */ 123 scr_el3 |= get_scr_el3_from_routing_model(SECURE); 124 #endif 125 126 /* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */ 127 if (is_feat_mte2_supported()) { 128 scr_el3 |= SCR_ATA_BIT; 129 } 130 131 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 132 133 /* 134 * Initialize EL1 context registers unless SPMC is running 135 * at S-EL2. 136 */ 137 #if !SPMD_SPM_AT_SEL2 138 setup_el1_context(ctx, ep); 139 #endif 140 141 manage_extensions_secure(ctx); 142 143 /** 144 * manage_extensions_secure_per_world api has to be executed once, 145 * as the registers getting initialised, maintain constant value across 146 * all the cpus for the secure world. 147 * Henceforth, this check ensures that the registers are initialised once 148 * and avoids re-initialization from multiple cores. 149 */ 150 if (!has_secure_perworld_init) { 151 manage_extensions_secure_per_world(); 152 } 153 154 } 155 156 #if ENABLE_RME 157 /****************************************************************************** 158 * This function performs initializations that are specific to REALM state 159 * and updates the cpu context specified by 'ctx'. 160 *****************************************************************************/ 161 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep) 162 { 163 u_register_t scr_el3; 164 el3_state_t *state; 165 166 state = get_el3state_ctx(ctx); 167 scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 168 169 scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT; 170 171 /* CSV2 version 2 and above */ 172 if (is_feat_csv2_2_supported()) { 173 /* Enable access to the SCXTNUM_ELx registers. */ 174 scr_el3 |= SCR_EnSCXT_BIT; 175 } 176 177 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 178 } 179 #endif /* ENABLE_RME */ 180 181 /****************************************************************************** 182 * This function performs initializations that are specific to NON-SECURE state 183 * and updates the cpu context specified by 'ctx'. 184 *****************************************************************************/ 185 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep) 186 { 187 u_register_t scr_el3; 188 el3_state_t *state; 189 190 state = get_el3state_ctx(ctx); 191 scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 192 193 /* SCR_NS: Set the NS bit */ 194 scr_el3 |= SCR_NS_BIT; 195 196 /* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */ 197 if (is_feat_mte2_supported()) { 198 scr_el3 |= SCR_ATA_BIT; 199 } 200 201 #if !CTX_INCLUDE_PAUTH_REGS 202 /* 203 * Pointer Authentication feature, if present, is always enabled by default 204 * for Non secure lower exception levels. We do not have an explicit 205 * flag to set it. 206 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower 207 * exception levels of secure and realm worlds. 208 * 209 * To prevent the leakage between the worlds during world switch, 210 * we enable it only for the non-secure world. 211 * 212 * If the Secure/realm world wants to use pointer authentication, 213 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case 214 * it will be enabled globally for all the contexts. 215 * 216 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs 217 * other than EL3 218 * 219 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other 220 * than EL3 221 */ 222 scr_el3 |= SCR_API_BIT | SCR_APK_BIT; 223 224 #endif /* CTX_INCLUDE_PAUTH_REGS */ 225 226 #if HANDLE_EA_EL3_FIRST_NS 227 /* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */ 228 scr_el3 |= SCR_EA_BIT; 229 #endif 230 231 #if RAS_TRAP_NS_ERR_REC_ACCESS 232 /* 233 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR 234 * and RAS ERX registers from EL1 and EL2(from any security state) 235 * are trapped to EL3. 236 * Set here to trap only for NS EL1/EL2 237 * 238 */ 239 scr_el3 |= SCR_TERR_BIT; 240 #endif 241 242 /* CSV2 version 2 and above */ 243 if (is_feat_csv2_2_supported()) { 244 /* Enable access to the SCXTNUM_ELx registers. */ 245 scr_el3 |= SCR_EnSCXT_BIT; 246 } 247 248 #ifdef IMAGE_BL31 249 /* 250 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as 251 * indicated by the interrupt routing model for BL31. 252 */ 253 scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE); 254 #endif 255 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 256 257 /* Initialize EL1 context registers */ 258 setup_el1_context(ctx, ep); 259 260 /* Initialize EL2 context registers */ 261 #if CTX_INCLUDE_EL2_REGS 262 263 /* 264 * Initialize SCTLR_EL2 context register using Endianness value 265 * taken from the entrypoint attribute. 266 */ 267 u_register_t sctlr_el2_val = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL; 268 sctlr_el2_val |= SCTLR_EL2_RES1; 269 write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, sctlr_el2_val); 270 271 272 if (is_feat_hcx_supported()) { 273 /* 274 * Initialize register HCRX_EL2 with its init value. 275 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a 276 * chance that this can lead to unexpected behavior in lower 277 * ELs that have not been updated since the introduction of 278 * this feature if not properly initialized, especially when 279 * it comes to those bits that enable/disable traps. 280 */ 281 write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2, 282 HCRX_EL2_INIT_VAL); 283 } 284 285 if (is_feat_fgt_supported()) { 286 /* 287 * Initialize HFG*_EL2 registers with a default value so legacy 288 * systems unaware of FEAT_FGT do not get trapped due to their lack 289 * of initialization for this feature. 290 */ 291 write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2, 292 HFGITR_EL2_INIT_VAL); 293 write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2, 294 HFGRTR_EL2_INIT_VAL); 295 write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2, 296 HFGWTR_EL2_INIT_VAL); 297 } 298 299 #endif /* CTX_INCLUDE_EL2_REGS */ 300 301 manage_extensions_nonsecure(ctx); 302 } 303 304 /******************************************************************************* 305 * The following function performs initialization of the cpu_context 'ctx' 306 * for first use that is common to all security states, and sets the 307 * initial entrypoint state as specified by the entry_point_info structure. 308 * 309 * The EE and ST attributes are used to configure the endianness and secure 310 * timer availability for the new execution context. 311 ******************************************************************************/ 312 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) 313 { 314 u_register_t scr_el3; 315 el3_state_t *state; 316 gp_regs_t *gp_regs; 317 318 state = get_el3state_ctx(ctx); 319 320 /* Clear any residual register values from the context */ 321 zeromem(ctx, sizeof(*ctx)); 322 323 /* 324 * The lower-EL context is zeroed so that no stale values leak to a world. 325 * It is assumed that an all-zero lower-EL context is good enough for it 326 * to boot correctly. However, there are very few registers where this 327 * is not true and some values need to be recreated. 328 */ 329 #if CTX_INCLUDE_EL2_REGS 330 el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx); 331 332 /* 333 * These bits are set in the gicv3 driver. Losing them (especially the 334 * SRE bit) is problematic for all worlds. Henceforth recreate them. 335 */ 336 u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT | 337 ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT; 338 write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val); 339 #endif /* CTX_INCLUDE_EL2_REGS */ 340 341 /* Start with a clean SCR_EL3 copy as all relevant values are set */ 342 scr_el3 = SCR_RESET_VAL; 343 344 /* 345 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at 346 * EL2, EL1 and EL0 are not trapped to EL3. 347 * 348 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at 349 * EL2, EL1 and EL0 are not trapped to EL3. 350 * 351 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from 352 * both Security states and both Execution states. 353 * 354 * SCR_EL3.SIF: Set to one to disable secure instruction execution from 355 * Non-secure memory. 356 */ 357 scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT); 358 359 scr_el3 |= SCR_SIF_BIT; 360 361 /* 362 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next 363 * Exception level as specified by SPSR. 364 */ 365 if (GET_RW(ep->spsr) == MODE_RW_64) { 366 scr_el3 |= SCR_RW_BIT; 367 } 368 369 /* 370 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical 371 * Secure timer registers to EL3, from AArch64 state only, if specified 372 * by the entrypoint attributes. If SEL2 is present and enabled, the ST 373 * bit always behaves as 1 (i.e. secure physical timer register access 374 * is not trapped) 375 */ 376 if (EP_GET_ST(ep->h.attr) != 0U) { 377 scr_el3 |= SCR_ST_BIT; 378 } 379 380 /* 381 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting 382 * SCR_EL3.HXEn. 383 */ 384 if (is_feat_hcx_supported()) { 385 scr_el3 |= SCR_HXEn_BIT; 386 } 387 388 /* 389 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS 390 * registers are trapped to EL3. 391 */ 392 #if ENABLE_FEAT_RNG_TRAP 393 scr_el3 |= SCR_TRNDR_BIT; 394 #endif 395 396 #if FAULT_INJECTION_SUPPORT 397 /* Enable fault injection from lower ELs */ 398 scr_el3 |= SCR_FIEN_BIT; 399 #endif 400 401 #if CTX_INCLUDE_PAUTH_REGS 402 /* 403 * Enable Pointer Authentication globally for all the worlds. 404 * 405 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs 406 * other than EL3 407 * 408 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other 409 * than EL3 410 */ 411 scr_el3 |= SCR_API_BIT | SCR_APK_BIT; 412 #endif /* CTX_INCLUDE_PAUTH_REGS */ 413 414 /* 415 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present. 416 */ 417 if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) { 418 scr_el3 |= SCR_TCR2EN_BIT; 419 } 420 421 /* 422 * SCR_EL3.PIEN: Enable permission indirection and overlay 423 * registers for AArch64 if present. 424 */ 425 if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) { 426 scr_el3 |= SCR_PIEN_BIT; 427 } 428 429 /* 430 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present. 431 */ 432 if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) { 433 scr_el3 |= SCR_GCSEn_BIT; 434 } 435 436 /* 437 * SCR_EL3.HCE: Enable HVC instructions if next execution state is 438 * AArch64 and next EL is EL2, or if next execution state is AArch32 and 439 * next mode is Hyp. 440 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the 441 * same conditions as HVC instructions and when the processor supports 442 * ARMv8.6-FGT. 443 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV) 444 * CNTPOFF_EL2 register under the same conditions as HVC instructions 445 * and when the processor supports ECV. 446 */ 447 if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2)) 448 || ((GET_RW(ep->spsr) != MODE_RW_64) 449 && (GET_M32(ep->spsr) == MODE32_hyp))) { 450 scr_el3 |= SCR_HCE_BIT; 451 452 if (is_feat_fgt_supported()) { 453 scr_el3 |= SCR_FGTEN_BIT; 454 } 455 456 if (is_feat_ecv_supported()) { 457 scr_el3 |= SCR_ECVEN_BIT; 458 } 459 } 460 461 /* Enable WFE trap delay in SCR_EL3 if supported and configured */ 462 if (is_feat_twed_supported()) { 463 /* Set delay in SCR_EL3 */ 464 scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT); 465 scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK) 466 << SCR_TWEDEL_SHIFT); 467 468 /* Enable WFE delay */ 469 scr_el3 |= SCR_TWEDEn_BIT; 470 } 471 472 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2 473 /* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */ 474 if (is_feat_sel2_supported()) { 475 scr_el3 |= SCR_EEL2_BIT; 476 } 477 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */ 478 479 /* 480 * Populate EL3 state so that we've the right context 481 * before doing ERET 482 */ 483 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 484 write_ctx_reg(state, CTX_ELR_EL3, ep->pc); 485 write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); 486 487 /* 488 * Store the X0-X7 value from the entrypoint into the context 489 * Use memcpy as we are in control of the layout of the structures 490 */ 491 gp_regs = get_gpregs_ctx(ctx); 492 memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); 493 } 494 495 /******************************************************************************* 496 * Context management library initialization routine. This library is used by 497 * runtime services to share pointers to 'cpu_context' structures for secure 498 * non-secure and realm states. Management of the structures and their associated 499 * memory is not done by the context management library e.g. the PSCI service 500 * manages the cpu context used for entry from and exit to the non-secure state. 501 * The Secure payload dispatcher service manages the context(s) corresponding to 502 * the secure state. It also uses this library to get access to the non-secure 503 * state cpu context pointers. 504 * Lastly, this library provides the API to make SP_EL3 point to the cpu context 505 * which will be used for programming an entry into a lower EL. The same context 506 * will be used to save state upon exception entry from that EL. 507 ******************************************************************************/ 508 void __init cm_init(void) 509 { 510 /* 511 * The context management library has only global data to initialize, but 512 * that will be done when the BSS is zeroed out. 513 */ 514 } 515 516 /******************************************************************************* 517 * This is the high-level function used to initialize the cpu_context 'ctx' for 518 * first use. It performs initializations that are common to all security states 519 * and initializations specific to the security state specified in 'ep' 520 ******************************************************************************/ 521 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep) 522 { 523 unsigned int security_state; 524 525 assert(ctx != NULL); 526 527 /* 528 * Perform initializations that are common 529 * to all security states 530 */ 531 setup_context_common(ctx, ep); 532 533 security_state = GET_SECURITY_STATE(ep->h.attr); 534 535 /* Perform security state specific initializations */ 536 switch (security_state) { 537 case SECURE: 538 setup_secure_context(ctx, ep); 539 break; 540 #if ENABLE_RME 541 case REALM: 542 setup_realm_context(ctx, ep); 543 break; 544 #endif 545 case NON_SECURE: 546 setup_ns_context(ctx, ep); 547 break; 548 default: 549 ERROR("Invalid security state\n"); 550 panic(); 551 break; 552 } 553 } 554 555 /******************************************************************************* 556 * Enable architecture extensions for EL3 execution. This function only updates 557 * registers in-place which are expected to either never change or be 558 * overwritten by el3_exit. 559 ******************************************************************************/ 560 #if IMAGE_BL31 561 void cm_manage_extensions_el3(void) 562 { 563 if (is_feat_spe_supported()) { 564 spe_init_el3(); 565 } 566 567 if (is_feat_amu_supported()) { 568 amu_init_el3(); 569 } 570 571 if (is_feat_sme_supported()) { 572 sme_init_el3(); 573 } 574 575 if (is_feat_trbe_supported()) { 576 trbe_init_el3(); 577 } 578 579 if (is_feat_brbe_supported()) { 580 brbe_init_el3(); 581 } 582 583 if (is_feat_trf_supported()) { 584 trf_init_el3(); 585 } 586 587 pmuv3_init_el3(); 588 } 589 #endif /* IMAGE_BL31 */ 590 591 /****************************************************************************** 592 * Function to initialise the registers with the RESET values in the context 593 * memory, which are maintained per world. 594 ******************************************************************************/ 595 #if IMAGE_BL31 596 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx) 597 { 598 /* 599 * Initialise CPTR_EL3, setting all fields rather than relying on hw. 600 * 601 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers 602 * by Advanced SIMD, floating-point or SVE instructions (if 603 * implemented) do not trap to EL3. 604 * 605 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1, 606 * CPTR_EL2,CPACR, or HCPTR do not trap to EL3. 607 */ 608 uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT); 609 610 per_world_ctx->ctx_cptr_el3 = cptr_el3; 611 612 /* 613 * Initialize MPAM3_EL3 to its default reset value 614 * 615 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces 616 * all lower ELn MPAM3_EL3 register access to, trap to EL3 617 */ 618 619 per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL; 620 } 621 #endif /* IMAGE_BL31 */ 622 623 /******************************************************************************* 624 * Initialise per_world_context for Non-Secure world. 625 * This function enables the architecture extensions, which have same value 626 * across the cores for the non-secure world. 627 ******************************************************************************/ 628 #if IMAGE_BL31 629 void manage_extensions_nonsecure_per_world(void) 630 { 631 cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]); 632 633 if (is_feat_sme_supported()) { 634 sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); 635 } 636 637 if (is_feat_sve_supported()) { 638 sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); 639 } 640 641 if (is_feat_amu_supported()) { 642 amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); 643 } 644 645 if (is_feat_sys_reg_trace_supported()) { 646 sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); 647 } 648 649 if (is_feat_mpam_supported()) { 650 mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); 651 } 652 } 653 #endif /* IMAGE_BL31 */ 654 655 /******************************************************************************* 656 * Initialise per_world_context for Secure world. 657 * This function enables the architecture extensions, which have same value 658 * across the cores for the secure world. 659 ******************************************************************************/ 660 static void manage_extensions_secure_per_world(void) 661 { 662 #if IMAGE_BL31 663 cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]); 664 665 if (is_feat_sme_supported()) { 666 667 if (ENABLE_SME_FOR_SWD) { 668 /* 669 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure 670 * SME, SVE, and FPU/SIMD context properly managed. 671 */ 672 sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); 673 } else { 674 /* 675 * Disable SME, SVE, FPU/SIMD in secure context so non-secure 676 * world can safely use the associated registers. 677 */ 678 sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); 679 } 680 } 681 if (is_feat_sve_supported()) { 682 if (ENABLE_SVE_FOR_SWD) { 683 /* 684 * Enable SVE and FPU in secure context, SPM must ensure 685 * that the SVE and FPU register contexts are properly managed. 686 */ 687 sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); 688 } else { 689 /* 690 * Disable SVE and FPU in secure context so non-secure world 691 * can safely use them. 692 */ 693 sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); 694 } 695 } 696 697 /* NS can access this but Secure shouldn't */ 698 if (is_feat_sys_reg_trace_supported()) { 699 sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); 700 } 701 702 has_secure_perworld_init = true; 703 #endif /* IMAGE_BL31 */ 704 } 705 706 /******************************************************************************* 707 * Enable architecture extensions on first entry to Non-secure world. 708 ******************************************************************************/ 709 static void manage_extensions_nonsecure(cpu_context_t *ctx) 710 { 711 #if IMAGE_BL31 712 if (is_feat_amu_supported()) { 713 amu_enable(ctx); 714 } 715 716 if (is_feat_sme_supported()) { 717 sme_enable(ctx); 718 } 719 720 pmuv3_enable(ctx); 721 #endif /* IMAGE_BL31 */ 722 } 723 724 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */ 725 static __unused void enable_pauth_el2(void) 726 { 727 u_register_t hcr_el2 = read_hcr_el2(); 728 /* 729 * For Armv8.3 pointer authentication feature, disable traps to EL2 when 730 * accessing key registers or using pointer authentication instructions 731 * from lower ELs. 732 */ 733 hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT); 734 735 write_hcr_el2(hcr_el2); 736 } 737 738 #if INIT_UNUSED_NS_EL2 739 /******************************************************************************* 740 * Enable architecture extensions in-place at EL2 on first entry to Non-secure 741 * world when EL2 is empty and unused. 742 ******************************************************************************/ 743 static void manage_extensions_nonsecure_el2_unused(void) 744 { 745 #if IMAGE_BL31 746 if (is_feat_spe_supported()) { 747 spe_init_el2_unused(); 748 } 749 750 if (is_feat_amu_supported()) { 751 amu_init_el2_unused(); 752 } 753 754 if (is_feat_mpam_supported()) { 755 mpam_init_el2_unused(); 756 } 757 758 if (is_feat_trbe_supported()) { 759 trbe_init_el2_unused(); 760 } 761 762 if (is_feat_sys_reg_trace_supported()) { 763 sys_reg_trace_init_el2_unused(); 764 } 765 766 if (is_feat_trf_supported()) { 767 trf_init_el2_unused(); 768 } 769 770 pmuv3_init_el2_unused(); 771 772 if (is_feat_sve_supported()) { 773 sve_init_el2_unused(); 774 } 775 776 if (is_feat_sme_supported()) { 777 sme_init_el2_unused(); 778 } 779 780 #if ENABLE_PAUTH 781 enable_pauth_el2(); 782 #endif /* ENABLE_PAUTH */ 783 #endif /* IMAGE_BL31 */ 784 } 785 #endif /* INIT_UNUSED_NS_EL2 */ 786 787 /******************************************************************************* 788 * Enable architecture extensions on first entry to Secure world. 789 ******************************************************************************/ 790 static void manage_extensions_secure(cpu_context_t *ctx) 791 { 792 #if IMAGE_BL31 793 if (is_feat_sme_supported()) { 794 if (ENABLE_SME_FOR_SWD) { 795 /* 796 * Enable SME, SVE, FPU/SIMD in secure context, secure manager 797 * must ensure SME, SVE, and FPU/SIMD context properly managed. 798 */ 799 sme_init_el3(); 800 sme_enable(ctx); 801 } else { 802 /* 803 * Disable SME, SVE, FPU/SIMD in secure context so non-secure 804 * world can safely use the associated registers. 805 */ 806 sme_disable(ctx); 807 } 808 } 809 #endif /* IMAGE_BL31 */ 810 } 811 812 #if !IMAGE_BL1 813 /******************************************************************************* 814 * The following function initializes the cpu_context for a CPU specified by 815 * its `cpu_idx` for first use, and sets the initial entrypoint state as 816 * specified by the entry_point_info structure. 817 ******************************************************************************/ 818 void cm_init_context_by_index(unsigned int cpu_idx, 819 const entry_point_info_t *ep) 820 { 821 cpu_context_t *ctx; 822 ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 823 cm_setup_context(ctx, ep); 824 } 825 #endif /* !IMAGE_BL1 */ 826 827 /******************************************************************************* 828 * The following function initializes the cpu_context for the current CPU 829 * for first use, and sets the initial entrypoint state as specified by the 830 * entry_point_info structure. 831 ******************************************************************************/ 832 void cm_init_my_context(const entry_point_info_t *ep) 833 { 834 cpu_context_t *ctx; 835 ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 836 cm_setup_context(ctx, ep); 837 } 838 839 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */ 840 static void init_nonsecure_el2_unused(cpu_context_t *ctx) 841 { 842 #if INIT_UNUSED_NS_EL2 843 u_register_t hcr_el2 = HCR_RESET_VAL; 844 u_register_t mdcr_el2; 845 u_register_t scr_el3; 846 847 scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); 848 849 /* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */ 850 if ((scr_el3 & SCR_RW_BIT) != 0U) { 851 hcr_el2 |= HCR_RW_BIT; 852 } 853 854 write_hcr_el2(hcr_el2); 855 856 /* 857 * Initialise CPTR_EL2 setting all fields rather than relying on the hw. 858 * All fields have architecturally UNKNOWN reset values. 859 */ 860 write_cptr_el2(CPTR_EL2_RESET_VAL); 861 862 /* 863 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on 864 * reset and are set to zero except for field(s) listed below. 865 * 866 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of 867 * Non-secure EL0 and EL1 accesses to the physical timer registers. 868 * 869 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of 870 * Non-secure EL0 and EL1 accesses to the physical counter registers. 871 */ 872 write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT); 873 874 /* 875 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally 876 * UNKNOWN value. 877 */ 878 write_cntvoff_el2(0); 879 880 /* 881 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1 882 * respectively. 883 */ 884 write_vpidr_el2(read_midr_el1()); 885 write_vmpidr_el2(read_mpidr_el1()); 886 887 /* 888 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset. 889 * 890 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address 891 * translation is disabled, cache maintenance operations depend on the 892 * VMID. 893 * 894 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is 895 * disabled. 896 */ 897 write_vttbr_el2(VTTBR_RESET_VAL & 898 ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) | 899 (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); 900 901 /* 902 * Initialise MDCR_EL2, setting all fields rather than relying on hw. 903 * Some fields are architecturally UNKNOWN on reset. 904 * 905 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System 906 * register accesses to the Debug ROM registers are not trapped to EL2. 907 * 908 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register 909 * accesses to the powerdown debug registers are not trapped to EL2. 910 * 911 * MDCR_EL2.TDA: Set to zero so that System register accesses to the 912 * debug registers do not trap to EL2. 913 * 914 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to 915 * EL2. 916 */ 917 mdcr_el2 = MDCR_EL2_RESET_VAL & 918 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT | 919 MDCR_EL2_TDE_BIT); 920 921 write_mdcr_el2(mdcr_el2); 922 923 /* 924 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset. 925 * 926 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or 927 * EL1 accesses to System registers do not trap to EL2. 928 */ 929 write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); 930 931 /* 932 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on 933 * reset. 934 * 935 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer 936 * and prevent timer interrupts. 937 */ 938 write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT)); 939 940 manage_extensions_nonsecure_el2_unused(); 941 #endif /* INIT_UNUSED_NS_EL2 */ 942 } 943 944 /******************************************************************************* 945 * Prepare the CPU system registers for first entry into realm, secure, or 946 * normal world. 947 * 948 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized 949 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports 950 * EL2 then EL2 is disabled by configuring all necessary EL2 registers. 951 * For all entries, the EL1 registers are initialized from the cpu_context 952 ******************************************************************************/ 953 void cm_prepare_el3_exit(uint32_t security_state) 954 { 955 u_register_t sctlr_elx, scr_el3; 956 cpu_context_t *ctx = cm_get_context(security_state); 957 958 assert(ctx != NULL); 959 960 if (security_state == NON_SECURE) { 961 uint64_t el2_implemented = el_implemented(2); 962 963 scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), 964 CTX_SCR_EL3); 965 966 if (el2_implemented != EL_IMPL_NONE) { 967 968 /* 969 * If context is not being used for EL2, initialize 970 * HCRX_EL2 with its init value here. 971 */ 972 if (is_feat_hcx_supported()) { 973 write_hcrx_el2(HCRX_EL2_INIT_VAL); 974 } 975 976 /* 977 * Initialize Fine-grained trap registers introduced 978 * by FEAT_FGT so all traps are initially disabled when 979 * switching to EL2 or a lower EL, preventing undesired 980 * behavior. 981 */ 982 if (is_feat_fgt_supported()) { 983 /* 984 * Initialize HFG*_EL2 registers with a default 985 * value so legacy systems unaware of FEAT_FGT 986 * do not get trapped due to their lack of 987 * initialization for this feature. 988 */ 989 write_hfgitr_el2(HFGITR_EL2_INIT_VAL); 990 write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL); 991 write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL); 992 } 993 994 /* Condition to ensure EL2 is being used. */ 995 if ((scr_el3 & SCR_HCE_BIT) != 0U) { 996 /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ 997 sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx), 998 CTX_SCTLR_EL1); 999 sctlr_elx &= SCTLR_EE_BIT; 1000 sctlr_elx |= SCTLR_EL2_RES1; 1001 #if ERRATA_A75_764081 1002 /* 1003 * If workaround of errata 764081 for Cortex-A75 1004 * is used then set SCTLR_EL2.IESB to enable 1005 * Implicit Error Synchronization Barrier. 1006 */ 1007 sctlr_elx |= SCTLR_IESB_BIT; 1008 #endif /* ERRATA_A75_764081 */ 1009 write_sctlr_el2(sctlr_elx); 1010 } else { 1011 /* 1012 * (scr_el3 & SCR_HCE_BIT==0) 1013 * EL2 implemented but unused. 1014 */ 1015 init_nonsecure_el2_unused(ctx); 1016 } 1017 } 1018 } 1019 cm_el1_sysregs_context_restore(security_state); 1020 cm_set_next_eret_context(security_state); 1021 } 1022 1023 #if CTX_INCLUDE_EL2_REGS 1024 1025 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx) 1026 { 1027 write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2()); 1028 if (is_feat_amu_supported()) { 1029 write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2()); 1030 } 1031 write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2()); 1032 write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2()); 1033 write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2()); 1034 write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2()); 1035 } 1036 1037 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx) 1038 { 1039 write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2)); 1040 if (is_feat_amu_supported()) { 1041 write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2)); 1042 } 1043 write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2)); 1044 write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2)); 1045 write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2)); 1046 write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2)); 1047 } 1048 1049 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx) 1050 { 1051 u_register_t mpam_idr = read_mpamidr_el1(); 1052 1053 write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2()); 1054 1055 /* 1056 * The context registers that we intend to save would be part of the 1057 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1. 1058 */ 1059 if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) { 1060 return; 1061 } 1062 1063 /* 1064 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if 1065 * MPAMIDR_HAS_HCR_BIT == 1. 1066 */ 1067 write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2()); 1068 write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2()); 1069 write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2()); 1070 1071 /* 1072 * The number of MPAMVPM registers is implementation defined, their 1073 * number is stored in the MPAMIDR_EL1 register. 1074 */ 1075 switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) { 1076 case 7: 1077 write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2()); 1078 __fallthrough; 1079 case 6: 1080 write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2()); 1081 __fallthrough; 1082 case 5: 1083 write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2()); 1084 __fallthrough; 1085 case 4: 1086 write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2()); 1087 __fallthrough; 1088 case 3: 1089 write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2()); 1090 __fallthrough; 1091 case 2: 1092 write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2()); 1093 __fallthrough; 1094 case 1: 1095 write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2()); 1096 break; 1097 } 1098 } 1099 1100 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx) 1101 { 1102 u_register_t mpam_idr = read_mpamidr_el1(); 1103 1104 write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2)); 1105 1106 if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) { 1107 return; 1108 } 1109 1110 write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2)); 1111 write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2)); 1112 write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2)); 1113 1114 switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) { 1115 case 7: 1116 write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2)); 1117 __fallthrough; 1118 case 6: 1119 write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2)); 1120 __fallthrough; 1121 case 5: 1122 write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2)); 1123 __fallthrough; 1124 case 4: 1125 write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2)); 1126 __fallthrough; 1127 case 3: 1128 write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2)); 1129 __fallthrough; 1130 case 2: 1131 write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2)); 1132 __fallthrough; 1133 case 1: 1134 write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2)); 1135 break; 1136 } 1137 } 1138 1139 /* --------------------------------------------------------------------------- 1140 * The following registers are not added: 1141 * ICH_AP0R<n>_EL2 1142 * ICH_AP1R<n>_EL2 1143 * ICH_LR<n>_EL2 1144 * 1145 * NOTE: For a system with S-EL2 present but not enabled, accessing 1146 * ICC_SRE_EL2 is undefined from EL3. To workaround this change the 1147 * SCR_EL3.NS = 1 before accessing this register. 1148 * --------------------------------------------------------------------------- 1149 */ 1150 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx) 1151 { 1152 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2 1153 write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2()); 1154 #else 1155 u_register_t scr_el3 = read_scr_el3(); 1156 write_scr_el3(scr_el3 | SCR_NS_BIT); 1157 isb(); 1158 1159 write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2()); 1160 1161 write_scr_el3(scr_el3); 1162 isb(); 1163 #endif 1164 write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2()); 1165 write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2()); 1166 } 1167 1168 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx) 1169 { 1170 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2 1171 write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2)); 1172 #else 1173 u_register_t scr_el3 = read_scr_el3(); 1174 write_scr_el3(scr_el3 | SCR_NS_BIT); 1175 isb(); 1176 1177 write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2)); 1178 1179 write_scr_el3(scr_el3); 1180 isb(); 1181 #endif 1182 write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2)); 1183 write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2)); 1184 } 1185 1186 /* ----------------------------------------------------- 1187 * The following registers are not added: 1188 * AMEVCNTVOFF0<n>_EL2 1189 * AMEVCNTVOFF1<n>_EL2 1190 * ----------------------------------------------------- 1191 */ 1192 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx) 1193 { 1194 write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2()); 1195 write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2()); 1196 write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2()); 1197 write_el2_ctx_common(ctx, amair_el2, read_amair_el2()); 1198 write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2()); 1199 write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2()); 1200 write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2()); 1201 if (CTX_INCLUDE_AARCH32_REGS) { 1202 write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2()); 1203 } 1204 write_el2_ctx_common(ctx, elr_el2, read_elr_el2()); 1205 write_el2_ctx_common(ctx, esr_el2, read_esr_el2()); 1206 write_el2_ctx_common(ctx, far_el2, read_far_el2()); 1207 write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2()); 1208 write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2()); 1209 write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2()); 1210 write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2()); 1211 write_el2_ctx_common(ctx, mair_el2, read_mair_el2()); 1212 write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2()); 1213 write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2()); 1214 write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2()); 1215 write_el2_ctx_common(ctx, sp_el2, read_sp_el2()); 1216 write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2()); 1217 write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2()); 1218 write_el2_ctx_common(ctx, ttbr0_el2, read_ttbr0_el2()); 1219 write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2()); 1220 write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2()); 1221 write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2()); 1222 write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2()); 1223 write_el2_ctx_common(ctx, vttbr_el2, read_vttbr_el2()); 1224 } 1225 1226 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx) 1227 { 1228 write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2)); 1229 write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2)); 1230 write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2)); 1231 write_amair_el2(read_el2_ctx_common(ctx, amair_el2)); 1232 write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2)); 1233 write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2)); 1234 write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2)); 1235 if (CTX_INCLUDE_AARCH32_REGS) { 1236 write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2)); 1237 } 1238 write_elr_el2(read_el2_ctx_common(ctx, elr_el2)); 1239 write_esr_el2(read_el2_ctx_common(ctx, esr_el2)); 1240 write_far_el2(read_el2_ctx_common(ctx, far_el2)); 1241 write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2)); 1242 write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2)); 1243 write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2)); 1244 write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2)); 1245 write_mair_el2(read_el2_ctx_common(ctx, mair_el2)); 1246 write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2)); 1247 write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2)); 1248 write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2)); 1249 write_sp_el2(read_el2_ctx_common(ctx, sp_el2)); 1250 write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2)); 1251 write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2)); 1252 write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2)); 1253 write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2)); 1254 write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2)); 1255 write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2)); 1256 write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2)); 1257 write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2)); 1258 } 1259 1260 /******************************************************************************* 1261 * Save EL2 sysreg context 1262 ******************************************************************************/ 1263 void cm_el2_sysregs_context_save(uint32_t security_state) 1264 { 1265 cpu_context_t *ctx; 1266 el2_sysregs_t *el2_sysregs_ctx; 1267 1268 ctx = cm_get_context(security_state); 1269 assert(ctx != NULL); 1270 1271 el2_sysregs_ctx = get_el2_sysregs_ctx(ctx); 1272 1273 el2_sysregs_context_save_common(el2_sysregs_ctx); 1274 el2_sysregs_context_save_gic(el2_sysregs_ctx); 1275 1276 if (is_feat_mte2_supported()) { 1277 write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2()); 1278 } 1279 1280 if (is_feat_mpam_supported()) { 1281 el2_sysregs_context_save_mpam(el2_sysregs_ctx); 1282 } 1283 1284 if (is_feat_fgt_supported()) { 1285 el2_sysregs_context_save_fgt(el2_sysregs_ctx); 1286 } 1287 1288 if (is_feat_ecv_v2_supported()) { 1289 write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2()); 1290 } 1291 1292 if (is_feat_vhe_supported()) { 1293 write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2, 1294 read_contextidr_el2()); 1295 write_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2()); 1296 } 1297 1298 if (is_feat_ras_supported()) { 1299 write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2()); 1300 write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2()); 1301 } 1302 1303 if (is_feat_nv2_supported()) { 1304 write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2()); 1305 } 1306 1307 if (is_feat_trf_supported()) { 1308 write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2()); 1309 } 1310 1311 if (is_feat_csv2_2_supported()) { 1312 write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2, 1313 read_scxtnum_el2()); 1314 } 1315 1316 if (is_feat_hcx_supported()) { 1317 write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2()); 1318 } 1319 1320 if (is_feat_tcr2_supported()) { 1321 write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2()); 1322 } 1323 1324 if (is_feat_sxpie_supported()) { 1325 write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2()); 1326 write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2()); 1327 } 1328 1329 if (is_feat_sxpoe_supported()) { 1330 write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2()); 1331 } 1332 1333 if (is_feat_s2pie_supported()) { 1334 write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2()); 1335 } 1336 1337 if (is_feat_gcs_supported()) { 1338 write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2()); 1339 write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2()); 1340 } 1341 } 1342 1343 /******************************************************************************* 1344 * Restore EL2 sysreg context 1345 ******************************************************************************/ 1346 void cm_el2_sysregs_context_restore(uint32_t security_state) 1347 { 1348 cpu_context_t *ctx; 1349 el2_sysregs_t *el2_sysregs_ctx; 1350 1351 ctx = cm_get_context(security_state); 1352 assert(ctx != NULL); 1353 1354 el2_sysregs_ctx = get_el2_sysregs_ctx(ctx); 1355 1356 el2_sysregs_context_restore_common(el2_sysregs_ctx); 1357 el2_sysregs_context_restore_gic(el2_sysregs_ctx); 1358 1359 if (is_feat_mte2_supported()) { 1360 write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2)); 1361 } 1362 1363 if (is_feat_mpam_supported()) { 1364 el2_sysregs_context_restore_mpam(el2_sysregs_ctx); 1365 } 1366 1367 if (is_feat_fgt_supported()) { 1368 el2_sysregs_context_restore_fgt(el2_sysregs_ctx); 1369 } 1370 1371 if (is_feat_ecv_v2_supported()) { 1372 write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2)); 1373 } 1374 1375 if (is_feat_vhe_supported()) { 1376 write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx, 1377 contextidr_el2)); 1378 write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2)); 1379 } 1380 1381 if (is_feat_ras_supported()) { 1382 write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2)); 1383 write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2)); 1384 } 1385 1386 if (is_feat_nv2_supported()) { 1387 write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2)); 1388 } 1389 1390 if (is_feat_trf_supported()) { 1391 write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2)); 1392 } 1393 1394 if (is_feat_csv2_2_supported()) { 1395 write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx, 1396 scxtnum_el2)); 1397 } 1398 1399 if (is_feat_hcx_supported()) { 1400 write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2)); 1401 } 1402 1403 if (is_feat_tcr2_supported()) { 1404 write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2)); 1405 } 1406 1407 if (is_feat_sxpie_supported()) { 1408 write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2)); 1409 write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2)); 1410 } 1411 1412 if (is_feat_sxpoe_supported()) { 1413 write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2)); 1414 } 1415 1416 if (is_feat_s2pie_supported()) { 1417 write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2)); 1418 } 1419 1420 if (is_feat_gcs_supported()) { 1421 write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2)); 1422 write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2)); 1423 } 1424 } 1425 #endif /* CTX_INCLUDE_EL2_REGS */ 1426 1427 /******************************************************************************* 1428 * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS 1429 * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly 1430 * updating EL1 and EL2 registers. Otherwise, it calls the generic 1431 * cm_prepare_el3_exit function. 1432 ******************************************************************************/ 1433 void cm_prepare_el3_exit_ns(void) 1434 { 1435 #if CTX_INCLUDE_EL2_REGS 1436 #if ENABLE_ASSERTIONS 1437 cpu_context_t *ctx = cm_get_context(NON_SECURE); 1438 assert(ctx != NULL); 1439 1440 /* Assert that EL2 is used. */ 1441 u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); 1442 assert(((scr_el3 & SCR_HCE_BIT) != 0UL) && 1443 (el_implemented(2U) != EL_IMPL_NONE)); 1444 #endif /* ENABLE_ASSERTIONS */ 1445 1446 /* Restore EL2 and EL1 sysreg contexts */ 1447 cm_el2_sysregs_context_restore(NON_SECURE); 1448 cm_el1_sysregs_context_restore(NON_SECURE); 1449 cm_set_next_eret_context(NON_SECURE); 1450 #else 1451 cm_prepare_el3_exit(NON_SECURE); 1452 #endif /* CTX_INCLUDE_EL2_REGS */ 1453 } 1454 1455 static void el1_sysregs_context_save(el1_sysregs_t *ctx) 1456 { 1457 write_ctx_reg(ctx, CTX_SPSR_EL1, read_spsr_el1()); 1458 write_ctx_reg(ctx, CTX_ELR_EL1, read_elr_el1()); 1459 1460 #if !ERRATA_SPECULATIVE_AT 1461 write_ctx_reg(ctx, CTX_SCTLR_EL1, read_sctlr_el1()); 1462 write_ctx_reg(ctx, CTX_TCR_EL1, read_tcr_el1()); 1463 #endif /* (!ERRATA_SPECULATIVE_AT) */ 1464 1465 write_ctx_reg(ctx, CTX_CPACR_EL1, read_cpacr_el1()); 1466 write_ctx_reg(ctx, CTX_CSSELR_EL1, read_csselr_el1()); 1467 write_ctx_reg(ctx, CTX_SP_EL1, read_sp_el1()); 1468 write_ctx_reg(ctx, CTX_ESR_EL1, read_esr_el1()); 1469 write_ctx_reg(ctx, CTX_TTBR0_EL1, read_ttbr0_el1()); 1470 write_ctx_reg(ctx, CTX_TTBR1_EL1, read_ttbr1_el1()); 1471 write_ctx_reg(ctx, CTX_MAIR_EL1, read_mair_el1()); 1472 write_ctx_reg(ctx, CTX_AMAIR_EL1, read_amair_el1()); 1473 write_ctx_reg(ctx, CTX_ACTLR_EL1, read_actlr_el1()); 1474 write_ctx_reg(ctx, CTX_TPIDR_EL1, read_tpidr_el1()); 1475 write_ctx_reg(ctx, CTX_TPIDR_EL0, read_tpidr_el0()); 1476 write_ctx_reg(ctx, CTX_TPIDRRO_EL0, read_tpidrro_el0()); 1477 write_ctx_reg(ctx, CTX_PAR_EL1, read_par_el1()); 1478 write_ctx_reg(ctx, CTX_FAR_EL1, read_far_el1()); 1479 write_ctx_reg(ctx, CTX_AFSR0_EL1, read_afsr0_el1()); 1480 write_ctx_reg(ctx, CTX_AFSR1_EL1, read_afsr1_el1()); 1481 write_ctx_reg(ctx, CTX_CONTEXTIDR_EL1, read_contextidr_el1()); 1482 write_ctx_reg(ctx, CTX_VBAR_EL1, read_vbar_el1()); 1483 write_ctx_reg(ctx, CTX_MDCCINT_EL1, read_mdccint_el1()); 1484 write_ctx_reg(ctx, CTX_MDSCR_EL1, read_mdscr_el1()); 1485 1486 #if CTX_INCLUDE_AARCH32_REGS 1487 write_ctx_reg(ctx, CTX_SPSR_ABT, read_spsr_abt()); 1488 write_ctx_reg(ctx, CTX_SPSR_UND, read_spsr_und()); 1489 write_ctx_reg(ctx, CTX_SPSR_IRQ, read_spsr_irq()); 1490 write_ctx_reg(ctx, CTX_SPSR_FIQ, read_spsr_fiq()); 1491 write_ctx_reg(ctx, CTX_DACR32_EL2, read_dacr32_el2()); 1492 write_ctx_reg(ctx, CTX_IFSR32_EL2, read_ifsr32_el2()); 1493 #endif /* CTX_INCLUDE_AARCH32_REGS */ 1494 1495 #if NS_TIMER_SWITCH 1496 write_ctx_reg(ctx, CTX_CNTP_CTL_EL0, read_cntp_ctl_el0()); 1497 write_ctx_reg(ctx, CTX_CNTP_CVAL_EL0, read_cntp_cval_el0()); 1498 write_ctx_reg(ctx, CTX_CNTV_CTL_EL0, read_cntv_ctl_el0()); 1499 write_ctx_reg(ctx, CTX_CNTV_CVAL_EL0, read_cntv_cval_el0()); 1500 write_ctx_reg(ctx, CTX_CNTKCTL_EL1, read_cntkctl_el1()); 1501 #endif /* NS_TIMER_SWITCH */ 1502 1503 #if ENABLE_FEAT_MTE2 1504 write_ctx_reg(ctx, CTX_TFSRE0_EL1, read_tfsre0_el1()); 1505 write_ctx_reg(ctx, CTX_TFSR_EL1, read_tfsr_el1()); 1506 write_ctx_reg(ctx, CTX_RGSR_EL1, read_rgsr_el1()); 1507 write_ctx_reg(ctx, CTX_GCR_EL1, read_gcr_el1()); 1508 #endif /* ENABLE_FEAT_MTE2 */ 1509 1510 #if ENABLE_FEAT_RAS 1511 if (is_feat_ras_supported()) { 1512 write_ctx_reg(ctx, CTX_DISR_EL1, read_disr_el1()); 1513 } 1514 #endif 1515 1516 #if ENABLE_FEAT_S1PIE 1517 if (is_feat_s1pie_supported()) { 1518 write_ctx_reg(ctx, CTX_PIRE0_EL1, read_pire0_el1()); 1519 write_ctx_reg(ctx, CTX_PIR_EL1, read_pir_el1()); 1520 } 1521 #endif 1522 1523 #if ENABLE_FEAT_S1POE 1524 if (is_feat_s1poe_supported()) { 1525 write_ctx_reg(ctx, CTX_POR_EL1, read_por_el1()); 1526 } 1527 #endif 1528 1529 #if ENABLE_FEAT_S2POE 1530 if (is_feat_s2poe_supported()) { 1531 write_ctx_reg(ctx, CTX_S2POR_EL1, read_s2por_el1()); 1532 } 1533 #endif 1534 1535 #if ENABLE_FEAT_TCR2 1536 if (is_feat_tcr2_supported()) { 1537 write_ctx_reg(ctx, CTX_TCR2_EL1, read_tcr2_el1()); 1538 } 1539 #endif 1540 1541 #if ENABLE_TRF_FOR_NS 1542 if (is_feat_trf_supported()) { 1543 write_ctx_reg(ctx, CTX_TRFCR_EL1, read_trfcr_el1()); 1544 } 1545 #endif 1546 1547 #if ENABLE_FEAT_CSV2_2 1548 if (is_feat_csv2_2_supported()) { 1549 write_ctx_reg(ctx, CTX_SCXTNUM_EL0, read_scxtnum_el0()); 1550 write_ctx_reg(ctx, CTX_SCXTNUM_EL1, read_scxtnum_el1()); 1551 } 1552 #endif 1553 1554 #if ENABLE_FEAT_GCS 1555 if (is_feat_gcs_supported()) { 1556 write_ctx_reg(ctx, CTX_GCSCR_EL1, read_gcscr_el1()); 1557 write_ctx_reg(ctx, CTX_GCSCRE0_EL1, read_gcscre0_el1()); 1558 write_ctx_reg(ctx, CTX_GCSPR_EL1, read_gcspr_el1()); 1559 write_ctx_reg(ctx, CTX_GCSPR_EL0, read_gcspr_el0()); 1560 } 1561 #endif 1562 } 1563 1564 static void el1_sysregs_context_restore(el1_sysregs_t *ctx) 1565 { 1566 write_spsr_el1(read_ctx_reg(ctx, CTX_SPSR_EL1)); 1567 write_elr_el1(read_ctx_reg(ctx, CTX_ELR_EL1)); 1568 1569 #if !ERRATA_SPECULATIVE_AT 1570 write_sctlr_el1(read_ctx_reg(ctx, CTX_SCTLR_EL1)); 1571 write_tcr_el1(read_ctx_reg(ctx, CTX_TCR_EL1)); 1572 #endif /* (!ERRATA_SPECULATIVE_AT) */ 1573 1574 write_cpacr_el1(read_ctx_reg(ctx, CTX_CPACR_EL1)); 1575 write_csselr_el1(read_ctx_reg(ctx, CTX_CSSELR_EL1)); 1576 write_sp_el1(read_ctx_reg(ctx, CTX_SP_EL1)); 1577 write_esr_el1(read_ctx_reg(ctx, CTX_ESR_EL1)); 1578 write_ttbr0_el1(read_ctx_reg(ctx, CTX_TTBR0_EL1)); 1579 write_ttbr1_el1(read_ctx_reg(ctx, CTX_TTBR1_EL1)); 1580 write_mair_el1(read_ctx_reg(ctx, CTX_MAIR_EL1)); 1581 write_amair_el1(read_ctx_reg(ctx, CTX_AMAIR_EL1)); 1582 write_actlr_el1(read_ctx_reg(ctx, CTX_ACTLR_EL1)); 1583 write_tpidr_el1(read_ctx_reg(ctx, CTX_TPIDR_EL1)); 1584 write_tpidr_el0(read_ctx_reg(ctx, CTX_TPIDR_EL0)); 1585 write_tpidrro_el0(read_ctx_reg(ctx, CTX_TPIDRRO_EL0)); 1586 write_par_el1(read_ctx_reg(ctx, CTX_PAR_EL1)); 1587 write_far_el1(read_ctx_reg(ctx, CTX_FAR_EL1)); 1588 write_afsr0_el1(read_ctx_reg(ctx, CTX_AFSR0_EL1)); 1589 write_afsr1_el1(read_ctx_reg(ctx, CTX_AFSR1_EL1)); 1590 write_contextidr_el1(read_ctx_reg(ctx, CTX_CONTEXTIDR_EL1)); 1591 write_vbar_el1(read_ctx_reg(ctx, CTX_VBAR_EL1)); 1592 write_mdccint_el1(read_ctx_reg(ctx, CTX_MDCCINT_EL1)); 1593 write_mdscr_el1(read_ctx_reg(ctx, CTX_MDSCR_EL1)); 1594 1595 #if CTX_INCLUDE_AARCH32_REGS 1596 write_spsr_abt(read_ctx_reg(ctx, CTX_SPSR_ABT)); 1597 write_spsr_und(read_ctx_reg(ctx, CTX_SPSR_UND)); 1598 write_spsr_irq(read_ctx_reg(ctx, CTX_SPSR_IRQ)); 1599 write_spsr_fiq(read_ctx_reg(ctx, CTX_SPSR_FIQ)); 1600 write_dacr32_el2(read_ctx_reg(ctx, CTX_DACR32_EL2)); 1601 write_ifsr32_el2(read_ctx_reg(ctx, CTX_IFSR32_EL2)); 1602 #endif /* CTX_INCLUDE_AARCH32_REGS */ 1603 1604 #if NS_TIMER_SWITCH 1605 write_cntp_ctl_el0(read_ctx_reg(ctx, CTX_CNTP_CTL_EL0)); 1606 write_cntp_cval_el0(read_ctx_reg(ctx, CTX_CNTP_CVAL_EL0)); 1607 write_cntv_ctl_el0(read_ctx_reg(ctx, CTX_CNTV_CTL_EL0)); 1608 write_cntv_cval_el0(read_ctx_reg(ctx, CTX_CNTV_CVAL_EL0)); 1609 write_cntkctl_el1(read_ctx_reg(ctx, CTX_CNTKCTL_EL1)); 1610 #endif /* NS_TIMER_SWITCH */ 1611 1612 #if ENABLE_FEAT_MTE2 1613 write_tfsre0_el1(read_ctx_reg(ctx, CTX_TFSRE0_EL1)); 1614 write_tfsr_el1(read_ctx_reg(ctx, CTX_TFSR_EL1)); 1615 write_rgsr_el1(read_ctx_reg(ctx, CTX_RGSR_EL1)); 1616 write_gcr_el1(read_ctx_reg(ctx, CTX_GCR_EL1)); 1617 #endif /* ENABLE_FEAT_MTE2 */ 1618 1619 #if ENABLE_FEAT_RAS 1620 if (is_feat_ras_supported()) { 1621 write_disr_el1(read_ctx_reg(ctx, CTX_DISR_EL1)); 1622 } 1623 #endif 1624 1625 #if ENABLE_FEAT_S1PIE 1626 if (is_feat_s1pie_supported()) { 1627 write_pire0_el1(read_ctx_reg(ctx, CTX_PIRE0_EL1)); 1628 write_pir_el1(read_ctx_reg(ctx, CTX_PIR_EL1)); 1629 } 1630 #endif 1631 1632 #if ENABLE_FEAT_S1POE 1633 if (is_feat_s1poe_supported()) { 1634 write_por_el1(read_ctx_reg(ctx, CTX_POR_EL1)); 1635 } 1636 #endif 1637 1638 #if ENABLE_FEAT_S2POE 1639 if (is_feat_s2poe_supported()) { 1640 write_s2por_el1(read_ctx_reg(ctx, CTX_S2POR_EL1)); 1641 } 1642 #endif 1643 1644 #if ENABLE_FEAT_TCR2 1645 if (is_feat_tcr2_supported()) { 1646 write_tcr2_el1(read_ctx_reg(ctx, CTX_TCR2_EL1)); 1647 } 1648 #endif 1649 1650 #if ENABLE_TRF_FOR_NS 1651 if (is_feat_trf_supported()) { 1652 write_trfcr_el1(read_ctx_reg(ctx, CTX_TRFCR_EL1)); 1653 } 1654 #endif 1655 1656 #if ENABLE_FEAT_CSV2_2 1657 if (is_feat_csv2_2_supported()) { 1658 write_scxtnum_el0(read_ctx_reg(ctx, CTX_SCXTNUM_EL0)); 1659 write_scxtnum_el1(read_ctx_reg(ctx, CTX_SCXTNUM_EL1)); 1660 } 1661 #endif 1662 1663 #if ENABLE_FEAT_GCS 1664 if (is_feat_gcs_supported()) { 1665 write_gcscr_el1(read_ctx_reg(ctx, CTX_GCSCR_EL1)); 1666 write_gcscre0_el1(read_ctx_reg(ctx, CTX_GCSCRE0_EL1)); 1667 write_gcspr_el1(read_ctx_reg(ctx, CTX_GCSPR_EL1)); 1668 write_gcspr_el0(read_ctx_reg(ctx, CTX_GCSPR_EL0)); 1669 } 1670 #endif 1671 } 1672 1673 /******************************************************************************* 1674 * The next four functions are used by runtime services to save and restore 1675 * EL1 context on the 'cpu_context' structure for the specified security 1676 * state. 1677 ******************************************************************************/ 1678 void cm_el1_sysregs_context_save(uint32_t security_state) 1679 { 1680 cpu_context_t *ctx; 1681 1682 ctx = cm_get_context(security_state); 1683 assert(ctx != NULL); 1684 1685 el1_sysregs_context_save(get_el1_sysregs_ctx(ctx)); 1686 1687 #if IMAGE_BL31 1688 if (security_state == SECURE) 1689 PUBLISH_EVENT(cm_exited_secure_world); 1690 else 1691 PUBLISH_EVENT(cm_exited_normal_world); 1692 #endif 1693 } 1694 1695 void cm_el1_sysregs_context_restore(uint32_t security_state) 1696 { 1697 cpu_context_t *ctx; 1698 1699 ctx = cm_get_context(security_state); 1700 assert(ctx != NULL); 1701 1702 el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx)); 1703 1704 #if IMAGE_BL31 1705 if (security_state == SECURE) 1706 PUBLISH_EVENT(cm_entering_secure_world); 1707 else 1708 PUBLISH_EVENT(cm_entering_normal_world); 1709 #endif 1710 } 1711 1712 /******************************************************************************* 1713 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the 1714 * given security state with the given entrypoint 1715 ******************************************************************************/ 1716 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) 1717 { 1718 cpu_context_t *ctx; 1719 el3_state_t *state; 1720 1721 ctx = cm_get_context(security_state); 1722 assert(ctx != NULL); 1723 1724 /* Populate EL3 state so that ERET jumps to the correct entry */ 1725 state = get_el3state_ctx(ctx); 1726 write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 1727 } 1728 1729 /******************************************************************************* 1730 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' 1731 * pertaining to the given security state 1732 ******************************************************************************/ 1733 void cm_set_elr_spsr_el3(uint32_t security_state, 1734 uintptr_t entrypoint, uint32_t spsr) 1735 { 1736 cpu_context_t *ctx; 1737 el3_state_t *state; 1738 1739 ctx = cm_get_context(security_state); 1740 assert(ctx != NULL); 1741 1742 /* Populate EL3 state so that ERET jumps to the correct entry */ 1743 state = get_el3state_ctx(ctx); 1744 write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 1745 write_ctx_reg(state, CTX_SPSR_EL3, spsr); 1746 } 1747 1748 /******************************************************************************* 1749 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' 1750 * pertaining to the given security state using the value and bit position 1751 * specified in the parameters. It preserves all other bits. 1752 ******************************************************************************/ 1753 void cm_write_scr_el3_bit(uint32_t security_state, 1754 uint32_t bit_pos, 1755 uint32_t value) 1756 { 1757 cpu_context_t *ctx; 1758 el3_state_t *state; 1759 u_register_t scr_el3; 1760 1761 ctx = cm_get_context(security_state); 1762 assert(ctx != NULL); 1763 1764 /* Ensure that the bit position is a valid one */ 1765 assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U); 1766 1767 /* Ensure that the 'value' is only a bit wide */ 1768 assert(value <= 1U); 1769 1770 /* 1771 * Get the SCR_EL3 value from the cpu context, clear the desired bit 1772 * and set it to its new value. 1773 */ 1774 state = get_el3state_ctx(ctx); 1775 scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 1776 scr_el3 &= ~(1UL << bit_pos); 1777 scr_el3 |= (u_register_t)value << bit_pos; 1778 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 1779 } 1780 1781 /******************************************************************************* 1782 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the 1783 * given security state. 1784 ******************************************************************************/ 1785 u_register_t cm_get_scr_el3(uint32_t security_state) 1786 { 1787 cpu_context_t *ctx; 1788 el3_state_t *state; 1789 1790 ctx = cm_get_context(security_state); 1791 assert(ctx != NULL); 1792 1793 /* Populate EL3 state so that ERET jumps to the correct entry */ 1794 state = get_el3state_ctx(ctx); 1795 return read_ctx_reg(state, CTX_SCR_EL3); 1796 } 1797 1798 /******************************************************************************* 1799 * This function is used to program the context that's used for exception 1800 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 1801 * the required security state 1802 ******************************************************************************/ 1803 void cm_set_next_eret_context(uint32_t security_state) 1804 { 1805 cpu_context_t *ctx; 1806 1807 ctx = cm_get_context(security_state); 1808 assert(ctx != NULL); 1809 1810 cm_set_next_context(ctx); 1811 } 1812