xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 7623e085cb5396054b72f1ea3f02e8c7a34568b5)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/debug_v8p9.h>
30 #include <lib/extensions/fgt2.h>
31 #include <lib/extensions/mpam.h>
32 #include <lib/extensions/pmuv3.h>
33 #include <lib/extensions/sme.h>
34 #include <lib/extensions/spe.h>
35 #include <lib/extensions/sve.h>
36 #include <lib/extensions/sysreg128.h>
37 #include <lib/extensions/sys_reg_trace.h>
38 #include <lib/extensions/tcr2.h>
39 #include <lib/extensions/trbe.h>
40 #include <lib/extensions/trf.h>
41 #include <lib/utils.h>
42 
43 #if ENABLE_FEAT_TWED
44 /* Make sure delay value fits within the range(0-15) */
45 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
46 #endif /* ENABLE_FEAT_TWED */
47 
48 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
49 static bool has_secure_perworld_init;
50 
51 static void manage_extensions_common(cpu_context_t *ctx);
52 static void manage_extensions_nonsecure(cpu_context_t *ctx);
53 static void manage_extensions_secure(cpu_context_t *ctx);
54 static void manage_extensions_secure_per_world(void);
55 
56 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
57 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
58 {
59 	u_register_t sctlr_elx, actlr_elx;
60 
61 	/*
62 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
63 	 * execution state setting all fields rather than relying on the hw.
64 	 * Some fields have architecturally UNKNOWN reset values and these are
65 	 * set to zero.
66 	 *
67 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
68 	 *
69 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
70 	 * required by PSCI specification)
71 	 */
72 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
73 	if (GET_RW(ep->spsr) == MODE_RW_64) {
74 		sctlr_elx |= SCTLR_EL1_RES1;
75 	} else {
76 		/*
77 		 * If the target execution state is AArch32 then the following
78 		 * fields need to be set.
79 		 *
80 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
81 		 *  instructions are not trapped to EL1.
82 		 *
83 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
84 		 *  instructions are not trapped to EL1.
85 		 *
86 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
87 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
88 		 */
89 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
90 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
91 	}
92 
93 	/*
94 	 * If workaround of errata 764081 for Cortex-A75 is used then set
95 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
96 	 */
97 	if (errata_a75_764081_applies()) {
98 		sctlr_elx |= SCTLR_IESB_BIT;
99 	}
100 
101 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
102 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
103 
104 	/*
105 	 * Base the context ACTLR_EL1 on the current value, as it is
106 	 * implementation defined. The context restore process will write
107 	 * the value from the context to the actual register and can cause
108 	 * problems for processor cores that don't expect certain bits to
109 	 * be zero.
110 	 */
111 	actlr_elx = read_actlr_el1();
112 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
113 }
114 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
115 
116 /******************************************************************************
117  * This function performs initializations that are specific to SECURE state
118  * and updates the cpu context specified by 'ctx'.
119  *****************************************************************************/
120 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
121 {
122 	u_register_t scr_el3;
123 	el3_state_t *state;
124 
125 	state = get_el3state_ctx(ctx);
126 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
127 
128 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
129 	/*
130 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
131 	 * indicated by the interrupt routing model for BL31.
132 	 */
133 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
134 #endif
135 
136 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
137 	if (is_feat_mte2_supported()) {
138 		scr_el3 |= SCR_ATA_BIT;
139 	}
140 
141 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
142 
143 	/*
144 	 * Initialize EL1 context registers unless SPMC is running
145 	 * at S-EL2.
146 	 */
147 #if (!SPMD_SPM_AT_SEL2)
148 	setup_el1_context(ctx, ep);
149 #endif
150 
151 	manage_extensions_secure(ctx);
152 
153 	/**
154 	 * manage_extensions_secure_per_world api has to be executed once,
155 	 * as the registers getting initialised, maintain constant value across
156 	 * all the cpus for the secure world.
157 	 * Henceforth, this check ensures that the registers are initialised once
158 	 * and avoids re-initialization from multiple cores.
159 	 */
160 	if (!has_secure_perworld_init) {
161 		manage_extensions_secure_per_world();
162 	}
163 }
164 
165 #if ENABLE_RME
166 /******************************************************************************
167  * This function performs initializations that are specific to REALM state
168  * and updates the cpu context specified by 'ctx'.
169  *****************************************************************************/
170 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
171 {
172 	u_register_t scr_el3;
173 	el3_state_t *state;
174 
175 	state = get_el3state_ctx(ctx);
176 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
177 
178 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
179 
180 	/* CSV2 version 2 and above */
181 	if (is_feat_csv2_2_supported()) {
182 		/* Enable access to the SCXTNUM_ELx registers. */
183 		scr_el3 |= SCR_EnSCXT_BIT;
184 	}
185 
186 	if (is_feat_sctlr2_supported()) {
187 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
188 		 * SCTLR2_ELx registers.
189 		 */
190 		scr_el3 |= SCR_SCTLR2En_BIT;
191 	}
192 
193 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
194 }
195 #endif /* ENABLE_RME */
196 
197 /******************************************************************************
198  * This function performs initializations that are specific to NON-SECURE state
199  * and updates the cpu context specified by 'ctx'.
200  *****************************************************************************/
201 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
202 {
203 	u_register_t scr_el3;
204 	el3_state_t *state;
205 
206 	state = get_el3state_ctx(ctx);
207 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
208 
209 	/* SCR_NS: Set the NS bit */
210 	scr_el3 |= SCR_NS_BIT;
211 
212 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
213 	if (is_feat_mte2_supported()) {
214 		scr_el3 |= SCR_ATA_BIT;
215 	}
216 
217 #if !CTX_INCLUDE_PAUTH_REGS
218 	/*
219 	 * Pointer Authentication feature, if present, is always enabled by default
220 	 * for Non secure lower exception levels. We do not have an explicit
221 	 * flag to set it.
222 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
223 	 * exception levels of secure and realm worlds.
224 	 *
225 	 * To prevent the leakage between the worlds during world switch,
226 	 * we enable it only for the non-secure world.
227 	 *
228 	 * If the Secure/realm world wants to use pointer authentication,
229 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
230 	 * it will be enabled globally for all the contexts.
231 	 *
232 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
233 	 *  other than EL3
234 	 *
235 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
236 	 *  than EL3
237 	 */
238 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
239 
240 #endif /* CTX_INCLUDE_PAUTH_REGS */
241 
242 #if HANDLE_EA_EL3_FIRST_NS
243 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
244 	scr_el3 |= SCR_EA_BIT;
245 #endif
246 
247 #if RAS_TRAP_NS_ERR_REC_ACCESS
248 	/*
249 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
250 	 * and RAS ERX registers from EL1 and EL2(from any security state)
251 	 * are trapped to EL3.
252 	 * Set here to trap only for NS EL1/EL2
253 	 *
254 	 */
255 	scr_el3 |= SCR_TERR_BIT;
256 #endif
257 
258 	/* CSV2 version 2 and above */
259 	if (is_feat_csv2_2_supported()) {
260 		/* Enable access to the SCXTNUM_ELx registers. */
261 		scr_el3 |= SCR_EnSCXT_BIT;
262 	}
263 
264 #ifdef IMAGE_BL31
265 	/*
266 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
267 	 *  indicated by the interrupt routing model for BL31.
268 	 */
269 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
270 #endif
271 
272 	if (is_feat_the_supported()) {
273 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
274 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
275 		 */
276 		scr_el3 |= SCR_RCWMASKEn_BIT;
277 	}
278 
279 	if (is_feat_sctlr2_supported()) {
280 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
281 		 * SCTLR2_ELx registers.
282 		 */
283 		scr_el3 |= SCR_SCTLR2En_BIT;
284 	}
285 
286 	if (is_feat_d128_supported()) {
287 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
288 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
289 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
290 		 */
291 		scr_el3 |= SCR_D128En_BIT;
292 	}
293 
294 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
295 
296 	/* Initialize EL2 context registers */
297 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
298 
299 	/*
300 	 * Initialize SCTLR_EL2 context register with reset value.
301 	 */
302 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
303 
304 	if (is_feat_hcx_supported()) {
305 		/*
306 		 * Initialize register HCRX_EL2 with its init value.
307 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
308 		 * chance that this can lead to unexpected behavior in lower
309 		 * ELs that have not been updated since the introduction of
310 		 * this feature if not properly initialized, especially when
311 		 * it comes to those bits that enable/disable traps.
312 		 */
313 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
314 			HCRX_EL2_INIT_VAL);
315 	}
316 
317 	if (is_feat_fgt_supported()) {
318 		/*
319 		 * Initialize HFG*_EL2 registers with a default value so legacy
320 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
321 		 * of initialization for this feature.
322 		 */
323 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
324 			HFGITR_EL2_INIT_VAL);
325 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
326 			HFGRTR_EL2_INIT_VAL);
327 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
328 			HFGWTR_EL2_INIT_VAL);
329 	}
330 #else
331 	/* Initialize EL1 context registers */
332 	setup_el1_context(ctx, ep);
333 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
334 
335 	manage_extensions_nonsecure(ctx);
336 }
337 
338 /*******************************************************************************
339  * The following function performs initialization of the cpu_context 'ctx'
340  * for first use that is common to all security states, and sets the
341  * initial entrypoint state as specified by the entry_point_info structure.
342  *
343  * The EE and ST attributes are used to configure the endianness and secure
344  * timer availability for the new execution context.
345  ******************************************************************************/
346 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
347 {
348 	u_register_t scr_el3;
349 	u_register_t mdcr_el3;
350 	el3_state_t *state;
351 	gp_regs_t *gp_regs;
352 
353 	state = get_el3state_ctx(ctx);
354 
355 	/* Clear any residual register values from the context */
356 	zeromem(ctx, sizeof(*ctx));
357 
358 	/*
359 	 * The lower-EL context is zeroed so that no stale values leak to a world.
360 	 * It is assumed that an all-zero lower-EL context is good enough for it
361 	 * to boot correctly. However, there are very few registers where this
362 	 * is not true and some values need to be recreated.
363 	 */
364 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
365 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
366 
367 	/*
368 	 * These bits are set in the gicv3 driver. Losing them (especially the
369 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
370 	 */
371 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
372 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
373 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
374 
375 	/*
376 	 * The actlr_el2 register can be initialized in platform's reset handler
377 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
378 	 */
379 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
380 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
381 
382 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
383 	scr_el3 = SCR_RESET_VAL;
384 
385 	/*
386 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
387 	 *  EL2, EL1 and EL0 are not trapped to EL3.
388 	 *
389 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
390 	 *  EL2, EL1 and EL0 are not trapped to EL3.
391 	 *
392 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
393 	 *  both Security states and both Execution states.
394 	 *
395 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
396 	 *  Non-secure memory.
397 	 */
398 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
399 
400 	scr_el3 |= SCR_SIF_BIT;
401 
402 	/*
403 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
404 	 *  Exception level as specified by SPSR.
405 	 */
406 	if (GET_RW(ep->spsr) == MODE_RW_64) {
407 		scr_el3 |= SCR_RW_BIT;
408 	}
409 
410 	/*
411 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
412 	 * Secure timer registers to EL3, from AArch64 state only, if specified
413 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
414 	 * bit always behaves as 1 (i.e. secure physical timer register access
415 	 * is not trapped)
416 	 */
417 	if (EP_GET_ST(ep->h.attr) != 0U) {
418 		scr_el3 |= SCR_ST_BIT;
419 	}
420 
421 	/*
422 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
423 	 * SCR_EL3.HXEn.
424 	 */
425 	if (is_feat_hcx_supported()) {
426 		scr_el3 |= SCR_HXEn_BIT;
427 	}
428 
429 	/*
430 	 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by
431 	 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting
432 	 * SCR_EL3.EnAS0.
433 	 */
434 	if (is_feat_ls64_accdata_supported()) {
435 		scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT;
436 	}
437 
438 	/*
439 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
440 	 * registers are trapped to EL3.
441 	 */
442 #if ENABLE_FEAT_RNG_TRAP
443 	scr_el3 |= SCR_TRNDR_BIT;
444 #endif
445 
446 #if FAULT_INJECTION_SUPPORT
447 	/* Enable fault injection from lower ELs */
448 	scr_el3 |= SCR_FIEN_BIT;
449 #endif
450 
451 #if CTX_INCLUDE_PAUTH_REGS
452 	/*
453 	 * Enable Pointer Authentication globally for all the worlds.
454 	 *
455 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
456 	 *  other than EL3
457 	 *
458 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
459 	 *  than EL3
460 	 */
461 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
462 #endif /* CTX_INCLUDE_PAUTH_REGS */
463 
464 	/*
465 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
466 	 */
467 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
468 		scr_el3 |= SCR_TCR2EN_BIT;
469 	}
470 
471 	/*
472 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
473 	 * registers for AArch64 if present.
474 	 */
475 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
476 		scr_el3 |= SCR_PIEN_BIT;
477 	}
478 
479 	/*
480 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
481 	 */
482 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
483 		scr_el3 |= SCR_GCSEn_BIT;
484 	}
485 
486 	/*
487 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
488 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
489 	 * next mode is Hyp.
490 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
491 	 * same conditions as HVC instructions and when the processor supports
492 	 * ARMv8.6-FGT.
493 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
494 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
495 	 * and when the processor supports ECV.
496 	 */
497 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
498 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
499 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
500 		scr_el3 |= SCR_HCE_BIT;
501 
502 		if (is_feat_fgt_supported()) {
503 			scr_el3 |= SCR_FGTEN_BIT;
504 		}
505 
506 		if (is_feat_ecv_supported()) {
507 			scr_el3 |= SCR_ECVEN_BIT;
508 		}
509 	}
510 
511 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
512 	if (is_feat_twed_supported()) {
513 		/* Set delay in SCR_EL3 */
514 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
515 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
516 				<< SCR_TWEDEL_SHIFT);
517 
518 		/* Enable WFE delay */
519 		scr_el3 |= SCR_TWEDEn_BIT;
520 	}
521 
522 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
523 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
524 	if (is_feat_sel2_supported()) {
525 		scr_el3 |= SCR_EEL2_BIT;
526 	}
527 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
528 
529 	/*
530 	 * Populate EL3 state so that we've the right context
531 	 * before doing ERET
532 	 */
533 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
534 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
535 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
536 
537 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
538 	mdcr_el3 = MDCR_EL3_RESET_VAL;
539 
540 	/* ---------------------------------------------------------------------
541 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
542 	 * Some fields are architecturally UNKNOWN on reset.
543 	 *
544 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
545 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
546 	 *  disabled from all ELs in Secure state.
547 	 *
548 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
549 	 *  privileged debug from S-EL1.
550 	 *
551 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
552 	 *  access to the powerdown debug registers do not trap to EL3.
553 	 *
554 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
555 	 *  debug registers, other than those registers that are controlled by
556 	 *  MDCR_EL3.TDOSA.
557 	 */
558 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
559 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
560 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
561 
562 	/*
563 	 * Configure MDCR_EL3 register as applicable for each world
564 	 * (NS/Secure/Realm) context.
565 	 */
566 	manage_extensions_common(ctx);
567 
568 	/*
569 	 * Store the X0-X7 value from the entrypoint into the context
570 	 * Use memcpy as we are in control of the layout of the structures
571 	 */
572 	gp_regs = get_gpregs_ctx(ctx);
573 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
574 }
575 
576 /*******************************************************************************
577  * Context management library initialization routine. This library is used by
578  * runtime services to share pointers to 'cpu_context' structures for secure
579  * non-secure and realm states. Management of the structures and their associated
580  * memory is not done by the context management library e.g. the PSCI service
581  * manages the cpu context used for entry from and exit to the non-secure state.
582  * The Secure payload dispatcher service manages the context(s) corresponding to
583  * the secure state. It also uses this library to get access to the non-secure
584  * state cpu context pointers.
585  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
586  * which will be used for programming an entry into a lower EL. The same context
587  * will be used to save state upon exception entry from that EL.
588  ******************************************************************************/
589 void __init cm_init(void)
590 {
591 	/*
592 	 * The context management library has only global data to initialize, but
593 	 * that will be done when the BSS is zeroed out.
594 	 */
595 }
596 
597 /*******************************************************************************
598  * This is the high-level function used to initialize the cpu_context 'ctx' for
599  * first use. It performs initializations that are common to all security states
600  * and initializations specific to the security state specified in 'ep'
601  ******************************************************************************/
602 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
603 {
604 	unsigned int security_state;
605 
606 	assert(ctx != NULL);
607 
608 	/*
609 	 * Perform initializations that are common
610 	 * to all security states
611 	 */
612 	setup_context_common(ctx, ep);
613 
614 	security_state = GET_SECURITY_STATE(ep->h.attr);
615 
616 	/* Perform security state specific initializations */
617 	switch (security_state) {
618 	case SECURE:
619 		setup_secure_context(ctx, ep);
620 		break;
621 #if ENABLE_RME
622 	case REALM:
623 		setup_realm_context(ctx, ep);
624 		break;
625 #endif
626 	case NON_SECURE:
627 		setup_ns_context(ctx, ep);
628 		break;
629 	default:
630 		ERROR("Invalid security state\n");
631 		panic();
632 		break;
633 	}
634 }
635 
636 /*******************************************************************************
637  * Enable architecture extensions for EL3 execution. This function only updates
638  * registers in-place which are expected to either never change or be
639  * overwritten by el3_exit.
640  ******************************************************************************/
641 #if IMAGE_BL31
642 void cm_manage_extensions_el3(void)
643 {
644 	if (is_feat_amu_supported()) {
645 		amu_init_el3();
646 	}
647 
648 	if (is_feat_sme_supported()) {
649 		sme_init_el3();
650 	}
651 
652 	pmuv3_init_el3();
653 }
654 #endif /* IMAGE_BL31 */
655 
656 /******************************************************************************
657  * Function to initialise the registers with the RESET values in the context
658  * memory, which are maintained per world.
659  ******************************************************************************/
660 #if IMAGE_BL31
661 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
662 {
663 	/*
664 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
665 	 *
666 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
667 	 *  by Advanced SIMD, floating-point or SVE instructions (if
668 	 *  implemented) do not trap to EL3.
669 	 *
670 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
671 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
672 	 */
673 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
674 
675 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
676 
677 	/*
678 	 * Initialize MPAM3_EL3 to its default reset value
679 	 *
680 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
681 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
682 	 */
683 
684 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
685 }
686 #endif /* IMAGE_BL31 */
687 
688 /*******************************************************************************
689  * Initialise per_world_context for Non-Secure world.
690  * This function enables the architecture extensions, which have same value
691  * across the cores for the non-secure world.
692  ******************************************************************************/
693 #if IMAGE_BL31
694 void manage_extensions_nonsecure_per_world(void)
695 {
696 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
697 
698 	if (is_feat_sme_supported()) {
699 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
700 	}
701 
702 	if (is_feat_sve_supported()) {
703 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
704 	}
705 
706 	if (is_feat_amu_supported()) {
707 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
708 	}
709 
710 	if (is_feat_sys_reg_trace_supported()) {
711 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
712 	}
713 
714 	if (is_feat_mpam_supported()) {
715 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
716 	}
717 }
718 #endif /* IMAGE_BL31 */
719 
720 /*******************************************************************************
721  * Initialise per_world_context for Secure world.
722  * This function enables the architecture extensions, which have same value
723  * across the cores for the secure world.
724  ******************************************************************************/
725 static void manage_extensions_secure_per_world(void)
726 {
727 #if IMAGE_BL31
728 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
729 
730 	if (is_feat_sme_supported()) {
731 
732 		if (ENABLE_SME_FOR_SWD) {
733 		/*
734 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
735 		 * SME, SVE, and FPU/SIMD context properly managed.
736 		 */
737 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
738 		} else {
739 		/*
740 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
741 		 * world can safely use the associated registers.
742 		 */
743 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
744 		}
745 	}
746 	if (is_feat_sve_supported()) {
747 		if (ENABLE_SVE_FOR_SWD) {
748 		/*
749 		 * Enable SVE and FPU in secure context, SPM must ensure
750 		 * that the SVE and FPU register contexts are properly managed.
751 		 */
752 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
753 		} else {
754 		/*
755 		 * Disable SVE and FPU in secure context so non-secure world
756 		 * can safely use them.
757 		 */
758 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
759 		}
760 	}
761 
762 	/* NS can access this but Secure shouldn't */
763 	if (is_feat_sys_reg_trace_supported()) {
764 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
765 	}
766 
767 	has_secure_perworld_init = true;
768 #endif /* IMAGE_BL31 */
769 }
770 
771 /*******************************************************************************
772  * Enable architecture extensions on first entry to Non-secure world only
773  * and disable for secure world.
774  *
775  * NOTE: Arch features which have been provided with the capability of getting
776  * enabled only for non-secure world and being disabled for secure world are
777  * grouped here, as the MDCR_EL3 context value remains same across the worlds.
778  ******************************************************************************/
779 static void manage_extensions_common(cpu_context_t *ctx)
780 {
781 #if IMAGE_BL31
782 	if (is_feat_spe_supported()) {
783 		/*
784 		 * Enable FEAT_SPE for Non-Secure and prohibit for Secure state.
785 		 */
786 		spe_enable(ctx);
787 	}
788 
789 	if (is_feat_trbe_supported()) {
790 		/*
791 		 * Enable FEAT_TRBE for Non-Secure and prohibit for Secure and
792 		 * Realm state.
793 		 */
794 		trbe_enable(ctx);
795 	}
796 
797 	if (is_feat_trf_supported()) {
798 		/*
799 		 * Enable FEAT_TRF for Non-Secure and prohibit for Secure state.
800 		 */
801 		trf_enable(ctx);
802 	}
803 #endif /* IMAGE_BL31 */
804 }
805 
806 /*******************************************************************************
807  * Enable architecture extensions on first entry to Non-secure world.
808  ******************************************************************************/
809 static void manage_extensions_nonsecure(cpu_context_t *ctx)
810 {
811 #if IMAGE_BL31
812 	if (is_feat_amu_supported()) {
813 		amu_enable(ctx);
814 	}
815 
816 	if (is_feat_sme_supported()) {
817 		sme_enable(ctx);
818 	}
819 
820 	if (is_feat_fgt2_supported()) {
821 		fgt2_enable(ctx);
822 	}
823 
824 	if (is_feat_debugv8p9_supported()) {
825 		debugv8p9_extended_bp_wp_enable(ctx);
826 	}
827 
828 	if (is_feat_brbe_supported()) {
829 		brbe_enable(ctx);
830 	}
831 
832 	pmuv3_enable(ctx);
833 #endif /* IMAGE_BL31 */
834 }
835 
836 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
837 static __unused void enable_pauth_el2(void)
838 {
839 	u_register_t hcr_el2 = read_hcr_el2();
840 	/*
841 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
842 	 *  accessing key registers or using pointer authentication instructions
843 	 *  from lower ELs.
844 	 */
845 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
846 
847 	write_hcr_el2(hcr_el2);
848 }
849 
850 #if INIT_UNUSED_NS_EL2
851 /*******************************************************************************
852  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
853  * world when EL2 is empty and unused.
854  ******************************************************************************/
855 static void manage_extensions_nonsecure_el2_unused(void)
856 {
857 #if IMAGE_BL31
858 	if (is_feat_spe_supported()) {
859 		spe_init_el2_unused();
860 	}
861 
862 	if (is_feat_amu_supported()) {
863 		amu_init_el2_unused();
864 	}
865 
866 	if (is_feat_mpam_supported()) {
867 		mpam_init_el2_unused();
868 	}
869 
870 	if (is_feat_trbe_supported()) {
871 		trbe_init_el2_unused();
872 	}
873 
874 	if (is_feat_sys_reg_trace_supported()) {
875 		sys_reg_trace_init_el2_unused();
876 	}
877 
878 	if (is_feat_trf_supported()) {
879 		trf_init_el2_unused();
880 	}
881 
882 	pmuv3_init_el2_unused();
883 
884 	if (is_feat_sve_supported()) {
885 		sve_init_el2_unused();
886 	}
887 
888 	if (is_feat_sme_supported()) {
889 		sme_init_el2_unused();
890 	}
891 
892 #if ENABLE_PAUTH
893 	enable_pauth_el2();
894 #endif /* ENABLE_PAUTH */
895 #endif /* IMAGE_BL31 */
896 }
897 #endif /* INIT_UNUSED_NS_EL2 */
898 
899 /*******************************************************************************
900  * Enable architecture extensions on first entry to Secure world.
901  ******************************************************************************/
902 static void manage_extensions_secure(cpu_context_t *ctx)
903 {
904 #if IMAGE_BL31
905 	if (is_feat_sme_supported()) {
906 		if (ENABLE_SME_FOR_SWD) {
907 		/*
908 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
909 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
910 		 */
911 			sme_init_el3();
912 			sme_enable(ctx);
913 		} else {
914 		/*
915 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
916 		 * world can safely use the associated registers.
917 		 */
918 			sme_disable(ctx);
919 		}
920 	}
921 #endif /* IMAGE_BL31 */
922 }
923 
924 #if !IMAGE_BL1
925 /*******************************************************************************
926  * The following function initializes the cpu_context for a CPU specified by
927  * its `cpu_idx` for first use, and sets the initial entrypoint state as
928  * specified by the entry_point_info structure.
929  ******************************************************************************/
930 void cm_init_context_by_index(unsigned int cpu_idx,
931 			      const entry_point_info_t *ep)
932 {
933 	cpu_context_t *ctx;
934 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
935 	cm_setup_context(ctx, ep);
936 }
937 #endif /* !IMAGE_BL1 */
938 
939 /*******************************************************************************
940  * The following function initializes the cpu_context for the current CPU
941  * for first use, and sets the initial entrypoint state as specified by the
942  * entry_point_info structure.
943  ******************************************************************************/
944 void cm_init_my_context(const entry_point_info_t *ep)
945 {
946 	cpu_context_t *ctx;
947 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
948 	cm_setup_context(ctx, ep);
949 }
950 
951 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
952 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
953 {
954 #if INIT_UNUSED_NS_EL2
955 	u_register_t hcr_el2 = HCR_RESET_VAL;
956 	u_register_t mdcr_el2;
957 	u_register_t scr_el3;
958 
959 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
960 
961 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
962 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
963 		hcr_el2 |= HCR_RW_BIT;
964 	}
965 
966 	write_hcr_el2(hcr_el2);
967 
968 	/*
969 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
970 	 * All fields have architecturally UNKNOWN reset values.
971 	 */
972 	write_cptr_el2(CPTR_EL2_RESET_VAL);
973 
974 	/*
975 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
976 	 * reset and are set to zero except for field(s) listed below.
977 	 *
978 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
979 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
980 	 *
981 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
982 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
983 	 */
984 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
985 
986 	/*
987 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
988 	 * UNKNOWN value.
989 	 */
990 	write_cntvoff_el2(0);
991 
992 	/*
993 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
994 	 * respectively.
995 	 */
996 	write_vpidr_el2(read_midr_el1());
997 	write_vmpidr_el2(read_mpidr_el1());
998 
999 	/*
1000 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
1001 	 *
1002 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
1003 	 * translation is disabled, cache maintenance operations depend on the
1004 	 * VMID.
1005 	 *
1006 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
1007 	 * disabled.
1008 	 */
1009 	write_vttbr_el2(VTTBR_RESET_VAL &
1010 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1011 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1012 
1013 	/*
1014 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1015 	 * Some fields are architecturally UNKNOWN on reset.
1016 	 *
1017 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1018 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1019 	 *
1020 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1021 	 * accesses to the powerdown debug registers are not trapped to EL2.
1022 	 *
1023 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1024 	 * debug registers do not trap to EL2.
1025 	 *
1026 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1027 	 * EL2.
1028 	 */
1029 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1030 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1031 		   MDCR_EL2_TDE_BIT);
1032 
1033 	write_mdcr_el2(mdcr_el2);
1034 
1035 	/*
1036 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1037 	 *
1038 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1039 	 * EL1 accesses to System registers do not trap to EL2.
1040 	 */
1041 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1042 
1043 	/*
1044 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1045 	 * reset.
1046 	 *
1047 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1048 	 * and prevent timer interrupts.
1049 	 */
1050 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1051 
1052 	manage_extensions_nonsecure_el2_unused();
1053 #endif /* INIT_UNUSED_NS_EL2 */
1054 }
1055 
1056 /*******************************************************************************
1057  * Prepare the CPU system registers for first entry into realm, secure, or
1058  * normal world.
1059  *
1060  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1061  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1062  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1063  * For all entries, the EL1 registers are initialized from the cpu_context
1064  ******************************************************************************/
1065 void cm_prepare_el3_exit(uint32_t security_state)
1066 {
1067 	u_register_t sctlr_el2, scr_el3;
1068 	cpu_context_t *ctx = cm_get_context(security_state);
1069 
1070 	assert(ctx != NULL);
1071 
1072 	if (security_state == NON_SECURE) {
1073 		uint64_t el2_implemented = el_implemented(2);
1074 
1075 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1076 						 CTX_SCR_EL3);
1077 
1078 		if (el2_implemented != EL_IMPL_NONE) {
1079 
1080 			/*
1081 			 * If context is not being used for EL2, initialize
1082 			 * HCRX_EL2 with its init value here.
1083 			 */
1084 			if (is_feat_hcx_supported()) {
1085 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1086 			}
1087 
1088 			/*
1089 			 * Initialize Fine-grained trap registers introduced
1090 			 * by FEAT_FGT so all traps are initially disabled when
1091 			 * switching to EL2 or a lower EL, preventing undesired
1092 			 * behavior.
1093 			 */
1094 			if (is_feat_fgt_supported()) {
1095 				/*
1096 				 * Initialize HFG*_EL2 registers with a default
1097 				 * value so legacy systems unaware of FEAT_FGT
1098 				 * do not get trapped due to their lack of
1099 				 * initialization for this feature.
1100 				 */
1101 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1102 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1103 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1104 			}
1105 
1106 			/* Condition to ensure EL2 is being used. */
1107 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1108 				/* Initialize SCTLR_EL2 register with reset value. */
1109 				sctlr_el2 = SCTLR_EL2_RES1;
1110 
1111 				/*
1112 				 * If workaround of errata 764081 for Cortex-A75
1113 				 * is used then set SCTLR_EL2.IESB to enable
1114 				 * Implicit Error Synchronization Barrier.
1115 				 */
1116 				if (errata_a75_764081_applies()) {
1117 					sctlr_el2 |= SCTLR_IESB_BIT;
1118 				}
1119 
1120 				write_sctlr_el2(sctlr_el2);
1121 			} else {
1122 				/*
1123 				 * (scr_el3 & SCR_HCE_BIT==0)
1124 				 * EL2 implemented but unused.
1125 				 */
1126 				init_nonsecure_el2_unused(ctx);
1127 			}
1128 		}
1129 	}
1130 #if (!CTX_INCLUDE_EL2_REGS)
1131 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1132 	cm_el1_sysregs_context_restore(security_state);
1133 #endif
1134 	cm_set_next_eret_context(security_state);
1135 }
1136 
1137 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1138 
1139 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1140 {
1141 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1142 	if (is_feat_amu_supported()) {
1143 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1144 	}
1145 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1146 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1147 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1148 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1149 }
1150 
1151 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1152 {
1153 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1154 	if (is_feat_amu_supported()) {
1155 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1156 	}
1157 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1158 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1159 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1160 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1161 }
1162 
1163 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1164 {
1165 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1166 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1167 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1168 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1169 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1170 }
1171 
1172 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1173 {
1174 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1175 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1176 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1177 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1178 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1179 }
1180 
1181 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1182 {
1183 	u_register_t mpam_idr = read_mpamidr_el1();
1184 
1185 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1186 
1187 	/*
1188 	 * The context registers that we intend to save would be part of the
1189 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1190 	 */
1191 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1192 		return;
1193 	}
1194 
1195 	/*
1196 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1197 	 * MPAMIDR_HAS_HCR_BIT == 1.
1198 	 */
1199 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1200 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1201 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1202 
1203 	/*
1204 	 * The number of MPAMVPM registers is implementation defined, their
1205 	 * number is stored in the MPAMIDR_EL1 register.
1206 	 */
1207 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1208 	case 7:
1209 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1210 		__fallthrough;
1211 	case 6:
1212 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1213 		__fallthrough;
1214 	case 5:
1215 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1216 		__fallthrough;
1217 	case 4:
1218 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1219 		__fallthrough;
1220 	case 3:
1221 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1222 		__fallthrough;
1223 	case 2:
1224 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1225 		__fallthrough;
1226 	case 1:
1227 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1228 		break;
1229 	}
1230 }
1231 
1232 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1233 {
1234 	u_register_t mpam_idr = read_mpamidr_el1();
1235 
1236 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1237 
1238 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1239 		return;
1240 	}
1241 
1242 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1243 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1244 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1245 
1246 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1247 	case 7:
1248 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1249 		__fallthrough;
1250 	case 6:
1251 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1252 		__fallthrough;
1253 	case 5:
1254 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1255 		__fallthrough;
1256 	case 4:
1257 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1258 		__fallthrough;
1259 	case 3:
1260 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1261 		__fallthrough;
1262 	case 2:
1263 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1264 		__fallthrough;
1265 	case 1:
1266 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1267 		break;
1268 	}
1269 }
1270 
1271 /* ---------------------------------------------------------------------------
1272  * The following registers are not added:
1273  * ICH_AP0R<n>_EL2
1274  * ICH_AP1R<n>_EL2
1275  * ICH_LR<n>_EL2
1276  *
1277  * NOTE: For a system with S-EL2 present but not enabled, accessing
1278  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1279  * SCR_EL3.NS = 1 before accessing this register.
1280  * ---------------------------------------------------------------------------
1281  */
1282 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx)
1283 {
1284 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1285 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1286 #else
1287 	u_register_t scr_el3 = read_scr_el3();
1288 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1289 	isb();
1290 
1291 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1292 
1293 	write_scr_el3(scr_el3);
1294 	isb();
1295 #endif
1296 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1297 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1298 }
1299 
1300 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx)
1301 {
1302 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1303 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1304 #else
1305 	u_register_t scr_el3 = read_scr_el3();
1306 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1307 	isb();
1308 
1309 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1310 
1311 	write_scr_el3(scr_el3);
1312 	isb();
1313 #endif
1314 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1315 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1316 }
1317 
1318 /* -----------------------------------------------------
1319  * The following registers are not added:
1320  * AMEVCNTVOFF0<n>_EL2
1321  * AMEVCNTVOFF1<n>_EL2
1322  * -----------------------------------------------------
1323  */
1324 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1325 {
1326 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1327 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1328 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1329 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1330 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1331 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1332 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1333 	if (CTX_INCLUDE_AARCH32_REGS) {
1334 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1335 	}
1336 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1337 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1338 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1339 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1340 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1341 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1342 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1343 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1344 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1345 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1346 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1347 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1348 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1349 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1350 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1351 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1352 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1353 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1354 
1355 	write_el2_ctx_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1356 	write_el2_ctx_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1357 }
1358 
1359 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1360 {
1361 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1362 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1363 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1364 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1365 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1366 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1367 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1368 	if (CTX_INCLUDE_AARCH32_REGS) {
1369 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1370 	}
1371 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1372 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1373 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1374 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1375 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1376 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1377 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1378 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1379 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1380 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1381 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1382 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1383 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1384 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1385 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1386 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1387 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1388 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1389 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1390 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1391 }
1392 
1393 /*******************************************************************************
1394  * Save EL2 sysreg context
1395  ******************************************************************************/
1396 void cm_el2_sysregs_context_save(uint32_t security_state)
1397 {
1398 	cpu_context_t *ctx;
1399 	el2_sysregs_t *el2_sysregs_ctx;
1400 
1401 	ctx = cm_get_context(security_state);
1402 	assert(ctx != NULL);
1403 
1404 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1405 
1406 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1407 	el2_sysregs_context_save_gic(el2_sysregs_ctx);
1408 
1409 	if (is_feat_mte2_supported()) {
1410 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1411 	}
1412 
1413 	if (is_feat_mpam_supported()) {
1414 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1415 	}
1416 
1417 	if (is_feat_fgt_supported()) {
1418 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1419 	}
1420 
1421 	if (is_feat_fgt2_supported()) {
1422 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1423 	}
1424 
1425 	if (is_feat_ecv_v2_supported()) {
1426 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1427 	}
1428 
1429 	if (is_feat_vhe_supported()) {
1430 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1431 					read_contextidr_el2());
1432 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1433 	}
1434 
1435 	if (is_feat_ras_supported()) {
1436 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1437 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1438 	}
1439 
1440 	if (is_feat_nv2_supported()) {
1441 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1442 	}
1443 
1444 	if (is_feat_trf_supported()) {
1445 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1446 	}
1447 
1448 	if (is_feat_csv2_2_supported()) {
1449 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1450 					read_scxtnum_el2());
1451 	}
1452 
1453 	if (is_feat_hcx_supported()) {
1454 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1455 	}
1456 
1457 	if (is_feat_tcr2_supported()) {
1458 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1459 	}
1460 
1461 	if (is_feat_sxpie_supported()) {
1462 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1463 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1464 	}
1465 
1466 	if (is_feat_sxpoe_supported()) {
1467 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1468 	}
1469 
1470 	if (is_feat_s2pie_supported()) {
1471 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1472 	}
1473 
1474 	if (is_feat_gcs_supported()) {
1475 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1476 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1477 	}
1478 
1479 	if (is_feat_sctlr2_supported()) {
1480 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1481 	}
1482 }
1483 
1484 /*******************************************************************************
1485  * Restore EL2 sysreg context
1486  ******************************************************************************/
1487 void cm_el2_sysregs_context_restore(uint32_t security_state)
1488 {
1489 	cpu_context_t *ctx;
1490 	el2_sysregs_t *el2_sysregs_ctx;
1491 
1492 	ctx = cm_get_context(security_state);
1493 	assert(ctx != NULL);
1494 
1495 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1496 
1497 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1498 	el2_sysregs_context_restore_gic(el2_sysregs_ctx);
1499 
1500 	if (is_feat_mte2_supported()) {
1501 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1502 	}
1503 
1504 	if (is_feat_mpam_supported()) {
1505 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1506 	}
1507 
1508 	if (is_feat_fgt_supported()) {
1509 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1510 	}
1511 
1512 	if (is_feat_fgt2_supported()) {
1513 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1514 	}
1515 
1516 	if (is_feat_ecv_v2_supported()) {
1517 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1518 	}
1519 
1520 	if (is_feat_vhe_supported()) {
1521 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1522 					contextidr_el2));
1523 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1524 	}
1525 
1526 	if (is_feat_ras_supported()) {
1527 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1528 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1529 	}
1530 
1531 	if (is_feat_nv2_supported()) {
1532 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1533 	}
1534 
1535 	if (is_feat_trf_supported()) {
1536 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1537 	}
1538 
1539 	if (is_feat_csv2_2_supported()) {
1540 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1541 					scxtnum_el2));
1542 	}
1543 
1544 	if (is_feat_hcx_supported()) {
1545 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1546 	}
1547 
1548 	if (is_feat_tcr2_supported()) {
1549 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1550 	}
1551 
1552 	if (is_feat_sxpie_supported()) {
1553 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1554 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1555 	}
1556 
1557 	if (is_feat_sxpoe_supported()) {
1558 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1559 	}
1560 
1561 	if (is_feat_s2pie_supported()) {
1562 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1563 	}
1564 
1565 	if (is_feat_gcs_supported()) {
1566 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1567 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1568 	}
1569 
1570 	if (is_feat_sctlr2_supported()) {
1571 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1572 	}
1573 }
1574 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1575 
1576 #if IMAGE_BL31
1577 /*********************************************************************************
1578 * This function allows Architecture features asymmetry among cores.
1579 * TF-A assumes that all the cores in the platform has architecture feature parity
1580 * and hence the context is setup on different core (e.g. primary sets up the
1581 * context for secondary cores).This assumption may not be true for systems where
1582 * cores are not conforming to same Arch version or there is CPU Erratum which
1583 * requires certain feature to be be disabled only on a given core.
1584 *
1585 * This function is called on secondary cores to override any disparity in context
1586 * setup by primary, this would be called during warmboot path.
1587 *********************************************************************************/
1588 void cm_handle_asymmetric_features(void)
1589 {
1590 	cpu_context_t *ctx __maybe_unused = cm_get_context(NON_SECURE);
1591 
1592 	assert(ctx != NULL);
1593 
1594 #if ENABLE_SPE_FOR_NS == FEAT_STATE_CHECK_ASYMMETRIC
1595 	if (is_feat_spe_supported()) {
1596 		spe_enable(ctx);
1597 	} else {
1598 		spe_disable(ctx);
1599 	}
1600 #endif
1601 
1602 #if ERRATA_A520_2938996 || ERRATA_X4_2726228
1603 	if (check_if_affected_core() == ERRATA_APPLIES) {
1604 		if (is_feat_trbe_supported()) {
1605 			trbe_disable(ctx);
1606 		}
1607 	}
1608 #endif
1609 
1610 #if ENABLE_FEAT_TCR2 == FEAT_STATE_CHECK_ASYMMETRIC
1611 	el3_state_t *el3_state = get_el3state_ctx(ctx);
1612 	u_register_t spsr = read_ctx_reg(el3_state, CTX_SPSR_EL3);
1613 
1614 	if (is_feat_tcr2_supported() && (GET_RW(spsr) == MODE_RW_64)) {
1615 		tcr2_enable(ctx);
1616 	} else {
1617 		tcr2_disable(ctx);
1618 	}
1619 #endif
1620 
1621 }
1622 #endif
1623 
1624 /*******************************************************************************
1625  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1626  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1627  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1628  * cm_prepare_el3_exit function.
1629  ******************************************************************************/
1630 void cm_prepare_el3_exit_ns(void)
1631 {
1632 #if IMAGE_BL31
1633 	/*
1634 	 * Check and handle Architecture feature asymmetry among cores.
1635 	 *
1636 	 * In warmboot path secondary cores context is initialized on core which
1637 	 * did CPU_ON SMC call, if there is feature asymmetry in these cores handle
1638 	 * it in this function call.
1639 	 * For Symmetric cores this is an empty function.
1640 	 */
1641 	cm_handle_asymmetric_features();
1642 #endif
1643 
1644 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1645 #if ENABLE_ASSERTIONS
1646 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1647 	assert(ctx != NULL);
1648 
1649 	/* Assert that EL2 is used. */
1650 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1651 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1652 			(el_implemented(2U) != EL_IMPL_NONE));
1653 #endif /* ENABLE_ASSERTIONS */
1654 
1655 	/* Restore EL2 sysreg contexts */
1656 	cm_el2_sysregs_context_restore(NON_SECURE);
1657 	cm_set_next_eret_context(NON_SECURE);
1658 #else
1659 	cm_prepare_el3_exit(NON_SECURE);
1660 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1661 }
1662 
1663 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1664 /*******************************************************************************
1665  * The next set of six functions are used by runtime services to save and restore
1666  * EL1 context on the 'cpu_context' structure for the specified security state.
1667  ******************************************************************************/
1668 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1669 {
1670 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1671 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1672 
1673 #if (!ERRATA_SPECULATIVE_AT)
1674 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1675 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1676 #endif /* (!ERRATA_SPECULATIVE_AT) */
1677 
1678 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1679 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1680 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1681 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1682 	write_el1_ctx_common(ctx, ttbr0_el1, read_ttbr0_el1());
1683 	write_el1_ctx_common(ctx, ttbr1_el1, read_ttbr1_el1());
1684 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1685 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1686 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1687 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1688 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1689 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1690 	write_el1_ctx_common(ctx, par_el1, read_par_el1());
1691 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1692 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1693 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1694 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1695 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1696 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1697 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1698 
1699 	if (CTX_INCLUDE_AARCH32_REGS) {
1700 		/* Save Aarch32 registers */
1701 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1702 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1703 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1704 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1705 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1706 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1707 	}
1708 
1709 	if (NS_TIMER_SWITCH) {
1710 		/* Save NS Timer registers */
1711 		write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1712 		write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1713 		write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1714 		write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1715 		write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1716 	}
1717 
1718 	if (is_feat_mte2_supported()) {
1719 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1720 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1721 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1722 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1723 	}
1724 
1725 	if (is_feat_ras_supported()) {
1726 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1727 	}
1728 
1729 	if (is_feat_s1pie_supported()) {
1730 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1731 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1732 	}
1733 
1734 	if (is_feat_s1poe_supported()) {
1735 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1736 	}
1737 
1738 	if (is_feat_s2poe_supported()) {
1739 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1740 	}
1741 
1742 	if (is_feat_tcr2_supported()) {
1743 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1744 	}
1745 
1746 	if (is_feat_trf_supported()) {
1747 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1748 	}
1749 
1750 	if (is_feat_csv2_2_supported()) {
1751 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1752 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1753 	}
1754 
1755 	if (is_feat_gcs_supported()) {
1756 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1757 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1758 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1759 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1760 	}
1761 
1762 	if (is_feat_the_supported()) {
1763 		write_el1_ctx_the(ctx, rcwmask_el1, read_rcwmask_el1());
1764 		write_el1_ctx_the(ctx, rcwsmask_el1, read_rcwsmask_el1());
1765 	}
1766 
1767 	if (is_feat_sctlr2_supported()) {
1768 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1769 	}
1770 
1771 	if (is_feat_ls64_accdata_supported()) {
1772 		write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1());
1773 	}
1774 }
1775 
1776 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1777 {
1778 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1779 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1780 
1781 #if (!ERRATA_SPECULATIVE_AT)
1782 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1783 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1784 #endif /* (!ERRATA_SPECULATIVE_AT) */
1785 
1786 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1787 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1788 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1789 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1790 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1791 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1792 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1793 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1794 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1795 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1796 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1797 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1798 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1799 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1800 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1801 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1802 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1803 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1804 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1805 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1806 
1807 	if (CTX_INCLUDE_AARCH32_REGS) {
1808 		/* Restore Aarch32 registers */
1809 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1810 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1811 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1812 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1813 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1814 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1815 	}
1816 
1817 	if (NS_TIMER_SWITCH) {
1818 		/* Restore NS Timer registers */
1819 		write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1820 		write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1821 		write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1822 		write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1823 		write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1824 	}
1825 
1826 	if (is_feat_mte2_supported()) {
1827 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1828 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1829 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1830 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1831 	}
1832 
1833 	if (is_feat_ras_supported()) {
1834 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1835 	}
1836 
1837 	if (is_feat_s1pie_supported()) {
1838 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1839 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1840 	}
1841 
1842 	if (is_feat_s1poe_supported()) {
1843 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1844 	}
1845 
1846 	if (is_feat_s2poe_supported()) {
1847 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1848 	}
1849 
1850 	if (is_feat_tcr2_supported()) {
1851 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1852 	}
1853 
1854 	if (is_feat_trf_supported()) {
1855 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1856 	}
1857 
1858 	if (is_feat_csv2_2_supported()) {
1859 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1860 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1861 	}
1862 
1863 	if (is_feat_gcs_supported()) {
1864 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1865 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1866 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1867 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1868 	}
1869 
1870 	if (is_feat_the_supported()) {
1871 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1872 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1873 	}
1874 
1875 	if (is_feat_sctlr2_supported()) {
1876 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1877 	}
1878 
1879 	if (is_feat_ls64_accdata_supported()) {
1880 		write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1));
1881 	}
1882 }
1883 
1884 /*******************************************************************************
1885  * The next couple of functions are used by runtime services to save and restore
1886  * EL1 context on the 'cpu_context' structure for the specified security state.
1887  ******************************************************************************/
1888 void cm_el1_sysregs_context_save(uint32_t security_state)
1889 {
1890 	cpu_context_t *ctx;
1891 
1892 	ctx = cm_get_context(security_state);
1893 	assert(ctx != NULL);
1894 
1895 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1896 
1897 #if IMAGE_BL31
1898 	if (security_state == SECURE)
1899 		PUBLISH_EVENT(cm_exited_secure_world);
1900 	else
1901 		PUBLISH_EVENT(cm_exited_normal_world);
1902 #endif
1903 }
1904 
1905 void cm_el1_sysregs_context_restore(uint32_t security_state)
1906 {
1907 	cpu_context_t *ctx;
1908 
1909 	ctx = cm_get_context(security_state);
1910 	assert(ctx != NULL);
1911 
1912 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1913 
1914 #if IMAGE_BL31
1915 	if (security_state == SECURE)
1916 		PUBLISH_EVENT(cm_entering_secure_world);
1917 	else
1918 		PUBLISH_EVENT(cm_entering_normal_world);
1919 #endif
1920 }
1921 
1922 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1923 
1924 /*******************************************************************************
1925  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1926  * given security state with the given entrypoint
1927  ******************************************************************************/
1928 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1929 {
1930 	cpu_context_t *ctx;
1931 	el3_state_t *state;
1932 
1933 	ctx = cm_get_context(security_state);
1934 	assert(ctx != NULL);
1935 
1936 	/* Populate EL3 state so that ERET jumps to the correct entry */
1937 	state = get_el3state_ctx(ctx);
1938 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1939 }
1940 
1941 /*******************************************************************************
1942  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1943  * pertaining to the given security state
1944  ******************************************************************************/
1945 void cm_set_elr_spsr_el3(uint32_t security_state,
1946 			uintptr_t entrypoint, uint32_t spsr)
1947 {
1948 	cpu_context_t *ctx;
1949 	el3_state_t *state;
1950 
1951 	ctx = cm_get_context(security_state);
1952 	assert(ctx != NULL);
1953 
1954 	/* Populate EL3 state so that ERET jumps to the correct entry */
1955 	state = get_el3state_ctx(ctx);
1956 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1957 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1958 }
1959 
1960 /*******************************************************************************
1961  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1962  * pertaining to the given security state using the value and bit position
1963  * specified in the parameters. It preserves all other bits.
1964  ******************************************************************************/
1965 void cm_write_scr_el3_bit(uint32_t security_state,
1966 			  uint32_t bit_pos,
1967 			  uint32_t value)
1968 {
1969 	cpu_context_t *ctx;
1970 	el3_state_t *state;
1971 	u_register_t scr_el3;
1972 
1973 	ctx = cm_get_context(security_state);
1974 	assert(ctx != NULL);
1975 
1976 	/* Ensure that the bit position is a valid one */
1977 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1978 
1979 	/* Ensure that the 'value' is only a bit wide */
1980 	assert(value <= 1U);
1981 
1982 	/*
1983 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1984 	 * and set it to its new value.
1985 	 */
1986 	state = get_el3state_ctx(ctx);
1987 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1988 	scr_el3 &= ~(1UL << bit_pos);
1989 	scr_el3 |= (u_register_t)value << bit_pos;
1990 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1991 }
1992 
1993 /*******************************************************************************
1994  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1995  * given security state.
1996  ******************************************************************************/
1997 u_register_t cm_get_scr_el3(uint32_t security_state)
1998 {
1999 	cpu_context_t *ctx;
2000 	el3_state_t *state;
2001 
2002 	ctx = cm_get_context(security_state);
2003 	assert(ctx != NULL);
2004 
2005 	/* Populate EL3 state so that ERET jumps to the correct entry */
2006 	state = get_el3state_ctx(ctx);
2007 	return read_ctx_reg(state, CTX_SCR_EL3);
2008 }
2009 
2010 /*******************************************************************************
2011  * This function is used to program the context that's used for exception
2012  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
2013  * the required security state
2014  ******************************************************************************/
2015 void cm_set_next_eret_context(uint32_t security_state)
2016 {
2017 	cpu_context_t *ctx;
2018 
2019 	ctx = cm_get_context(security_state);
2020 	assert(ctx != NULL);
2021 
2022 	cm_set_next_context(ctx);
2023 }
2024