xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 758ccb802d4f2a5fe55ec936a21ad4ae8cbd7b4f)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/cpu_data.h>
24 #include <lib/el3_runtime/pubsub_events.h>
25 #include <lib/extensions/amu.h>
26 #include <lib/extensions/brbe.h>
27 #include <lib/extensions/mpam.h>
28 #include <lib/extensions/pmuv3.h>
29 #include <lib/extensions/sme.h>
30 #include <lib/extensions/spe.h>
31 #include <lib/extensions/sve.h>
32 #include <lib/extensions/sys_reg_trace.h>
33 #include <lib/extensions/trbe.h>
34 #include <lib/extensions/trf.h>
35 #include <lib/utils.h>
36 
37 #if ENABLE_FEAT_TWED
38 /* Make sure delay value fits within the range(0-15) */
39 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
40 #endif /* ENABLE_FEAT_TWED */
41 
42 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
43 static bool has_secure_perworld_init;
44 
45 static void manage_extensions_nonsecure(cpu_context_t *ctx);
46 static void manage_extensions_secure(cpu_context_t *ctx);
47 static void manage_extensions_secure_per_world(void);
48 
49 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
50 {
51 	u_register_t sctlr_elx, actlr_elx;
52 
53 	/*
54 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
55 	 * execution state setting all fields rather than relying on the hw.
56 	 * Some fields have architecturally UNKNOWN reset values and these are
57 	 * set to zero.
58 	 *
59 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
60 	 *
61 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
62 	 * required by PSCI specification)
63 	 */
64 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
65 	if (GET_RW(ep->spsr) == MODE_RW_64) {
66 		sctlr_elx |= SCTLR_EL1_RES1;
67 	} else {
68 		/*
69 		 * If the target execution state is AArch32 then the following
70 		 * fields need to be set.
71 		 *
72 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
73 		 *  instructions are not trapped to EL1.
74 		 *
75 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
76 		 *  instructions are not trapped to EL1.
77 		 *
78 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
79 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
80 		 */
81 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
82 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
83 	}
84 
85 #if ERRATA_A75_764081
86 	/*
87 	 * If workaround of errata 764081 for Cortex-A75 is used then set
88 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
89 	 */
90 	sctlr_elx |= SCTLR_IESB_BIT;
91 #endif
92 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
93 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
94 
95 	/*
96 	 * Base the context ACTLR_EL1 on the current value, as it is
97 	 * implementation defined. The context restore process will write
98 	 * the value from the context to the actual register and can cause
99 	 * problems for processor cores that don't expect certain bits to
100 	 * be zero.
101 	 */
102 	actlr_elx = read_actlr_el1();
103 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
104 }
105 
106 /******************************************************************************
107  * This function performs initializations that are specific to SECURE state
108  * and updates the cpu context specified by 'ctx'.
109  *****************************************************************************/
110 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
111 {
112 	u_register_t scr_el3;
113 	el3_state_t *state;
114 
115 	state = get_el3state_ctx(ctx);
116 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
117 
118 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
119 	/*
120 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
121 	 * indicated by the interrupt routing model for BL31.
122 	 */
123 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
124 #endif
125 
126 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
127 	if (is_feat_mte2_supported()) {
128 		scr_el3 |= SCR_ATA_BIT;
129 	}
130 
131 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
132 
133 	/*
134 	 * Initialize EL1 context registers unless SPMC is running
135 	 * at S-EL2.
136 	 */
137 #if !SPMD_SPM_AT_SEL2
138 	setup_el1_context(ctx, ep);
139 #endif
140 
141 	manage_extensions_secure(ctx);
142 
143 	/**
144 	 * manage_extensions_secure_per_world api has to be executed once,
145 	 * as the registers getting initialised, maintain constant value across
146 	 * all the cpus for the secure world.
147 	 * Henceforth, this check ensures that the registers are initialised once
148 	 * and avoids re-initialization from multiple cores.
149 	 */
150 	if (!has_secure_perworld_init) {
151 		manage_extensions_secure_per_world();
152 	}
153 
154 }
155 
156 #if ENABLE_RME
157 /******************************************************************************
158  * This function performs initializations that are specific to REALM state
159  * and updates the cpu context specified by 'ctx'.
160  *****************************************************************************/
161 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
162 {
163 	u_register_t scr_el3;
164 	el3_state_t *state;
165 
166 	state = get_el3state_ctx(ctx);
167 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
168 
169 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
170 
171 	/* CSV2 version 2 and above */
172 	if (is_feat_csv2_2_supported()) {
173 		/* Enable access to the SCXTNUM_ELx registers. */
174 		scr_el3 |= SCR_EnSCXT_BIT;
175 	}
176 
177 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
178 }
179 #endif /* ENABLE_RME */
180 
181 /******************************************************************************
182  * This function performs initializations that are specific to NON-SECURE state
183  * and updates the cpu context specified by 'ctx'.
184  *****************************************************************************/
185 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
186 {
187 	u_register_t scr_el3;
188 	el3_state_t *state;
189 
190 	state = get_el3state_ctx(ctx);
191 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
192 
193 	/* SCR_NS: Set the NS bit */
194 	scr_el3 |= SCR_NS_BIT;
195 
196 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
197 	if (is_feat_mte2_supported()) {
198 		scr_el3 |= SCR_ATA_BIT;
199 	}
200 
201 #if !CTX_INCLUDE_PAUTH_REGS
202 	/*
203 	 * Pointer Authentication feature, if present, is always enabled by default
204 	 * for Non secure lower exception levels. We do not have an explicit
205 	 * flag to set it.
206 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
207 	 * exception levels of secure and realm worlds.
208 	 *
209 	 * To prevent the leakage between the worlds during world switch,
210 	 * we enable it only for the non-secure world.
211 	 *
212 	 * If the Secure/realm world wants to use pointer authentication,
213 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
214 	 * it will be enabled globally for all the contexts.
215 	 *
216 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
217 	 *  other than EL3
218 	 *
219 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
220 	 *  than EL3
221 	 */
222 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
223 
224 #endif /* CTX_INCLUDE_PAUTH_REGS */
225 
226 #if HANDLE_EA_EL3_FIRST_NS
227 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
228 	scr_el3 |= SCR_EA_BIT;
229 #endif
230 
231 #if RAS_TRAP_NS_ERR_REC_ACCESS
232 	/*
233 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
234 	 * and RAS ERX registers from EL1 and EL2(from any security state)
235 	 * are trapped to EL3.
236 	 * Set here to trap only for NS EL1/EL2
237 	 *
238 	 */
239 	scr_el3 |= SCR_TERR_BIT;
240 #endif
241 
242 	/* CSV2 version 2 and above */
243 	if (is_feat_csv2_2_supported()) {
244 		/* Enable access to the SCXTNUM_ELx registers. */
245 		scr_el3 |= SCR_EnSCXT_BIT;
246 	}
247 
248 #ifdef IMAGE_BL31
249 	/*
250 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
251 	 *  indicated by the interrupt routing model for BL31.
252 	 */
253 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
254 #endif
255 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
256 
257 	/* Initialize EL1 context registers */
258 	setup_el1_context(ctx, ep);
259 
260 	/* Initialize EL2 context registers */
261 #if CTX_INCLUDE_EL2_REGS
262 
263 	/*
264 	 * Initialize SCTLR_EL2 context register using Endianness value
265 	 * taken from the entrypoint attribute.
266 	 */
267 	u_register_t sctlr_el2_val = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
268 	sctlr_el2_val |= SCTLR_EL2_RES1;
269 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, sctlr_el2_val);
270 
271 
272 	if (is_feat_hcx_supported()) {
273 		/*
274 		 * Initialize register HCRX_EL2 with its init value.
275 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
276 		 * chance that this can lead to unexpected behavior in lower
277 		 * ELs that have not been updated since the introduction of
278 		 * this feature if not properly initialized, especially when
279 		 * it comes to those bits that enable/disable traps.
280 		 */
281 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
282 			HCRX_EL2_INIT_VAL);
283 	}
284 
285 	if (is_feat_fgt_supported()) {
286 		/*
287 		 * Initialize HFG*_EL2 registers with a default value so legacy
288 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
289 		 * of initialization for this feature.
290 		 */
291 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
292 			HFGITR_EL2_INIT_VAL);
293 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
294 			HFGRTR_EL2_INIT_VAL);
295 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
296 			HFGWTR_EL2_INIT_VAL);
297 	}
298 
299 #endif /* CTX_INCLUDE_EL2_REGS */
300 
301 	manage_extensions_nonsecure(ctx);
302 }
303 
304 /*******************************************************************************
305  * The following function performs initialization of the cpu_context 'ctx'
306  * for first use that is common to all security states, and sets the
307  * initial entrypoint state as specified by the entry_point_info structure.
308  *
309  * The EE and ST attributes are used to configure the endianness and secure
310  * timer availability for the new execution context.
311  ******************************************************************************/
312 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
313 {
314 	u_register_t scr_el3;
315 	el3_state_t *state;
316 	gp_regs_t *gp_regs;
317 
318 	state = get_el3state_ctx(ctx);
319 
320 	/* Clear any residual register values from the context */
321 	zeromem(ctx, sizeof(*ctx));
322 
323 	/*
324 	 * The lower-EL context is zeroed so that no stale values leak to a world.
325 	 * It is assumed that an all-zero lower-EL context is good enough for it
326 	 * to boot correctly. However, there are very few registers where this
327 	 * is not true and some values need to be recreated.
328 	 */
329 #if CTX_INCLUDE_EL2_REGS
330 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
331 
332 	/*
333 	 * These bits are set in the gicv3 driver. Losing them (especially the
334 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
335 	 */
336 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
337 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
338 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
339 #endif /* CTX_INCLUDE_EL2_REGS */
340 
341 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
342 	scr_el3 = SCR_RESET_VAL;
343 
344 	/*
345 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
346 	 *  EL2, EL1 and EL0 are not trapped to EL3.
347 	 *
348 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
349 	 *  EL2, EL1 and EL0 are not trapped to EL3.
350 	 *
351 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
352 	 *  both Security states and both Execution states.
353 	 *
354 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
355 	 *  Non-secure memory.
356 	 */
357 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
358 
359 	scr_el3 |= SCR_SIF_BIT;
360 
361 	/*
362 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
363 	 *  Exception level as specified by SPSR.
364 	 */
365 	if (GET_RW(ep->spsr) == MODE_RW_64) {
366 		scr_el3 |= SCR_RW_BIT;
367 	}
368 
369 	/*
370 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
371 	 * Secure timer registers to EL3, from AArch64 state only, if specified
372 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
373 	 * bit always behaves as 1 (i.e. secure physical timer register access
374 	 * is not trapped)
375 	 */
376 	if (EP_GET_ST(ep->h.attr) != 0U) {
377 		scr_el3 |= SCR_ST_BIT;
378 	}
379 
380 	/*
381 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
382 	 * SCR_EL3.HXEn.
383 	 */
384 	if (is_feat_hcx_supported()) {
385 		scr_el3 |= SCR_HXEn_BIT;
386 	}
387 
388 	/*
389 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
390 	 * registers are trapped to EL3.
391 	 */
392 #if ENABLE_FEAT_RNG_TRAP
393 	scr_el3 |= SCR_TRNDR_BIT;
394 #endif
395 
396 #if FAULT_INJECTION_SUPPORT
397 	/* Enable fault injection from lower ELs */
398 	scr_el3 |= SCR_FIEN_BIT;
399 #endif
400 
401 #if CTX_INCLUDE_PAUTH_REGS
402 	/*
403 	 * Enable Pointer Authentication globally for all the worlds.
404 	 *
405 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
406 	 *  other than EL3
407 	 *
408 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
409 	 *  than EL3
410 	 */
411 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
412 #endif /* CTX_INCLUDE_PAUTH_REGS */
413 
414 	/*
415 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
416 	 */
417 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
418 		scr_el3 |= SCR_TCR2EN_BIT;
419 	}
420 
421 	/*
422 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
423 	 * registers for AArch64 if present.
424 	 */
425 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
426 		scr_el3 |= SCR_PIEN_BIT;
427 	}
428 
429 	/*
430 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
431 	 */
432 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
433 		scr_el3 |= SCR_GCSEn_BIT;
434 	}
435 
436 	/*
437 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
438 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
439 	 * next mode is Hyp.
440 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
441 	 * same conditions as HVC instructions and when the processor supports
442 	 * ARMv8.6-FGT.
443 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
444 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
445 	 * and when the processor supports ECV.
446 	 */
447 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
448 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
449 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
450 		scr_el3 |= SCR_HCE_BIT;
451 
452 		if (is_feat_fgt_supported()) {
453 			scr_el3 |= SCR_FGTEN_BIT;
454 		}
455 
456 		if (is_feat_ecv_supported()) {
457 			scr_el3 |= SCR_ECVEN_BIT;
458 		}
459 	}
460 
461 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
462 	if (is_feat_twed_supported()) {
463 		/* Set delay in SCR_EL3 */
464 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
465 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
466 				<< SCR_TWEDEL_SHIFT);
467 
468 		/* Enable WFE delay */
469 		scr_el3 |= SCR_TWEDEn_BIT;
470 	}
471 
472 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
473 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
474 	if (is_feat_sel2_supported()) {
475 		scr_el3 |= SCR_EEL2_BIT;
476 	}
477 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
478 
479 	/*
480 	 * Populate EL3 state so that we've the right context
481 	 * before doing ERET
482 	 */
483 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
484 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
485 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
486 
487 	/*
488 	 * Store the X0-X7 value from the entrypoint into the context
489 	 * Use memcpy as we are in control of the layout of the structures
490 	 */
491 	gp_regs = get_gpregs_ctx(ctx);
492 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
493 }
494 
495 /*******************************************************************************
496  * Context management library initialization routine. This library is used by
497  * runtime services to share pointers to 'cpu_context' structures for secure
498  * non-secure and realm states. Management of the structures and their associated
499  * memory is not done by the context management library e.g. the PSCI service
500  * manages the cpu context used for entry from and exit to the non-secure state.
501  * The Secure payload dispatcher service manages the context(s) corresponding to
502  * the secure state. It also uses this library to get access to the non-secure
503  * state cpu context pointers.
504  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
505  * which will be used for programming an entry into a lower EL. The same context
506  * will be used to save state upon exception entry from that EL.
507  ******************************************************************************/
508 void __init cm_init(void)
509 {
510 	/*
511 	 * The context management library has only global data to initialize, but
512 	 * that will be done when the BSS is zeroed out.
513 	 */
514 }
515 
516 /*******************************************************************************
517  * This is the high-level function used to initialize the cpu_context 'ctx' for
518  * first use. It performs initializations that are common to all security states
519  * and initializations specific to the security state specified in 'ep'
520  ******************************************************************************/
521 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
522 {
523 	unsigned int security_state;
524 
525 	assert(ctx != NULL);
526 
527 	/*
528 	 * Perform initializations that are common
529 	 * to all security states
530 	 */
531 	setup_context_common(ctx, ep);
532 
533 	security_state = GET_SECURITY_STATE(ep->h.attr);
534 
535 	/* Perform security state specific initializations */
536 	switch (security_state) {
537 	case SECURE:
538 		setup_secure_context(ctx, ep);
539 		break;
540 #if ENABLE_RME
541 	case REALM:
542 		setup_realm_context(ctx, ep);
543 		break;
544 #endif
545 	case NON_SECURE:
546 		setup_ns_context(ctx, ep);
547 		break;
548 	default:
549 		ERROR("Invalid security state\n");
550 		panic();
551 		break;
552 	}
553 }
554 
555 /*******************************************************************************
556  * Enable architecture extensions for EL3 execution. This function only updates
557  * registers in-place which are expected to either never change or be
558  * overwritten by el3_exit.
559  ******************************************************************************/
560 #if IMAGE_BL31
561 void cm_manage_extensions_el3(void)
562 {
563 	if (is_feat_spe_supported()) {
564 		spe_init_el3();
565 	}
566 
567 	if (is_feat_amu_supported()) {
568 		amu_init_el3();
569 	}
570 
571 	if (is_feat_sme_supported()) {
572 		sme_init_el3();
573 	}
574 
575 	if (is_feat_trbe_supported()) {
576 		trbe_init_el3();
577 	}
578 
579 	if (is_feat_brbe_supported()) {
580 		brbe_init_el3();
581 	}
582 
583 	if (is_feat_trf_supported()) {
584 		trf_init_el3();
585 	}
586 
587 	pmuv3_init_el3();
588 }
589 #endif /* IMAGE_BL31 */
590 
591 /******************************************************************************
592  * Function to initialise the registers with the RESET values in the context
593  * memory, which are maintained per world.
594  ******************************************************************************/
595 #if IMAGE_BL31
596 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
597 {
598 	/*
599 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
600 	 *
601 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
602 	 *  by Advanced SIMD, floating-point or SVE instructions (if
603 	 *  implemented) do not trap to EL3.
604 	 *
605 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
606 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
607 	 */
608 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
609 
610 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
611 
612 	/*
613 	 * Initialize MPAM3_EL3 to its default reset value
614 	 *
615 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
616 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
617 	 */
618 
619 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
620 }
621 #endif /* IMAGE_BL31 */
622 
623 /*******************************************************************************
624  * Initialise per_world_context for Non-Secure world.
625  * This function enables the architecture extensions, which have same value
626  * across the cores for the non-secure world.
627  ******************************************************************************/
628 #if IMAGE_BL31
629 void manage_extensions_nonsecure_per_world(void)
630 {
631 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
632 
633 	if (is_feat_sme_supported()) {
634 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
635 	}
636 
637 	if (is_feat_sve_supported()) {
638 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
639 	}
640 
641 	if (is_feat_amu_supported()) {
642 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
643 	}
644 
645 	if (is_feat_sys_reg_trace_supported()) {
646 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
647 	}
648 
649 	if (is_feat_mpam_supported()) {
650 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
651 	}
652 }
653 #endif /* IMAGE_BL31 */
654 
655 /*******************************************************************************
656  * Initialise per_world_context for Secure world.
657  * This function enables the architecture extensions, which have same value
658  * across the cores for the secure world.
659  ******************************************************************************/
660 static void manage_extensions_secure_per_world(void)
661 {
662 #if IMAGE_BL31
663 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
664 
665 	if (is_feat_sme_supported()) {
666 
667 		if (ENABLE_SME_FOR_SWD) {
668 		/*
669 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
670 		 * SME, SVE, and FPU/SIMD context properly managed.
671 		 */
672 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
673 		} else {
674 		/*
675 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
676 		 * world can safely use the associated registers.
677 		 */
678 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
679 		}
680 	}
681 	if (is_feat_sve_supported()) {
682 		if (ENABLE_SVE_FOR_SWD) {
683 		/*
684 		 * Enable SVE and FPU in secure context, SPM must ensure
685 		 * that the SVE and FPU register contexts are properly managed.
686 		 */
687 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
688 		} else {
689 		/*
690 		 * Disable SVE and FPU in secure context so non-secure world
691 		 * can safely use them.
692 		 */
693 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
694 		}
695 	}
696 
697 	/* NS can access this but Secure shouldn't */
698 	if (is_feat_sys_reg_trace_supported()) {
699 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
700 	}
701 
702 	has_secure_perworld_init = true;
703 #endif /* IMAGE_BL31 */
704 }
705 
706 /*******************************************************************************
707  * Enable architecture extensions on first entry to Non-secure world.
708  ******************************************************************************/
709 static void manage_extensions_nonsecure(cpu_context_t *ctx)
710 {
711 #if IMAGE_BL31
712 	if (is_feat_amu_supported()) {
713 		amu_enable(ctx);
714 	}
715 
716 	if (is_feat_sme_supported()) {
717 		sme_enable(ctx);
718 	}
719 
720 	pmuv3_enable(ctx);
721 #endif /* IMAGE_BL31 */
722 }
723 
724 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
725 static __unused void enable_pauth_el2(void)
726 {
727 	u_register_t hcr_el2 = read_hcr_el2();
728 	/*
729 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
730 	 *  accessing key registers or using pointer authentication instructions
731 	 *  from lower ELs.
732 	 */
733 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
734 
735 	write_hcr_el2(hcr_el2);
736 }
737 
738 #if INIT_UNUSED_NS_EL2
739 /*******************************************************************************
740  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
741  * world when EL2 is empty and unused.
742  ******************************************************************************/
743 static void manage_extensions_nonsecure_el2_unused(void)
744 {
745 #if IMAGE_BL31
746 	if (is_feat_spe_supported()) {
747 		spe_init_el2_unused();
748 	}
749 
750 	if (is_feat_amu_supported()) {
751 		amu_init_el2_unused();
752 	}
753 
754 	if (is_feat_mpam_supported()) {
755 		mpam_init_el2_unused();
756 	}
757 
758 	if (is_feat_trbe_supported()) {
759 		trbe_init_el2_unused();
760 	}
761 
762 	if (is_feat_sys_reg_trace_supported()) {
763 		sys_reg_trace_init_el2_unused();
764 	}
765 
766 	if (is_feat_trf_supported()) {
767 		trf_init_el2_unused();
768 	}
769 
770 	pmuv3_init_el2_unused();
771 
772 	if (is_feat_sve_supported()) {
773 		sve_init_el2_unused();
774 	}
775 
776 	if (is_feat_sme_supported()) {
777 		sme_init_el2_unused();
778 	}
779 
780 #if ENABLE_PAUTH
781 	enable_pauth_el2();
782 #endif /* ENABLE_PAUTH */
783 #endif /* IMAGE_BL31 */
784 }
785 #endif /* INIT_UNUSED_NS_EL2 */
786 
787 /*******************************************************************************
788  * Enable architecture extensions on first entry to Secure world.
789  ******************************************************************************/
790 static void manage_extensions_secure(cpu_context_t *ctx)
791 {
792 #if IMAGE_BL31
793 	if (is_feat_sme_supported()) {
794 		if (ENABLE_SME_FOR_SWD) {
795 		/*
796 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
797 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
798 		 */
799 			sme_init_el3();
800 			sme_enable(ctx);
801 		} else {
802 		/*
803 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
804 		 * world can safely use the associated registers.
805 		 */
806 			sme_disable(ctx);
807 		}
808 	}
809 #endif /* IMAGE_BL31 */
810 }
811 
812 #if !IMAGE_BL1
813 /*******************************************************************************
814  * The following function initializes the cpu_context for a CPU specified by
815  * its `cpu_idx` for first use, and sets the initial entrypoint state as
816  * specified by the entry_point_info structure.
817  ******************************************************************************/
818 void cm_init_context_by_index(unsigned int cpu_idx,
819 			      const entry_point_info_t *ep)
820 {
821 	cpu_context_t *ctx;
822 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
823 	cm_setup_context(ctx, ep);
824 }
825 #endif /* !IMAGE_BL1 */
826 
827 /*******************************************************************************
828  * The following function initializes the cpu_context for the current CPU
829  * for first use, and sets the initial entrypoint state as specified by the
830  * entry_point_info structure.
831  ******************************************************************************/
832 void cm_init_my_context(const entry_point_info_t *ep)
833 {
834 	cpu_context_t *ctx;
835 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
836 	cm_setup_context(ctx, ep);
837 }
838 
839 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
840 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
841 {
842 #if INIT_UNUSED_NS_EL2
843 	u_register_t hcr_el2 = HCR_RESET_VAL;
844 	u_register_t mdcr_el2;
845 	u_register_t scr_el3;
846 
847 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
848 
849 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
850 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
851 		hcr_el2 |= HCR_RW_BIT;
852 	}
853 
854 	write_hcr_el2(hcr_el2);
855 
856 	/*
857 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
858 	 * All fields have architecturally UNKNOWN reset values.
859 	 */
860 	write_cptr_el2(CPTR_EL2_RESET_VAL);
861 
862 	/*
863 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
864 	 * reset and are set to zero except for field(s) listed below.
865 	 *
866 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
867 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
868 	 *
869 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
870 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
871 	 */
872 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
873 
874 	/*
875 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
876 	 * UNKNOWN value.
877 	 */
878 	write_cntvoff_el2(0);
879 
880 	/*
881 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
882 	 * respectively.
883 	 */
884 	write_vpidr_el2(read_midr_el1());
885 	write_vmpidr_el2(read_mpidr_el1());
886 
887 	/*
888 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
889 	 *
890 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
891 	 * translation is disabled, cache maintenance operations depend on the
892 	 * VMID.
893 	 *
894 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
895 	 * disabled.
896 	 */
897 	write_vttbr_el2(VTTBR_RESET_VAL &
898 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
899 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
900 
901 	/*
902 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
903 	 * Some fields are architecturally UNKNOWN on reset.
904 	 *
905 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
906 	 * register accesses to the Debug ROM registers are not trapped to EL2.
907 	 *
908 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
909 	 * accesses to the powerdown debug registers are not trapped to EL2.
910 	 *
911 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
912 	 * debug registers do not trap to EL2.
913 	 *
914 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
915 	 * EL2.
916 	 */
917 	mdcr_el2 = MDCR_EL2_RESET_VAL &
918 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
919 		   MDCR_EL2_TDE_BIT);
920 
921 	write_mdcr_el2(mdcr_el2);
922 
923 	/*
924 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
925 	 *
926 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
927 	 * EL1 accesses to System registers do not trap to EL2.
928 	 */
929 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
930 
931 	/*
932 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
933 	 * reset.
934 	 *
935 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
936 	 * and prevent timer interrupts.
937 	 */
938 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
939 
940 	manage_extensions_nonsecure_el2_unused();
941 #endif /* INIT_UNUSED_NS_EL2 */
942 }
943 
944 /*******************************************************************************
945  * Prepare the CPU system registers for first entry into realm, secure, or
946  * normal world.
947  *
948  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
949  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
950  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
951  * For all entries, the EL1 registers are initialized from the cpu_context
952  ******************************************************************************/
953 void cm_prepare_el3_exit(uint32_t security_state)
954 {
955 	u_register_t sctlr_elx, scr_el3;
956 	cpu_context_t *ctx = cm_get_context(security_state);
957 
958 	assert(ctx != NULL);
959 
960 	if (security_state == NON_SECURE) {
961 		uint64_t el2_implemented = el_implemented(2);
962 
963 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
964 						 CTX_SCR_EL3);
965 
966 		if (el2_implemented != EL_IMPL_NONE) {
967 
968 			/*
969 			 * If context is not being used for EL2, initialize
970 			 * HCRX_EL2 with its init value here.
971 			 */
972 			if (is_feat_hcx_supported()) {
973 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
974 			}
975 
976 			/*
977 			 * Initialize Fine-grained trap registers introduced
978 			 * by FEAT_FGT so all traps are initially disabled when
979 			 * switching to EL2 or a lower EL, preventing undesired
980 			 * behavior.
981 			 */
982 			if (is_feat_fgt_supported()) {
983 				/*
984 				 * Initialize HFG*_EL2 registers with a default
985 				 * value so legacy systems unaware of FEAT_FGT
986 				 * do not get trapped due to their lack of
987 				 * initialization for this feature.
988 				 */
989 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
990 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
991 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
992 			}
993 
994 			/* Condition to ensure EL2 is being used. */
995 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
996 				/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
997 				sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
998 								CTX_SCTLR_EL1);
999 				sctlr_elx &= SCTLR_EE_BIT;
1000 				sctlr_elx |= SCTLR_EL2_RES1;
1001 #if ERRATA_A75_764081
1002 				/*
1003 				 * If workaround of errata 764081 for Cortex-A75
1004 				 * is used then set SCTLR_EL2.IESB to enable
1005 				 * Implicit Error Synchronization Barrier.
1006 				 */
1007 				sctlr_elx |= SCTLR_IESB_BIT;
1008 #endif /* ERRATA_A75_764081 */
1009 				write_sctlr_el2(sctlr_elx);
1010 			} else {
1011 				/*
1012 				 * (scr_el3 & SCR_HCE_BIT==0)
1013 				 * EL2 implemented but unused.
1014 				 */
1015 				init_nonsecure_el2_unused(ctx);
1016 			}
1017 		}
1018 	}
1019 	cm_el1_sysregs_context_restore(security_state);
1020 	cm_set_next_eret_context(security_state);
1021 }
1022 
1023 #if CTX_INCLUDE_EL2_REGS
1024 
1025 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1026 {
1027 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1028 	if (is_feat_amu_supported()) {
1029 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1030 	}
1031 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1032 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1033 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1034 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1035 }
1036 
1037 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1038 {
1039 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1040 	if (is_feat_amu_supported()) {
1041 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1042 	}
1043 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1044 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1045 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1046 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1047 }
1048 
1049 #if CTX_INCLUDE_MPAM_REGS
1050 
1051 static void el2_sysregs_context_save_mpam(mpam_t *ctx)
1052 {
1053 	u_register_t mpam_idr = read_mpamidr_el1();
1054 
1055 	write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2());
1056 
1057 	/*
1058 	 * The context registers that we intend to save would be part of the
1059 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1060 	 */
1061 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1062 		return;
1063 	}
1064 
1065 	/*
1066 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1067 	 * MPAMIDR_HAS_HCR_BIT == 1.
1068 	 */
1069 	write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2());
1070 	write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2());
1071 	write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2());
1072 
1073 	/*
1074 	 * The number of MPAMVPM registers is implementation defined, their
1075 	 * number is stored in the MPAMIDR_EL1 register.
1076 	 */
1077 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1078 	case 7:
1079 		write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2());
1080 		__fallthrough;
1081 	case 6:
1082 		write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2());
1083 		__fallthrough;
1084 	case 5:
1085 		write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2());
1086 		__fallthrough;
1087 	case 4:
1088 		write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2());
1089 		__fallthrough;
1090 	case 3:
1091 		write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2());
1092 		__fallthrough;
1093 	case 2:
1094 		write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2());
1095 		__fallthrough;
1096 	case 1:
1097 		write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2());
1098 		break;
1099 	}
1100 }
1101 
1102 #endif /* CTX_INCLUDE_MPAM_REGS */
1103 
1104 #if CTX_INCLUDE_MPAM_REGS
1105 static void el2_sysregs_context_restore_mpam(mpam_t *ctx)
1106 {
1107 	u_register_t mpam_idr = read_mpamidr_el1();
1108 
1109 	write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2));
1110 
1111 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1112 		return;
1113 	}
1114 
1115 	write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2));
1116 	write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2));
1117 	write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2));
1118 
1119 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1120 	case 7:
1121 		write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2));
1122 		__fallthrough;
1123 	case 6:
1124 		write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2));
1125 		__fallthrough;
1126 	case 5:
1127 		write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2));
1128 		__fallthrough;
1129 	case 4:
1130 		write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2));
1131 		__fallthrough;
1132 	case 3:
1133 		write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2));
1134 		__fallthrough;
1135 	case 2:
1136 		write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2));
1137 		__fallthrough;
1138 	case 1:
1139 		write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2));
1140 		break;
1141 	}
1142 }
1143 #endif /* CTX_INCLUDE_MPAM_REGS */
1144 
1145 /* ---------------------------------------------------------------------------
1146  * The following registers are not added:
1147  * ICH_AP0R<n>_EL2
1148  * ICH_AP1R<n>_EL2
1149  * ICH_LR<n>_EL2
1150  *
1151  * NOTE: For a system with S-EL2 present but not enabled, accessing
1152  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1153  * SCR_EL3.NS = 1 before accessing this register.
1154  * ---------------------------------------------------------------------------
1155  */
1156 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx)
1157 {
1158 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1159 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1160 #else
1161 	u_register_t scr_el3 = read_scr_el3();
1162 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1163 	isb();
1164 
1165 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1166 
1167 	write_scr_el3(scr_el3);
1168 	isb();
1169 #endif
1170 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1171 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1172 }
1173 
1174 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx)
1175 {
1176 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1177 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1178 #else
1179 	u_register_t scr_el3 = read_scr_el3();
1180 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1181 	isb();
1182 
1183 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1184 
1185 	write_scr_el3(scr_el3);
1186 	isb();
1187 #endif
1188 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1189 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1190 }
1191 
1192 /* -----------------------------------------------------
1193  * The following registers are not added:
1194  * AMEVCNTVOFF0<n>_EL2
1195  * AMEVCNTVOFF1<n>_EL2
1196  * -----------------------------------------------------
1197  */
1198 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1199 {
1200 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1201 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1202 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1203 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1204 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1205 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1206 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1207 	if (CTX_INCLUDE_AARCH32_REGS) {
1208 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1209 	}
1210 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1211 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1212 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1213 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1214 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1215 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1216 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1217 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1218 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1219 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1220 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1221 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1222 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1223 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1224 	write_el2_ctx_common(ctx, ttbr0_el2, read_ttbr0_el2());
1225 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1226 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1227 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1228 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1229 	write_el2_ctx_common(ctx, vttbr_el2, read_vttbr_el2());
1230 }
1231 
1232 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1233 {
1234 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1235 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1236 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1237 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1238 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1239 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1240 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1241 	if (CTX_INCLUDE_AARCH32_REGS) {
1242 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1243 	}
1244 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1245 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1246 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1247 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1248 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1249 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1250 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1251 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1252 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1253 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1254 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1255 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1256 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1257 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1258 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1259 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1260 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1261 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1262 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1263 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1264 }
1265 
1266 /*******************************************************************************
1267  * Save EL2 sysreg context
1268  ******************************************************************************/
1269 void cm_el2_sysregs_context_save(uint32_t security_state)
1270 {
1271 	cpu_context_t *ctx;
1272 	el2_sysregs_t *el2_sysregs_ctx;
1273 
1274 	ctx = cm_get_context(security_state);
1275 	assert(ctx != NULL);
1276 
1277 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1278 
1279 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1280 	el2_sysregs_context_save_gic(el2_sysregs_ctx);
1281 
1282 	if (is_feat_mte2_supported()) {
1283 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1284 	}
1285 
1286 #if CTX_INCLUDE_MPAM_REGS
1287 	if (is_feat_mpam_supported()) {
1288 		mpam_t *mpam_ctx = get_mpam_ctx(ctx);
1289 		el2_sysregs_context_save_mpam(mpam_ctx);
1290 	}
1291 #endif
1292 
1293 	if (is_feat_fgt_supported()) {
1294 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1295 	}
1296 
1297 	if (is_feat_ecv_v2_supported()) {
1298 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1299 	}
1300 
1301 	if (is_feat_vhe_supported()) {
1302 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1303 					read_contextidr_el2());
1304 		write_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1305 	}
1306 
1307 	if (is_feat_ras_supported()) {
1308 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1309 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1310 	}
1311 
1312 	if (is_feat_nv2_supported()) {
1313 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1314 	}
1315 
1316 	if (is_feat_trf_supported()) {
1317 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1318 	}
1319 
1320 	if (is_feat_csv2_2_supported()) {
1321 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1322 					read_scxtnum_el2());
1323 	}
1324 
1325 	if (is_feat_hcx_supported()) {
1326 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1327 	}
1328 
1329 	if (is_feat_tcr2_supported()) {
1330 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1331 	}
1332 
1333 	if (is_feat_sxpie_supported()) {
1334 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1335 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1336 	}
1337 
1338 	if (is_feat_sxpoe_supported()) {
1339 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1340 	}
1341 
1342 	if (is_feat_s2pie_supported()) {
1343 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1344 	}
1345 
1346 	if (is_feat_gcs_supported()) {
1347 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1348 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1349 	}
1350 }
1351 
1352 /*******************************************************************************
1353  * Restore EL2 sysreg context
1354  ******************************************************************************/
1355 void cm_el2_sysregs_context_restore(uint32_t security_state)
1356 {
1357 	cpu_context_t *ctx;
1358 	el2_sysregs_t *el2_sysregs_ctx;
1359 
1360 	ctx = cm_get_context(security_state);
1361 	assert(ctx != NULL);
1362 
1363 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1364 
1365 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1366 	el2_sysregs_context_restore_gic(el2_sysregs_ctx);
1367 
1368 	if (is_feat_mte2_supported()) {
1369 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1370 	}
1371 
1372 #if CTX_INCLUDE_MPAM_REGS
1373 	if (is_feat_mpam_supported()) {
1374 		mpam_t *mpam_ctx = get_mpam_ctx(ctx);
1375 		el2_sysregs_context_restore_mpam(mpam_ctx);
1376 	}
1377 #endif
1378 
1379 	if (is_feat_fgt_supported()) {
1380 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1381 	}
1382 
1383 	if (is_feat_ecv_v2_supported()) {
1384 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1385 	}
1386 
1387 	if (is_feat_vhe_supported()) {
1388 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1389 					contextidr_el2));
1390 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1391 	}
1392 
1393 	if (is_feat_ras_supported()) {
1394 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1395 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1396 	}
1397 
1398 	if (is_feat_nv2_supported()) {
1399 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1400 	}
1401 
1402 	if (is_feat_trf_supported()) {
1403 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1404 	}
1405 
1406 	if (is_feat_csv2_2_supported()) {
1407 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1408 					scxtnum_el2));
1409 	}
1410 
1411 	if (is_feat_hcx_supported()) {
1412 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1413 	}
1414 
1415 	if (is_feat_tcr2_supported()) {
1416 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1417 	}
1418 
1419 	if (is_feat_sxpie_supported()) {
1420 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1421 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1422 	}
1423 
1424 	if (is_feat_sxpoe_supported()) {
1425 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1426 	}
1427 
1428 	if (is_feat_s2pie_supported()) {
1429 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1430 	}
1431 
1432 	if (is_feat_gcs_supported()) {
1433 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1434 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1435 	}
1436 }
1437 #endif /* CTX_INCLUDE_EL2_REGS */
1438 
1439 /*******************************************************************************
1440  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1441  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1442  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1443  * cm_prepare_el3_exit function.
1444  ******************************************************************************/
1445 void cm_prepare_el3_exit_ns(void)
1446 {
1447 #if CTX_INCLUDE_EL2_REGS
1448 #if ENABLE_ASSERTIONS
1449 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1450 	assert(ctx != NULL);
1451 
1452 	/* Assert that EL2 is used. */
1453 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1454 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1455 			(el_implemented(2U) != EL_IMPL_NONE));
1456 #endif /* ENABLE_ASSERTIONS */
1457 
1458 	/* Restore EL2 and EL1 sysreg contexts */
1459 	cm_el2_sysregs_context_restore(NON_SECURE);
1460 	cm_el1_sysregs_context_restore(NON_SECURE);
1461 	cm_set_next_eret_context(NON_SECURE);
1462 #else
1463 	cm_prepare_el3_exit(NON_SECURE);
1464 #endif /* CTX_INCLUDE_EL2_REGS */
1465 }
1466 
1467 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1468 {
1469 	write_ctx_reg(ctx, CTX_SPSR_EL1, read_spsr_el1());
1470 	write_ctx_reg(ctx, CTX_ELR_EL1, read_elr_el1());
1471 
1472 #if !ERRATA_SPECULATIVE_AT
1473 	write_ctx_reg(ctx, CTX_SCTLR_EL1, read_sctlr_el1());
1474 	write_ctx_reg(ctx, CTX_TCR_EL1, read_tcr_el1());
1475 #endif /* (!ERRATA_SPECULATIVE_AT) */
1476 
1477 	write_ctx_reg(ctx, CTX_CPACR_EL1, read_cpacr_el1());
1478 	write_ctx_reg(ctx, CTX_CSSELR_EL1, read_csselr_el1());
1479 	write_ctx_reg(ctx, CTX_SP_EL1, read_sp_el1());
1480 	write_ctx_reg(ctx, CTX_ESR_EL1, read_esr_el1());
1481 	write_ctx_reg(ctx, CTX_TTBR0_EL1, read_ttbr0_el1());
1482 	write_ctx_reg(ctx, CTX_TTBR1_EL1, read_ttbr1_el1());
1483 	write_ctx_reg(ctx, CTX_MAIR_EL1, read_mair_el1());
1484 	write_ctx_reg(ctx, CTX_AMAIR_EL1, read_amair_el1());
1485 	write_ctx_reg(ctx, CTX_ACTLR_EL1, read_actlr_el1());
1486 	write_ctx_reg(ctx, CTX_TPIDR_EL1, read_tpidr_el1());
1487 	write_ctx_reg(ctx, CTX_TPIDR_EL0, read_tpidr_el0());
1488 	write_ctx_reg(ctx, CTX_TPIDRRO_EL0, read_tpidrro_el0());
1489 	write_ctx_reg(ctx, CTX_PAR_EL1, read_par_el1());
1490 	write_ctx_reg(ctx, CTX_FAR_EL1, read_far_el1());
1491 	write_ctx_reg(ctx, CTX_AFSR0_EL1, read_afsr0_el1());
1492 	write_ctx_reg(ctx, CTX_AFSR1_EL1, read_afsr1_el1());
1493 	write_ctx_reg(ctx, CTX_CONTEXTIDR_EL1, read_contextidr_el1());
1494 	write_ctx_reg(ctx, CTX_VBAR_EL1, read_vbar_el1());
1495 	write_ctx_reg(ctx, CTX_MDCCINT_EL1, read_mdccint_el1());
1496 	write_ctx_reg(ctx, CTX_MDSCR_EL1, read_mdscr_el1());
1497 
1498 #if CTX_INCLUDE_AARCH32_REGS
1499 	write_ctx_reg(ctx, CTX_SPSR_ABT, read_spsr_abt());
1500 	write_ctx_reg(ctx, CTX_SPSR_UND, read_spsr_und());
1501 	write_ctx_reg(ctx, CTX_SPSR_IRQ, read_spsr_irq());
1502 	write_ctx_reg(ctx, CTX_SPSR_FIQ, read_spsr_fiq());
1503 	write_ctx_reg(ctx, CTX_DACR32_EL2, read_dacr32_el2());
1504 	write_ctx_reg(ctx, CTX_IFSR32_EL2, read_ifsr32_el2());
1505 #endif /* CTX_INCLUDE_AARCH32_REGS */
1506 
1507 #if NS_TIMER_SWITCH
1508 	write_ctx_reg(ctx, CTX_CNTP_CTL_EL0, read_cntp_ctl_el0());
1509 	write_ctx_reg(ctx, CTX_CNTP_CVAL_EL0, read_cntp_cval_el0());
1510 	write_ctx_reg(ctx, CTX_CNTV_CTL_EL0, read_cntv_ctl_el0());
1511 	write_ctx_reg(ctx, CTX_CNTV_CVAL_EL0, read_cntv_cval_el0());
1512 	write_ctx_reg(ctx, CTX_CNTKCTL_EL1, read_cntkctl_el1());
1513 #endif /* NS_TIMER_SWITCH */
1514 
1515 #if ENABLE_FEAT_MTE2
1516 	write_ctx_reg(ctx, CTX_TFSRE0_EL1, read_tfsre0_el1());
1517 	write_ctx_reg(ctx, CTX_TFSR_EL1, read_tfsr_el1());
1518 	write_ctx_reg(ctx, CTX_RGSR_EL1, read_rgsr_el1());
1519 	write_ctx_reg(ctx, CTX_GCR_EL1, read_gcr_el1());
1520 #endif /* ENABLE_FEAT_MTE2 */
1521 
1522 #if ENABLE_FEAT_RAS
1523 	if (is_feat_ras_supported()) {
1524 		write_ctx_reg(ctx, CTX_DISR_EL1, read_disr_el1());
1525 	}
1526 #endif
1527 
1528 #if ENABLE_FEAT_S1PIE
1529 	if (is_feat_s1pie_supported()) {
1530 		write_ctx_reg(ctx, CTX_PIRE0_EL1, read_pire0_el1());
1531 		write_ctx_reg(ctx, CTX_PIR_EL1, read_pir_el1());
1532 	}
1533 #endif
1534 
1535 #if ENABLE_FEAT_S1POE
1536 	if (is_feat_s1poe_supported()) {
1537 		write_ctx_reg(ctx, CTX_POR_EL1, read_por_el1());
1538 	}
1539 #endif
1540 
1541 #if ENABLE_FEAT_S2POE
1542 	if (is_feat_s2poe_supported()) {
1543 		write_ctx_reg(ctx, CTX_S2POR_EL1, read_s2por_el1());
1544 	}
1545 #endif
1546 
1547 #if ENABLE_FEAT_TCR2
1548 	if (is_feat_tcr2_supported()) {
1549 		write_ctx_reg(ctx, CTX_TCR2_EL1, read_tcr2_el1());
1550 	}
1551 #endif
1552 
1553 #if ENABLE_TRF_FOR_NS
1554 	if (is_feat_trf_supported()) {
1555 		write_ctx_reg(ctx, CTX_TRFCR_EL1, read_trfcr_el1());
1556 	}
1557 #endif
1558 
1559 #if ENABLE_FEAT_CSV2_2
1560 	if (is_feat_csv2_2_supported()) {
1561 		write_ctx_reg(ctx, CTX_SCXTNUM_EL0, read_scxtnum_el0());
1562 		write_ctx_reg(ctx, CTX_SCXTNUM_EL1, read_scxtnum_el1());
1563 	}
1564 #endif
1565 
1566 #if ENABLE_FEAT_GCS
1567 	if (is_feat_gcs_supported()) {
1568 		write_ctx_reg(ctx, CTX_GCSCR_EL1, read_gcscr_el1());
1569 		write_ctx_reg(ctx, CTX_GCSCRE0_EL1, read_gcscre0_el1());
1570 		write_ctx_reg(ctx, CTX_GCSPR_EL1, read_gcspr_el1());
1571 		write_ctx_reg(ctx, CTX_GCSPR_EL0, read_gcspr_el0());
1572 	}
1573 #endif
1574 }
1575 
1576 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1577 {
1578 	write_spsr_el1(read_ctx_reg(ctx, CTX_SPSR_EL1));
1579 	write_elr_el1(read_ctx_reg(ctx, CTX_ELR_EL1));
1580 
1581 #if !ERRATA_SPECULATIVE_AT
1582 	write_sctlr_el1(read_ctx_reg(ctx, CTX_SCTLR_EL1));
1583 	write_tcr_el1(read_ctx_reg(ctx, CTX_TCR_EL1));
1584 #endif /* (!ERRATA_SPECULATIVE_AT) */
1585 
1586 	write_cpacr_el1(read_ctx_reg(ctx, CTX_CPACR_EL1));
1587 	write_csselr_el1(read_ctx_reg(ctx, CTX_CSSELR_EL1));
1588 	write_sp_el1(read_ctx_reg(ctx, CTX_SP_EL1));
1589 	write_esr_el1(read_ctx_reg(ctx, CTX_ESR_EL1));
1590 	write_ttbr0_el1(read_ctx_reg(ctx, CTX_TTBR0_EL1));
1591 	write_ttbr1_el1(read_ctx_reg(ctx, CTX_TTBR1_EL1));
1592 	write_mair_el1(read_ctx_reg(ctx, CTX_MAIR_EL1));
1593 	write_amair_el1(read_ctx_reg(ctx, CTX_AMAIR_EL1));
1594 	write_actlr_el1(read_ctx_reg(ctx, CTX_ACTLR_EL1));
1595 	write_tpidr_el1(read_ctx_reg(ctx, CTX_TPIDR_EL1));
1596 	write_tpidr_el0(read_ctx_reg(ctx, CTX_TPIDR_EL0));
1597 	write_tpidrro_el0(read_ctx_reg(ctx, CTX_TPIDRRO_EL0));
1598 	write_par_el1(read_ctx_reg(ctx, CTX_PAR_EL1));
1599 	write_far_el1(read_ctx_reg(ctx, CTX_FAR_EL1));
1600 	write_afsr0_el1(read_ctx_reg(ctx, CTX_AFSR0_EL1));
1601 	write_afsr1_el1(read_ctx_reg(ctx, CTX_AFSR1_EL1));
1602 	write_contextidr_el1(read_ctx_reg(ctx, CTX_CONTEXTIDR_EL1));
1603 	write_vbar_el1(read_ctx_reg(ctx, CTX_VBAR_EL1));
1604 	write_mdccint_el1(read_ctx_reg(ctx, CTX_MDCCINT_EL1));
1605 	write_mdscr_el1(read_ctx_reg(ctx, CTX_MDSCR_EL1));
1606 
1607 #if CTX_INCLUDE_AARCH32_REGS
1608 	write_spsr_abt(read_ctx_reg(ctx, CTX_SPSR_ABT));
1609 	write_spsr_und(read_ctx_reg(ctx, CTX_SPSR_UND));
1610 	write_spsr_irq(read_ctx_reg(ctx, CTX_SPSR_IRQ));
1611 	write_spsr_fiq(read_ctx_reg(ctx, CTX_SPSR_FIQ));
1612 	write_dacr32_el2(read_ctx_reg(ctx, CTX_DACR32_EL2));
1613 	write_ifsr32_el2(read_ctx_reg(ctx, CTX_IFSR32_EL2));
1614 #endif /* CTX_INCLUDE_AARCH32_REGS */
1615 
1616 #if NS_TIMER_SWITCH
1617 	write_cntp_ctl_el0(read_ctx_reg(ctx, CTX_CNTP_CTL_EL0));
1618 	write_cntp_cval_el0(read_ctx_reg(ctx, CTX_CNTP_CVAL_EL0));
1619 	write_cntv_ctl_el0(read_ctx_reg(ctx, CTX_CNTV_CTL_EL0));
1620 	write_cntv_cval_el0(read_ctx_reg(ctx, CTX_CNTV_CVAL_EL0));
1621 	write_cntkctl_el1(read_ctx_reg(ctx, CTX_CNTKCTL_EL1));
1622 #endif /* NS_TIMER_SWITCH */
1623 
1624 #if ENABLE_FEAT_MTE2
1625 	write_tfsre0_el1(read_ctx_reg(ctx, CTX_TFSRE0_EL1));
1626 	write_tfsr_el1(read_ctx_reg(ctx, CTX_TFSR_EL1));
1627 	write_rgsr_el1(read_ctx_reg(ctx, CTX_RGSR_EL1));
1628 	write_gcr_el1(read_ctx_reg(ctx, CTX_GCR_EL1));
1629 #endif /* ENABLE_FEAT_MTE2 */
1630 
1631 #if ENABLE_FEAT_RAS
1632 	if (is_feat_ras_supported()) {
1633 		write_disr_el1(read_ctx_reg(ctx, CTX_DISR_EL1));
1634 	}
1635 #endif
1636 
1637 #if ENABLE_FEAT_S1PIE
1638 	if (is_feat_s1pie_supported()) {
1639 		write_pire0_el1(read_ctx_reg(ctx, CTX_PIRE0_EL1));
1640 		write_pir_el1(read_ctx_reg(ctx, CTX_PIR_EL1));
1641 	}
1642 #endif
1643 
1644 #if ENABLE_FEAT_S1POE
1645 	if (is_feat_s1poe_supported()) {
1646 		write_por_el1(read_ctx_reg(ctx, CTX_POR_EL1));
1647 	}
1648 #endif
1649 
1650 #if ENABLE_FEAT_S2POE
1651 	if (is_feat_s2poe_supported()) {
1652 		write_s2por_el1(read_ctx_reg(ctx, CTX_S2POR_EL1));
1653 	}
1654 #endif
1655 
1656 #if ENABLE_FEAT_TCR2
1657 	if (is_feat_tcr2_supported()) {
1658 		write_tcr2_el1(read_ctx_reg(ctx, CTX_TCR2_EL1));
1659 	}
1660 #endif
1661 
1662 #if ENABLE_TRF_FOR_NS
1663 	if (is_feat_trf_supported()) {
1664 		write_trfcr_el1(read_ctx_reg(ctx, CTX_TRFCR_EL1));
1665 	}
1666 #endif
1667 
1668 #if ENABLE_FEAT_CSV2_2
1669 	if (is_feat_csv2_2_supported()) {
1670 		write_scxtnum_el0(read_ctx_reg(ctx, CTX_SCXTNUM_EL0));
1671 		write_scxtnum_el1(read_ctx_reg(ctx, CTX_SCXTNUM_EL1));
1672 	}
1673 #endif
1674 
1675 #if ENABLE_FEAT_GCS
1676 	if (is_feat_gcs_supported()) {
1677 		write_gcscr_el1(read_ctx_reg(ctx, CTX_GCSCR_EL1));
1678 		write_gcscre0_el1(read_ctx_reg(ctx, CTX_GCSCRE0_EL1));
1679 		write_gcspr_el1(read_ctx_reg(ctx, CTX_GCSPR_EL1));
1680 		write_gcspr_el0(read_ctx_reg(ctx, CTX_GCSPR_EL0));
1681 	}
1682 #endif
1683 }
1684 
1685 /*******************************************************************************
1686  * The next four functions are used by runtime services to save and restore
1687  * EL1 context on the 'cpu_context' structure for the specified security
1688  * state.
1689  ******************************************************************************/
1690 void cm_el1_sysregs_context_save(uint32_t security_state)
1691 {
1692 	cpu_context_t *ctx;
1693 
1694 	ctx = cm_get_context(security_state);
1695 	assert(ctx != NULL);
1696 
1697 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1698 
1699 #if IMAGE_BL31
1700 	if (security_state == SECURE)
1701 		PUBLISH_EVENT(cm_exited_secure_world);
1702 	else
1703 		PUBLISH_EVENT(cm_exited_normal_world);
1704 #endif
1705 }
1706 
1707 void cm_el1_sysregs_context_restore(uint32_t security_state)
1708 {
1709 	cpu_context_t *ctx;
1710 
1711 	ctx = cm_get_context(security_state);
1712 	assert(ctx != NULL);
1713 
1714 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1715 
1716 #if IMAGE_BL31
1717 	if (security_state == SECURE)
1718 		PUBLISH_EVENT(cm_entering_secure_world);
1719 	else
1720 		PUBLISH_EVENT(cm_entering_normal_world);
1721 #endif
1722 }
1723 
1724 /*******************************************************************************
1725  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1726  * given security state with the given entrypoint
1727  ******************************************************************************/
1728 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1729 {
1730 	cpu_context_t *ctx;
1731 	el3_state_t *state;
1732 
1733 	ctx = cm_get_context(security_state);
1734 	assert(ctx != NULL);
1735 
1736 	/* Populate EL3 state so that ERET jumps to the correct entry */
1737 	state = get_el3state_ctx(ctx);
1738 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1739 }
1740 
1741 /*******************************************************************************
1742  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1743  * pertaining to the given security state
1744  ******************************************************************************/
1745 void cm_set_elr_spsr_el3(uint32_t security_state,
1746 			uintptr_t entrypoint, uint32_t spsr)
1747 {
1748 	cpu_context_t *ctx;
1749 	el3_state_t *state;
1750 
1751 	ctx = cm_get_context(security_state);
1752 	assert(ctx != NULL);
1753 
1754 	/* Populate EL3 state so that ERET jumps to the correct entry */
1755 	state = get_el3state_ctx(ctx);
1756 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1757 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1758 }
1759 
1760 /*******************************************************************************
1761  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1762  * pertaining to the given security state using the value and bit position
1763  * specified in the parameters. It preserves all other bits.
1764  ******************************************************************************/
1765 void cm_write_scr_el3_bit(uint32_t security_state,
1766 			  uint32_t bit_pos,
1767 			  uint32_t value)
1768 {
1769 	cpu_context_t *ctx;
1770 	el3_state_t *state;
1771 	u_register_t scr_el3;
1772 
1773 	ctx = cm_get_context(security_state);
1774 	assert(ctx != NULL);
1775 
1776 	/* Ensure that the bit position is a valid one */
1777 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1778 
1779 	/* Ensure that the 'value' is only a bit wide */
1780 	assert(value <= 1U);
1781 
1782 	/*
1783 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1784 	 * and set it to its new value.
1785 	 */
1786 	state = get_el3state_ctx(ctx);
1787 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1788 	scr_el3 &= ~(1UL << bit_pos);
1789 	scr_el3 |= (u_register_t)value << bit_pos;
1790 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1791 }
1792 
1793 /*******************************************************************************
1794  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1795  * given security state.
1796  ******************************************************************************/
1797 u_register_t cm_get_scr_el3(uint32_t security_state)
1798 {
1799 	cpu_context_t *ctx;
1800 	el3_state_t *state;
1801 
1802 	ctx = cm_get_context(security_state);
1803 	assert(ctx != NULL);
1804 
1805 	/* Populate EL3 state so that ERET jumps to the correct entry */
1806 	state = get_el3state_ctx(ctx);
1807 	return read_ctx_reg(state, CTX_SCR_EL3);
1808 }
1809 
1810 /*******************************************************************************
1811  * This function is used to program the context that's used for exception
1812  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1813  * the required security state
1814  ******************************************************************************/
1815 void cm_set_next_eret_context(uint32_t security_state)
1816 {
1817 	cpu_context_t *ctx;
1818 
1819 	ctx = cm_get_context(security_state);
1820 	assert(ctx != NULL);
1821 
1822 	cm_set_next_context(ctx);
1823 }
1824