1 /* 2 * Copyright (c) 2013-2022, Arm Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <assert.h> 8 #include <stdbool.h> 9 #include <string.h> 10 11 #include <platform_def.h> 12 13 #include <arch.h> 14 #include <arch_helpers.h> 15 #include <arch_features.h> 16 #include <bl31/interrupt_mgmt.h> 17 #include <common/bl_common.h> 18 #include <context.h> 19 #include <drivers/arm/gicv3.h> 20 #include <lib/el3_runtime/context_mgmt.h> 21 #include <lib/el3_runtime/pubsub_events.h> 22 #include <lib/extensions/amu.h> 23 #include <lib/extensions/brbe.h> 24 #include <lib/extensions/mpam.h> 25 #include <lib/extensions/sme.h> 26 #include <lib/extensions/spe.h> 27 #include <lib/extensions/sve.h> 28 #include <lib/extensions/sys_reg_trace.h> 29 #include <lib/extensions/trbe.h> 30 #include <lib/extensions/trf.h> 31 #include <lib/utils.h> 32 33 #if ENABLE_FEAT_TWED 34 /* Make sure delay value fits within the range(0-15) */ 35 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check); 36 #endif /* ENABLE_FEAT_TWED */ 37 38 static void manage_extensions_secure(cpu_context_t *ctx); 39 40 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep) 41 { 42 u_register_t sctlr_elx, actlr_elx; 43 44 /* 45 * Initialise SCTLR_EL1 to the reset value corresponding to the target 46 * execution state setting all fields rather than relying on the hw. 47 * Some fields have architecturally UNKNOWN reset values and these are 48 * set to zero. 49 * 50 * SCTLR.EE: Endianness is taken from the entrypoint attributes. 51 * 52 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as 53 * required by PSCI specification) 54 */ 55 sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL; 56 if (GET_RW(ep->spsr) == MODE_RW_64) { 57 sctlr_elx |= SCTLR_EL1_RES1; 58 } else { 59 /* 60 * If the target execution state is AArch32 then the following 61 * fields need to be set. 62 * 63 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE 64 * instructions are not trapped to EL1. 65 * 66 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI 67 * instructions are not trapped to EL1. 68 * 69 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the 70 * CP15DMB, CP15DSB, and CP15ISB instructions. 71 */ 72 sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT 73 | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; 74 } 75 76 #if ERRATA_A75_764081 77 /* 78 * If workaround of errata 764081 for Cortex-A75 is used then set 79 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier. 80 */ 81 sctlr_elx |= SCTLR_IESB_BIT; 82 #endif 83 /* Store the initialised SCTLR_EL1 value in the cpu_context */ 84 write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); 85 86 /* 87 * Base the context ACTLR_EL1 on the current value, as it is 88 * implementation defined. The context restore process will write 89 * the value from the context to the actual register and can cause 90 * problems for processor cores that don't expect certain bits to 91 * be zero. 92 */ 93 actlr_elx = read_actlr_el1(); 94 write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx)); 95 } 96 97 /****************************************************************************** 98 * This function performs initializations that are specific to SECURE state 99 * and updates the cpu context specified by 'ctx'. 100 *****************************************************************************/ 101 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep) 102 { 103 u_register_t scr_el3; 104 el3_state_t *state; 105 106 state = get_el3state_ctx(ctx); 107 scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 108 109 #if defined(IMAGE_BL31) && !defined(SPD_spmd) 110 /* 111 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as 112 * indicated by the interrupt routing model for BL31. 113 */ 114 scr_el3 |= get_scr_el3_from_routing_model(SECURE); 115 #endif 116 117 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS 118 /* Get Memory Tagging Extension support level */ 119 unsigned int mte = get_armv8_5_mte_support(); 120 #endif 121 /* 122 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS 123 * is set, or when MTE is only implemented at EL0. 124 */ 125 #if CTX_INCLUDE_MTE_REGS 126 assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY)); 127 scr_el3 |= SCR_ATA_BIT; 128 #else 129 if (mte == MTE_IMPLEMENTED_EL0) { 130 scr_el3 |= SCR_ATA_BIT; 131 } 132 #endif /* CTX_INCLUDE_MTE_REGS */ 133 134 /* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */ 135 if ((GET_EL(ep->spsr) == MODE_EL2) && is_armv8_4_sel2_present()) { 136 if (GET_RW(ep->spsr) != MODE_RW_64) { 137 ERROR("S-EL2 can not be used in AArch32\n."); 138 panic(); 139 } 140 141 scr_el3 |= SCR_EEL2_BIT; 142 } 143 144 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 145 146 /* 147 * Initialize EL1 context registers unless SPMC is running 148 * at S-EL2. 149 */ 150 #if !SPMD_SPM_AT_SEL2 151 setup_el1_context(ctx, ep); 152 #endif 153 154 manage_extensions_secure(ctx); 155 } 156 157 #if ENABLE_RME 158 /****************************************************************************** 159 * This function performs initializations that are specific to REALM state 160 * and updates the cpu context specified by 'ctx'. 161 *****************************************************************************/ 162 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep) 163 { 164 u_register_t scr_el3; 165 el3_state_t *state; 166 167 state = get_el3state_ctx(ctx); 168 scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 169 170 scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT | SCR_EnSCXT_BIT; 171 172 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 173 } 174 #endif /* ENABLE_RME */ 175 176 /****************************************************************************** 177 * This function performs initializations that are specific to NON-SECURE state 178 * and updates the cpu context specified by 'ctx'. 179 *****************************************************************************/ 180 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep) 181 { 182 u_register_t scr_el3; 183 el3_state_t *state; 184 185 state = get_el3state_ctx(ctx); 186 scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 187 188 /* SCR_NS: Set the NS bit */ 189 scr_el3 |= SCR_NS_BIT; 190 191 #if !CTX_INCLUDE_PAUTH_REGS 192 /* 193 * If the pointer authentication registers aren't saved during world 194 * switches the value of the registers can be leaked from the Secure to 195 * the Non-secure world. To prevent this, rather than enabling pointer 196 * authentication everywhere, we only enable it in the Non-secure world. 197 * 198 * If the Secure world wants to use pointer authentication, 199 * CTX_INCLUDE_PAUTH_REGS must be set to 1. 200 */ 201 scr_el3 |= SCR_API_BIT | SCR_APK_BIT; 202 #endif /* !CTX_INCLUDE_PAUTH_REGS */ 203 204 /* Allow access to Allocation Tags when MTE is implemented. */ 205 scr_el3 |= SCR_ATA_BIT; 206 207 #ifdef IMAGE_BL31 208 /* 209 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as 210 * indicated by the interrupt routing model for BL31. 211 */ 212 scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE); 213 #endif 214 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 215 216 /* Initialize EL1 context registers */ 217 setup_el1_context(ctx, ep); 218 219 /* Initialize EL2 context registers */ 220 #if CTX_INCLUDE_EL2_REGS 221 222 /* 223 * Initialize SCTLR_EL2 context register using Endianness value 224 * taken from the entrypoint attribute. 225 */ 226 u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL; 227 sctlr_el2 |= SCTLR_EL2_RES1; 228 write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2, 229 sctlr_el2); 230 231 /* 232 * The GICv3 driver initializes the ICC_SRE_EL2 register during 233 * platform setup. Use the same setting for the corresponding 234 * context register to make sure the correct bits are set when 235 * restoring NS context. 236 */ 237 u_register_t icc_sre_el2 = read_icc_sre_el2(); 238 icc_sre_el2 |= (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT); 239 icc_sre_el2 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT); 240 write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2, 241 icc_sre_el2); 242 #endif /* CTX_INCLUDE_EL2_REGS */ 243 } 244 245 /******************************************************************************* 246 * The following function performs initialization of the cpu_context 'ctx' 247 * for first use that is common to all security states, and sets the 248 * initial entrypoint state as specified by the entry_point_info structure. 249 * 250 * The EE and ST attributes are used to configure the endianness and secure 251 * timer availability for the new execution context. 252 ******************************************************************************/ 253 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) 254 { 255 u_register_t scr_el3; 256 el3_state_t *state; 257 gp_regs_t *gp_regs; 258 259 /* Clear any residual register values from the context */ 260 zeromem(ctx, sizeof(*ctx)); 261 262 /* 263 * SCR_EL3 was initialised during reset sequence in macro 264 * el3_arch_init_common. This code modifies the SCR_EL3 fields that 265 * affect the next EL. 266 * 267 * The following fields are initially set to zero and then updated to 268 * the required value depending on the state of the SPSR_EL3 and the 269 * Security state and entrypoint attributes of the next EL. 270 */ 271 scr_el3 = read_scr(); 272 scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | 273 SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT); 274 275 /* 276 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next 277 * Exception level as specified by SPSR. 278 */ 279 if (GET_RW(ep->spsr) == MODE_RW_64) { 280 scr_el3 |= SCR_RW_BIT; 281 } 282 283 /* 284 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical 285 * Secure timer registers to EL3, from AArch64 state only, if specified 286 * by the entrypoint attributes. If SEL2 is present and enabled, the ST 287 * bit always behaves as 1 (i.e. secure physical timer register access 288 * is not trapped) 289 */ 290 if (EP_GET_ST(ep->h.attr) != 0U) { 291 scr_el3 |= SCR_ST_BIT; 292 } 293 294 /* 295 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting 296 * SCR_EL3.HXEn. 297 */ 298 #if ENABLE_FEAT_HCX 299 scr_el3 |= SCR_HXEn_BIT; 300 #endif 301 302 #if RAS_TRAP_LOWER_EL_ERR_ACCESS 303 /* 304 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR 305 * and RAS ERX registers from EL1 and EL2 are trapped to EL3. 306 */ 307 scr_el3 |= SCR_TERR_BIT; 308 #endif 309 310 #if !HANDLE_EA_EL3_FIRST 311 /* 312 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External 313 * to EL3 when executing at a lower EL. When executing at EL3, External 314 * Aborts are taken to EL3. 315 */ 316 scr_el3 &= ~SCR_EA_BIT; 317 #endif 318 319 #if FAULT_INJECTION_SUPPORT 320 /* Enable fault injection from lower ELs */ 321 scr_el3 |= SCR_FIEN_BIT; 322 #endif 323 324 /* 325 * CPTR_EL3 was initialized out of reset, copy that value to the 326 * context register. 327 */ 328 write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3()); 329 330 /* 331 * SCR_EL3.HCE: Enable HVC instructions if next execution state is 332 * AArch64 and next EL is EL2, or if next execution state is AArch32 and 333 * next mode is Hyp. 334 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the 335 * same conditions as HVC instructions and when the processor supports 336 * ARMv8.6-FGT. 337 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV) 338 * CNTPOFF_EL2 register under the same conditions as HVC instructions 339 * and when the processor supports ECV. 340 */ 341 if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2)) 342 || ((GET_RW(ep->spsr) != MODE_RW_64) 343 && (GET_M32(ep->spsr) == MODE32_hyp))) { 344 scr_el3 |= SCR_HCE_BIT; 345 346 if (is_armv8_6_fgt_present()) { 347 scr_el3 |= SCR_FGTEN_BIT; 348 } 349 350 if (get_armv8_6_ecv_support() 351 == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) { 352 scr_el3 |= SCR_ECVEN_BIT; 353 } 354 } 355 356 #if ENABLE_FEAT_TWED 357 /* Enable WFE trap delay in SCR_EL3 if supported and configured */ 358 /* Set delay in SCR_EL3 */ 359 scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT); 360 scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK) 361 << SCR_TWEDEL_SHIFT); 362 363 /* Enable WFE delay */ 364 scr_el3 |= SCR_TWEDEn_BIT; 365 #endif /* ENABLE_FEAT_TWED */ 366 367 /* 368 * Populate EL3 state so that we've the right context 369 * before doing ERET 370 */ 371 state = get_el3state_ctx(ctx); 372 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 373 write_ctx_reg(state, CTX_ELR_EL3, ep->pc); 374 write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); 375 376 /* 377 * Store the X0-X7 value from the entrypoint into the context 378 * Use memcpy as we are in control of the layout of the structures 379 */ 380 gp_regs = get_gpregs_ctx(ctx); 381 memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); 382 } 383 384 /******************************************************************************* 385 * Context management library initialization routine. This library is used by 386 * runtime services to share pointers to 'cpu_context' structures for secure 387 * non-secure and realm states. Management of the structures and their associated 388 * memory is not done by the context management library e.g. the PSCI service 389 * manages the cpu context used for entry from and exit to the non-secure state. 390 * The Secure payload dispatcher service manages the context(s) corresponding to 391 * the secure state. It also uses this library to get access to the non-secure 392 * state cpu context pointers. 393 * Lastly, this library provides the API to make SP_EL3 point to the cpu context 394 * which will be used for programming an entry into a lower EL. The same context 395 * will be used to save state upon exception entry from that EL. 396 ******************************************************************************/ 397 void __init cm_init(void) 398 { 399 /* 400 * The context management library has only global data to intialize, but 401 * that will be done when the BSS is zeroed out. 402 */ 403 } 404 405 /******************************************************************************* 406 * This is the high-level function used to initialize the cpu_context 'ctx' for 407 * first use. It performs initializations that are common to all security states 408 * and initializations specific to the security state specified in 'ep' 409 ******************************************************************************/ 410 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep) 411 { 412 unsigned int security_state; 413 414 assert(ctx != NULL); 415 416 /* 417 * Perform initializations that are common 418 * to all security states 419 */ 420 setup_context_common(ctx, ep); 421 422 security_state = GET_SECURITY_STATE(ep->h.attr); 423 424 /* Perform security state specific initializations */ 425 switch (security_state) { 426 case SECURE: 427 setup_secure_context(ctx, ep); 428 break; 429 #if ENABLE_RME 430 case REALM: 431 setup_realm_context(ctx, ep); 432 break; 433 #endif 434 case NON_SECURE: 435 setup_ns_context(ctx, ep); 436 break; 437 default: 438 ERROR("Invalid security state\n"); 439 panic(); 440 break; 441 } 442 } 443 444 /******************************************************************************* 445 * Enable architecture extensions on first entry to Non-secure world. 446 * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise 447 * it is zero. 448 ******************************************************************************/ 449 static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx) 450 { 451 #if IMAGE_BL31 452 #if ENABLE_SPE_FOR_LOWER_ELS 453 spe_enable(el2_unused); 454 #endif 455 456 #if ENABLE_AMU 457 amu_enable(el2_unused, ctx); 458 #endif 459 460 #if ENABLE_SME_FOR_NS 461 /* Enable SME, SVE, and FPU/SIMD for non-secure world. */ 462 sme_enable(ctx); 463 #elif ENABLE_SVE_FOR_NS 464 /* Enable SVE and FPU/SIMD for non-secure world. */ 465 sve_enable(ctx); 466 #endif 467 468 #if ENABLE_MPAM_FOR_LOWER_ELS 469 mpam_enable(el2_unused); 470 #endif 471 472 #if ENABLE_TRBE_FOR_NS 473 trbe_enable(); 474 #endif /* ENABLE_TRBE_FOR_NS */ 475 476 #if ENABLE_BRBE_FOR_NS 477 brbe_enable(); 478 #endif /* ENABLE_BRBE_FOR_NS */ 479 480 #if ENABLE_SYS_REG_TRACE_FOR_NS 481 sys_reg_trace_enable(ctx); 482 #endif /* ENABLE_SYS_REG_TRACE_FOR_NS */ 483 484 #if ENABLE_TRF_FOR_NS 485 trf_enable(); 486 #endif /* ENABLE_TRF_FOR_NS */ 487 #endif 488 } 489 490 /******************************************************************************* 491 * Enable architecture extensions on first entry to Secure world. 492 ******************************************************************************/ 493 static void manage_extensions_secure(cpu_context_t *ctx) 494 { 495 #if IMAGE_BL31 496 #if ENABLE_SME_FOR_NS 497 #if ENABLE_SME_FOR_SWD 498 /* 499 * Enable SME, SVE, FPU/SIMD in secure context, secure manager must 500 * ensure SME, SVE, and FPU/SIMD context properly managed. 501 */ 502 sme_enable(ctx); 503 #else /* ENABLE_SME_FOR_SWD */ 504 /* 505 * Disable SME, SVE, FPU/SIMD in secure context so non-secure world can 506 * safely use the associated registers. 507 */ 508 sme_disable(ctx); 509 #endif /* ENABLE_SME_FOR_SWD */ 510 #elif ENABLE_SVE_FOR_NS 511 #if ENABLE_SVE_FOR_SWD 512 /* 513 * Enable SVE and FPU in secure context, secure manager must ensure that 514 * the SVE and FPU register contexts are properly managed. 515 */ 516 sve_enable(ctx); 517 #else /* ENABLE_SVE_FOR_SWD */ 518 /* 519 * Disable SVE and FPU in secure context so non-secure world can safely 520 * use them. 521 */ 522 sve_disable(ctx); 523 #endif /* ENABLE_SVE_FOR_SWD */ 524 #endif /* ENABLE_SVE_FOR_NS */ 525 #endif /* IMAGE_BL31 */ 526 } 527 528 /******************************************************************************* 529 * The following function initializes the cpu_context for a CPU specified by 530 * its `cpu_idx` for first use, and sets the initial entrypoint state as 531 * specified by the entry_point_info structure. 532 ******************************************************************************/ 533 void cm_init_context_by_index(unsigned int cpu_idx, 534 const entry_point_info_t *ep) 535 { 536 cpu_context_t *ctx; 537 ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 538 cm_setup_context(ctx, ep); 539 } 540 541 /******************************************************************************* 542 * The following function initializes the cpu_context for the current CPU 543 * for first use, and sets the initial entrypoint state as specified by the 544 * entry_point_info structure. 545 ******************************************************************************/ 546 void cm_init_my_context(const entry_point_info_t *ep) 547 { 548 cpu_context_t *ctx; 549 ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 550 cm_setup_context(ctx, ep); 551 } 552 553 /******************************************************************************* 554 * Prepare the CPU system registers for first entry into realm, secure, or 555 * normal world. 556 * 557 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized 558 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports 559 * EL2 then EL2 is disabled by configuring all necessary EL2 registers. 560 * For all entries, the EL1 registers are initialized from the cpu_context 561 ******************************************************************************/ 562 void cm_prepare_el3_exit(uint32_t security_state) 563 { 564 u_register_t sctlr_elx, scr_el3, mdcr_el2; 565 cpu_context_t *ctx = cm_get_context(security_state); 566 bool el2_unused = false; 567 uint64_t hcr_el2 = 0U; 568 569 assert(ctx != NULL); 570 571 if (security_state == NON_SECURE) { 572 scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), 573 CTX_SCR_EL3); 574 if ((scr_el3 & SCR_HCE_BIT) != 0U) { 575 /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ 576 sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx), 577 CTX_SCTLR_EL1); 578 sctlr_elx &= SCTLR_EE_BIT; 579 sctlr_elx |= SCTLR_EL2_RES1; 580 #if ERRATA_A75_764081 581 /* 582 * If workaround of errata 764081 for Cortex-A75 is used 583 * then set SCTLR_EL2.IESB to enable Implicit Error 584 * Synchronization Barrier. 585 */ 586 sctlr_elx |= SCTLR_IESB_BIT; 587 #endif 588 write_sctlr_el2(sctlr_elx); 589 } else if (el_implemented(2) != EL_IMPL_NONE) { 590 el2_unused = true; 591 592 /* 593 * EL2 present but unused, need to disable safely. 594 * SCTLR_EL2 can be ignored in this case. 595 * 596 * Set EL2 register width appropriately: Set HCR_EL2 597 * field to match SCR_EL3.RW. 598 */ 599 if ((scr_el3 & SCR_RW_BIT) != 0U) 600 hcr_el2 |= HCR_RW_BIT; 601 602 /* 603 * For Armv8.3 pointer authentication feature, disable 604 * traps to EL2 when accessing key registers or using 605 * pointer authentication instructions from lower ELs. 606 */ 607 hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT); 608 609 write_hcr_el2(hcr_el2); 610 611 /* 612 * Initialise CPTR_EL2 setting all fields rather than 613 * relying on the hw. All fields have architecturally 614 * UNKNOWN reset values. 615 * 616 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1 617 * accesses to the CPACR_EL1 or CPACR from both 618 * Execution states do not trap to EL2. 619 * 620 * CPTR_EL2.TTA: Set to zero so that Non-secure System 621 * register accesses to the trace registers from both 622 * Execution states do not trap to EL2. 623 * If PE trace unit System registers are not implemented 624 * then this bit is reserved, and must be set to zero. 625 * 626 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses 627 * to SIMD and floating-point functionality from both 628 * Execution states do not trap to EL2. 629 */ 630 write_cptr_el2(CPTR_EL2_RESET_VAL & 631 ~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT 632 | CPTR_EL2_TFP_BIT)); 633 634 /* 635 * Initialise CNTHCTL_EL2. All fields are 636 * architecturally UNKNOWN on reset and are set to zero 637 * except for field(s) listed below. 638 * 639 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to 640 * Hyp mode of Non-secure EL0 and EL1 accesses to the 641 * physical timer registers. 642 * 643 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to 644 * Hyp mode of Non-secure EL0 and EL1 accesses to the 645 * physical counter registers. 646 */ 647 write_cnthctl_el2(CNTHCTL_RESET_VAL | 648 EL1PCEN_BIT | EL1PCTEN_BIT); 649 650 /* 651 * Initialise CNTVOFF_EL2 to zero as it resets to an 652 * architecturally UNKNOWN value. 653 */ 654 write_cntvoff_el2(0); 655 656 /* 657 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and 658 * MPIDR_EL1 respectively. 659 */ 660 write_vpidr_el2(read_midr_el1()); 661 write_vmpidr_el2(read_mpidr_el1()); 662 663 /* 664 * Initialise VTTBR_EL2. All fields are architecturally 665 * UNKNOWN on reset. 666 * 667 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 668 * 2 address translation is disabled, cache maintenance 669 * operations depend on the VMID. 670 * 671 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address 672 * translation is disabled. 673 */ 674 write_vttbr_el2(VTTBR_RESET_VAL & 675 ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) 676 | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); 677 678 /* 679 * Initialise MDCR_EL2, setting all fields rather than 680 * relying on hw. Some fields are architecturally 681 * UNKNOWN on reset. 682 * 683 * MDCR_EL2.HLP: Set to one so that event counter 684 * overflow, that is recorded in PMOVSCLR_EL0[0-30], 685 * occurs on the increment that changes 686 * PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is 687 * implemented. This bit is RES0 in versions of the 688 * architecture earlier than ARMv8.5, setting it to 1 689 * doesn't have any effect on them. 690 * 691 * MDCR_EL2.TTRF: Set to zero so that access to Trace 692 * Filter Control register TRFCR_EL1 at EL1 is not 693 * trapped to EL2. This bit is RES0 in versions of 694 * the architecture earlier than ARMv8.4. 695 * 696 * MDCR_EL2.HPMD: Set to one so that event counting is 697 * prohibited at EL2. This bit is RES0 in versions of 698 * the architecture earlier than ARMv8.1, setting it 699 * to 1 doesn't have any effect on them. 700 * 701 * MDCR_EL2.TPMS: Set to zero so that accesses to 702 * Statistical Profiling control registers from EL1 703 * do not trap to EL2. This bit is RES0 when SPE is 704 * not implemented. 705 * 706 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and 707 * EL1 System register accesses to the Debug ROM 708 * registers are not trapped to EL2. 709 * 710 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 711 * System register accesses to the powerdown debug 712 * registers are not trapped to EL2. 713 * 714 * MDCR_EL2.TDA: Set to zero so that System register 715 * accesses to the debug registers do not trap to EL2. 716 * 717 * MDCR_EL2.TDE: Set to zero so that debug exceptions 718 * are not routed to EL2. 719 * 720 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance 721 * Monitors. 722 * 723 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and 724 * EL1 accesses to all Performance Monitors registers 725 * are not trapped to EL2. 726 * 727 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0 728 * and EL1 accesses to the PMCR_EL0 or PMCR are not 729 * trapped to EL2. 730 * 731 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the 732 * architecturally-defined reset value. 733 * 734 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer 735 * owning exception level is NS-EL1 and, tracing is 736 * prohibited at NS-EL2. These bits are RES0 when 737 * FEAT_TRBE is not implemented. 738 */ 739 mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP | 740 MDCR_EL2_HPMD) | 741 ((read_pmcr_el0() & PMCR_EL0_N_BITS) 742 >> PMCR_EL0_N_SHIFT)) & 743 ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS | 744 MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | 745 MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT | 746 MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT | 747 MDCR_EL2_TPMCR_BIT | 748 MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1)); 749 750 write_mdcr_el2(mdcr_el2); 751 752 /* 753 * Initialise HSTR_EL2. All fields are architecturally 754 * UNKNOWN on reset. 755 * 756 * HSTR_EL2.T<n>: Set all these fields to zero so that 757 * Non-secure EL0 or EL1 accesses to System registers 758 * do not trap to EL2. 759 */ 760 write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); 761 /* 762 * Initialise CNTHP_CTL_EL2. All fields are 763 * architecturally UNKNOWN on reset. 764 * 765 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 766 * physical timer and prevent timer interrupts. 767 */ 768 write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & 769 ~(CNTHP_CTL_ENABLE_BIT)); 770 } 771 manage_extensions_nonsecure(el2_unused, ctx); 772 } 773 774 cm_el1_sysregs_context_restore(security_state); 775 cm_set_next_eret_context(security_state); 776 } 777 778 #if CTX_INCLUDE_EL2_REGS 779 /******************************************************************************* 780 * Save EL2 sysreg context 781 ******************************************************************************/ 782 void cm_el2_sysregs_context_save(uint32_t security_state) 783 { 784 u_register_t scr_el3 = read_scr(); 785 786 /* 787 * Always save the non-secure and realm EL2 context, only save the 788 * S-EL2 context if S-EL2 is enabled. 789 */ 790 if ((security_state != SECURE) || 791 ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) { 792 cpu_context_t *ctx; 793 el2_sysregs_t *el2_sysregs_ctx; 794 795 ctx = cm_get_context(security_state); 796 assert(ctx != NULL); 797 798 el2_sysregs_ctx = get_el2_sysregs_ctx(ctx); 799 800 el2_sysregs_context_save_common(el2_sysregs_ctx); 801 #if ENABLE_SPE_FOR_LOWER_ELS 802 el2_sysregs_context_save_spe(el2_sysregs_ctx); 803 #endif 804 #if CTX_INCLUDE_MTE_REGS 805 el2_sysregs_context_save_mte(el2_sysregs_ctx); 806 #endif 807 #if ENABLE_MPAM_FOR_LOWER_ELS 808 el2_sysregs_context_save_mpam(el2_sysregs_ctx); 809 #endif 810 #if ENABLE_FEAT_FGT 811 el2_sysregs_context_save_fgt(el2_sysregs_ctx); 812 #endif 813 #if ENABLE_FEAT_ECV 814 el2_sysregs_context_save_ecv(el2_sysregs_ctx); 815 #endif 816 #if ENABLE_FEAT_VHE 817 el2_sysregs_context_save_vhe(el2_sysregs_ctx); 818 #endif 819 #if RAS_EXTENSION 820 el2_sysregs_context_save_ras(el2_sysregs_ctx); 821 #endif 822 #if CTX_INCLUDE_NEVE_REGS 823 el2_sysregs_context_save_nv2(el2_sysregs_ctx); 824 #endif 825 #if ENABLE_TRF_FOR_NS 826 el2_sysregs_context_save_trf(el2_sysregs_ctx); 827 #endif 828 #if ENABLE_FEAT_CSV2_2 829 el2_sysregs_context_save_csv2(el2_sysregs_ctx); 830 #endif 831 #if ENABLE_FEAT_HCX 832 el2_sysregs_context_save_hcx(el2_sysregs_ctx); 833 #endif 834 } 835 } 836 837 /******************************************************************************* 838 * Restore EL2 sysreg context 839 ******************************************************************************/ 840 void cm_el2_sysregs_context_restore(uint32_t security_state) 841 { 842 u_register_t scr_el3 = read_scr(); 843 844 /* 845 * Always restore the non-secure and realm EL2 context, only restore the 846 * S-EL2 context if S-EL2 is enabled. 847 */ 848 if ((security_state != SECURE) || 849 ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) { 850 cpu_context_t *ctx; 851 el2_sysregs_t *el2_sysregs_ctx; 852 853 ctx = cm_get_context(security_state); 854 assert(ctx != NULL); 855 856 el2_sysregs_ctx = get_el2_sysregs_ctx(ctx); 857 858 el2_sysregs_context_restore_common(el2_sysregs_ctx); 859 #if ENABLE_SPE_FOR_LOWER_ELS 860 el2_sysregs_context_restore_spe(el2_sysregs_ctx); 861 #endif 862 #if CTX_INCLUDE_MTE_REGS 863 el2_sysregs_context_restore_mte(el2_sysregs_ctx); 864 #endif 865 #if ENABLE_MPAM_FOR_LOWER_ELS 866 el2_sysregs_context_restore_mpam(el2_sysregs_ctx); 867 #endif 868 #if ENABLE_FEAT_FGT 869 el2_sysregs_context_restore_fgt(el2_sysregs_ctx); 870 #endif 871 #if ENABLE_FEAT_ECV 872 el2_sysregs_context_restore_ecv(el2_sysregs_ctx); 873 #endif 874 #if ENABLE_FEAT_VHE 875 el2_sysregs_context_restore_vhe(el2_sysregs_ctx); 876 #endif 877 #if RAS_EXTENSION 878 el2_sysregs_context_restore_ras(el2_sysregs_ctx); 879 #endif 880 #if CTX_INCLUDE_NEVE_REGS 881 el2_sysregs_context_restore_nv2(el2_sysregs_ctx); 882 #endif 883 #if ENABLE_TRF_FOR_NS 884 el2_sysregs_context_restore_trf(el2_sysregs_ctx); 885 #endif 886 #if ENABLE_FEAT_CSV2_2 887 el2_sysregs_context_restore_csv2(el2_sysregs_ctx); 888 #endif 889 #if ENABLE_FEAT_HCX 890 el2_sysregs_context_restore_hcx(el2_sysregs_ctx); 891 #endif 892 } 893 } 894 #endif /* CTX_INCLUDE_EL2_REGS */ 895 896 /******************************************************************************* 897 * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS 898 * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly 899 * updating EL1 and EL2 registers. Otherwise, it calls the generic 900 * cm_prepare_el3_exit function. 901 ******************************************************************************/ 902 void cm_prepare_el3_exit_ns(void) 903 { 904 #if CTX_INCLUDE_EL2_REGS 905 cpu_context_t *ctx = cm_get_context(NON_SECURE); 906 assert(ctx != NULL); 907 908 /* Assert that EL2 is used. */ 909 #if ENABLE_ASSERTIONS 910 el3_state_t *state = get_el3state_ctx(ctx); 911 u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 912 #endif 913 assert(((scr_el3 & SCR_HCE_BIT) != 0UL) && 914 (el_implemented(2U) != EL_IMPL_NONE)); 915 916 /* 917 * Currently some extensions are configured using 918 * direct register updates. Therefore, do this here 919 * instead of when setting up context. 920 */ 921 manage_extensions_nonsecure(0, ctx); 922 923 /* 924 * Set the NS bit to be able to access the ICC_SRE_EL2 925 * register when restoring context. 926 */ 927 write_scr_el3(read_scr_el3() | SCR_NS_BIT); 928 929 /* 930 * Ensure the NS bit change is committed before the EL2/EL1 931 * state restoration. 932 */ 933 isb(); 934 935 /* Restore EL2 and EL1 sysreg contexts */ 936 cm_el2_sysregs_context_restore(NON_SECURE); 937 cm_el1_sysregs_context_restore(NON_SECURE); 938 cm_set_next_eret_context(NON_SECURE); 939 #else 940 cm_prepare_el3_exit(NON_SECURE); 941 #endif /* CTX_INCLUDE_EL2_REGS */ 942 } 943 944 /******************************************************************************* 945 * The next four functions are used by runtime services to save and restore 946 * EL1 context on the 'cpu_context' structure for the specified security 947 * state. 948 ******************************************************************************/ 949 void cm_el1_sysregs_context_save(uint32_t security_state) 950 { 951 cpu_context_t *ctx; 952 953 ctx = cm_get_context(security_state); 954 assert(ctx != NULL); 955 956 el1_sysregs_context_save(get_el1_sysregs_ctx(ctx)); 957 958 #if IMAGE_BL31 959 if (security_state == SECURE) 960 PUBLISH_EVENT(cm_exited_secure_world); 961 else 962 PUBLISH_EVENT(cm_exited_normal_world); 963 #endif 964 } 965 966 void cm_el1_sysregs_context_restore(uint32_t security_state) 967 { 968 cpu_context_t *ctx; 969 970 ctx = cm_get_context(security_state); 971 assert(ctx != NULL); 972 973 el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx)); 974 975 #if IMAGE_BL31 976 if (security_state == SECURE) 977 PUBLISH_EVENT(cm_entering_secure_world); 978 else 979 PUBLISH_EVENT(cm_entering_normal_world); 980 #endif 981 } 982 983 /******************************************************************************* 984 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the 985 * given security state with the given entrypoint 986 ******************************************************************************/ 987 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) 988 { 989 cpu_context_t *ctx; 990 el3_state_t *state; 991 992 ctx = cm_get_context(security_state); 993 assert(ctx != NULL); 994 995 /* Populate EL3 state so that ERET jumps to the correct entry */ 996 state = get_el3state_ctx(ctx); 997 write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 998 } 999 1000 /******************************************************************************* 1001 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' 1002 * pertaining to the given security state 1003 ******************************************************************************/ 1004 void cm_set_elr_spsr_el3(uint32_t security_state, 1005 uintptr_t entrypoint, uint32_t spsr) 1006 { 1007 cpu_context_t *ctx; 1008 el3_state_t *state; 1009 1010 ctx = cm_get_context(security_state); 1011 assert(ctx != NULL); 1012 1013 /* Populate EL3 state so that ERET jumps to the correct entry */ 1014 state = get_el3state_ctx(ctx); 1015 write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 1016 write_ctx_reg(state, CTX_SPSR_EL3, spsr); 1017 } 1018 1019 /******************************************************************************* 1020 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' 1021 * pertaining to the given security state using the value and bit position 1022 * specified in the parameters. It preserves all other bits. 1023 ******************************************************************************/ 1024 void cm_write_scr_el3_bit(uint32_t security_state, 1025 uint32_t bit_pos, 1026 uint32_t value) 1027 { 1028 cpu_context_t *ctx; 1029 el3_state_t *state; 1030 u_register_t scr_el3; 1031 1032 ctx = cm_get_context(security_state); 1033 assert(ctx != NULL); 1034 1035 /* Ensure that the bit position is a valid one */ 1036 assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U); 1037 1038 /* Ensure that the 'value' is only a bit wide */ 1039 assert(value <= 1U); 1040 1041 /* 1042 * Get the SCR_EL3 value from the cpu context, clear the desired bit 1043 * and set it to its new value. 1044 */ 1045 state = get_el3state_ctx(ctx); 1046 scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 1047 scr_el3 &= ~(1UL << bit_pos); 1048 scr_el3 |= (u_register_t)value << bit_pos; 1049 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 1050 } 1051 1052 /******************************************************************************* 1053 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the 1054 * given security state. 1055 ******************************************************************************/ 1056 u_register_t cm_get_scr_el3(uint32_t security_state) 1057 { 1058 cpu_context_t *ctx; 1059 el3_state_t *state; 1060 1061 ctx = cm_get_context(security_state); 1062 assert(ctx != NULL); 1063 1064 /* Populate EL3 state so that ERET jumps to the correct entry */ 1065 state = get_el3state_ctx(ctx); 1066 return read_ctx_reg(state, CTX_SCR_EL3); 1067 } 1068 1069 /******************************************************************************* 1070 * This function is used to program the context that's used for exception 1071 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 1072 * the required security state 1073 ******************************************************************************/ 1074 void cm_set_next_eret_context(uint32_t security_state) 1075 { 1076 cpu_context_t *ctx; 1077 1078 ctx = cm_get_context(security_state); 1079 assert(ctx != NULL); 1080 1081 cm_set_next_context(ctx); 1082 } 1083