xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 3ff7523883adb4ddc9503324282ecde06c5e5f3c)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/debug_v8p9.h>
30 #include <lib/extensions/fgt2.h>
31 #include <lib/extensions/fpmr.h>
32 #include <lib/extensions/mpam.h>
33 #include <lib/extensions/pauth.h>
34 #include <lib/extensions/pmuv3.h>
35 #include <lib/extensions/sme.h>
36 #include <lib/extensions/spe.h>
37 #include <lib/extensions/sve.h>
38 #include <lib/extensions/sysreg128.h>
39 #include <lib/extensions/sys_reg_trace.h>
40 #include <lib/extensions/tcr2.h>
41 #include <lib/extensions/trbe.h>
42 #include <lib/extensions/trf.h>
43 #include <lib/utils.h>
44 
45 #if ENABLE_FEAT_TWED
46 /* Make sure delay value fits within the range(0-15) */
47 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
48 #endif /* ENABLE_FEAT_TWED */
49 
50 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
51 
52 static void manage_extensions_nonsecure(cpu_context_t *ctx);
53 static void manage_extensions_secure(cpu_context_t *ctx);
54 
55 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
56 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
57 {
58 	u_register_t sctlr_elx, actlr_elx;
59 
60 	/*
61 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
62 	 * execution state setting all fields rather than relying on the hw.
63 	 * Some fields have architecturally UNKNOWN reset values and these are
64 	 * set to zero.
65 	 *
66 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
67 	 *
68 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
69 	 * required by PSCI specification)
70 	 */
71 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
72 	if (GET_RW(ep->spsr) == MODE_RW_64) {
73 		sctlr_elx |= SCTLR_EL1_RES1;
74 	} else {
75 		/*
76 		 * If the target execution state is AArch32 then the following
77 		 * fields need to be set.
78 		 *
79 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
80 		 *  instructions are not trapped to EL1.
81 		 *
82 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
83 		 *  instructions are not trapped to EL1.
84 		 *
85 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
86 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
87 		 */
88 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
89 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
90 	}
91 
92 	/*
93 	 * If workaround of errata 764081 for Cortex-A75 is used then set
94 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
95 	 */
96 	if (errata_a75_764081_applies()) {
97 		sctlr_elx |= SCTLR_IESB_BIT;
98 	}
99 
100 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
101 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
102 
103 	/*
104 	 * Base the context ACTLR_EL1 on the current value, as it is
105 	 * implementation defined. The context restore process will write
106 	 * the value from the context to the actual register and can cause
107 	 * problems for processor cores that don't expect certain bits to
108 	 * be zero.
109 	 */
110 	actlr_elx = read_actlr_el1();
111 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
112 }
113 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
114 
115 /******************************************************************************
116  * This function performs initializations that are specific to SECURE state
117  * and updates the cpu context specified by 'ctx'.
118  *****************************************************************************/
119 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
120 {
121 	u_register_t scr_el3;
122 	el3_state_t *state;
123 
124 	state = get_el3state_ctx(ctx);
125 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
126 
127 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
128 	/*
129 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
130 	 * indicated by the interrupt routing model for BL31.
131 	 */
132 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
133 #endif
134 
135 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
136 	if (is_feat_mte2_supported()) {
137 		scr_el3 |= SCR_ATA_BIT;
138 	}
139 
140 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
141 
142 	/*
143 	 * Initialize EL1 context registers unless SPMC is running
144 	 * at S-EL2.
145 	 */
146 #if (!SPMD_SPM_AT_SEL2)
147 	setup_el1_context(ctx, ep);
148 #endif
149 
150 	manage_extensions_secure(ctx);
151 }
152 
153 #if ENABLE_RME && IMAGE_BL31
154 /******************************************************************************
155  * This function performs initializations that are specific to REALM state
156  * and updates the cpu context specified by 'ctx'.
157  *
158  * NOTE: any changes to this function must be verified by an RMMD maintainer.
159  *****************************************************************************/
160 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
161 {
162 	u_register_t scr_el3;
163 	el3_state_t *state;
164 	el2_sysregs_t *el2_ctx;
165 
166 	state = get_el3state_ctx(ctx);
167 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
168 	el2_ctx = get_el2_sysregs_ctx(ctx);
169 
170 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
171 
172 	write_el2_ctx_common(el2_ctx, spsr_el2, SPSR_EL2_REALM);
173 
174 	/* CSV2 version 2 and above */
175 	if (is_feat_csv2_2_supported()) {
176 		/* Enable access to the SCXTNUM_ELx registers. */
177 		scr_el3 |= SCR_EnSCXT_BIT;
178 	}
179 
180 	if (is_feat_sctlr2_supported()) {
181 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
182 		 * SCTLR2_ELx registers.
183 		 */
184 		scr_el3 |= SCR_SCTLR2En_BIT;
185 	}
186 
187 	if (is_feat_d128_supported()) {
188 		/*
189 		 * Set the D128En bit in SCR_EL3 to enable access to 128-bit
190 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
191 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
192 		 */
193 		scr_el3 |= SCR_D128En_BIT;
194 	}
195 
196 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
197 
198 	if (is_feat_fgt2_supported()) {
199 		fgt2_enable(ctx);
200 	}
201 
202 	if (is_feat_debugv8p9_supported()) {
203 		debugv8p9_extended_bp_wp_enable(ctx);
204 	}
205 
206 	if (is_feat_brbe_supported()) {
207 		brbe_enable(ctx);
208 	}
209 
210 	/*
211 	 * Enable access to TPIDR2_EL0 if SME/SME2 is enabled for Non Secure world.
212 	 */
213 	if (is_feat_sme_supported()) {
214 		sme_enable(ctx);
215 	}
216 
217 	if (is_feat_spe_supported()) {
218 		spe_disable_realm(ctx);
219 	}
220 
221 	if (is_feat_trbe_supported()) {
222 		trbe_disable_realm(ctx);
223 	}
224 }
225 #endif /* ENABLE_RME && IMAGE_BL31 */
226 
227 /******************************************************************************
228  * This function performs initializations that are specific to NON-SECURE state
229  * and updates the cpu context specified by 'ctx'.
230  *****************************************************************************/
231 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
232 {
233 	u_register_t scr_el3;
234 	el3_state_t *state;
235 
236 	state = get_el3state_ctx(ctx);
237 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
238 
239 	/* SCR_NS: Set the NS bit */
240 	scr_el3 |= SCR_NS_BIT;
241 
242 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
243 	if (is_feat_mte2_supported()) {
244 		scr_el3 |= SCR_ATA_BIT;
245 	}
246 
247 	/*
248 	 * Pointer Authentication feature, if present, is always enabled by
249 	 * default for Non secure lower exception levels. We do not have an
250 	 * explicit flag to set it. To prevent the leakage between the worlds
251 	 * during world switch, we enable it only for the non-secure world.
252 	 *
253 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
254 	 * exception levels of secure and realm worlds.
255 	 *
256 	 * If the Secure/realm world wants to use pointer authentication,
257 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
258 	 * it will be enabled globally for all the contexts.
259 	 *
260 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
261 	 *  other than EL3
262 	 *
263 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
264 	 *  than EL3
265 	 */
266 	if (!is_ctx_pauth_supported()) {
267 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
268 	}
269 
270 #if HANDLE_EA_EL3_FIRST_NS
271 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
272 	scr_el3 |= SCR_EA_BIT;
273 #endif
274 
275 #if RAS_TRAP_NS_ERR_REC_ACCESS
276 	/*
277 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
278 	 * and RAS ERX registers from EL1 and EL2(from any security state)
279 	 * are trapped to EL3.
280 	 * Set here to trap only for NS EL1/EL2
281 	 */
282 	scr_el3 |= SCR_TERR_BIT;
283 #endif
284 
285 	/* CSV2 version 2 and above */
286 	if (is_feat_csv2_2_supported()) {
287 		/* Enable access to the SCXTNUM_ELx registers. */
288 		scr_el3 |= SCR_EnSCXT_BIT;
289 	}
290 
291 #ifdef IMAGE_BL31
292 	/*
293 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
294 	 *  indicated by the interrupt routing model for BL31.
295 	 */
296 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
297 #endif
298 
299 	if (is_feat_the_supported()) {
300 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
301 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
302 		 */
303 		scr_el3 |= SCR_RCWMASKEn_BIT;
304 	}
305 
306 	if (is_feat_sctlr2_supported()) {
307 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
308 		 * SCTLR2_ELx registers.
309 		 */
310 		scr_el3 |= SCR_SCTLR2En_BIT;
311 	}
312 
313 	if (is_feat_d128_supported()) {
314 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
315 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
316 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
317 		 */
318 		scr_el3 |= SCR_D128En_BIT;
319 	}
320 
321 	if (is_feat_fpmr_supported()) {
322 		/* Set the EnFPM bit in SCR_EL3 to enable access to FPMR
323 		 * register.
324 		 */
325 		scr_el3 |= SCR_EnFPM_BIT;
326 	}
327 
328 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
329 
330 	/* Initialize EL2 context registers */
331 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
332 	if (is_feat_hcx_supported()) {
333 		/*
334 		 * Initialize register HCRX_EL2 with its init value.
335 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
336 		 * chance that this can lead to unexpected behavior in lower
337 		 * ELs that have not been updated since the introduction of
338 		 * this feature if not properly initialized, especially when
339 		 * it comes to those bits that enable/disable traps.
340 		 */
341 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
342 			HCRX_EL2_INIT_VAL);
343 	}
344 
345 	if (is_feat_fgt_supported()) {
346 		/*
347 		 * Initialize HFG*_EL2 registers with a default value so legacy
348 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
349 		 * of initialization for this feature.
350 		 */
351 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
352 			HFGITR_EL2_INIT_VAL);
353 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
354 			HFGRTR_EL2_INIT_VAL);
355 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
356 			HFGWTR_EL2_INIT_VAL);
357 	}
358 #else
359 	/* Initialize EL1 context registers */
360 	setup_el1_context(ctx, ep);
361 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
362 
363 	manage_extensions_nonsecure(ctx);
364 }
365 
366 /*******************************************************************************
367  * The following function performs initialization of the cpu_context 'ctx'
368  * for first use that is common to all security states, and sets the
369  * initial entrypoint state as specified by the entry_point_info structure.
370  *
371  * The EE and ST attributes are used to configure the endianness and secure
372  * timer availability for the new execution context.
373  ******************************************************************************/
374 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
375 {
376 	u_register_t scr_el3;
377 	u_register_t mdcr_el3;
378 	el3_state_t *state;
379 	gp_regs_t *gp_regs;
380 
381 	state = get_el3state_ctx(ctx);
382 
383 	/* Clear any residual register values from the context */
384 	zeromem(ctx, sizeof(*ctx));
385 
386 	/*
387 	 * The lower-EL context is zeroed so that no stale values leak to a world.
388 	 * It is assumed that an all-zero lower-EL context is good enough for it
389 	 * to boot correctly. However, there are very few registers where this
390 	 * is not true and some values need to be recreated.
391 	 */
392 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
393 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
394 
395 	/*
396 	 * These bits are set in the gicv3 driver. Losing them (especially the
397 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
398 	 */
399 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
400 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
401 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
402 
403 	/*
404 	 * The actlr_el2 register can be initialized in platform's reset handler
405 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
406 	 */
407 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
408 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
409 
410 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
411 	scr_el3 = SCR_RESET_VAL;
412 
413 	/*
414 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
415 	 *  EL2, EL1 and EL0 are not trapped to EL3.
416 	 *
417 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
418 	 *  EL2, EL1 and EL0 are not trapped to EL3.
419 	 *
420 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
421 	 *  both Security states and both Execution states.
422 	 *
423 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
424 	 *  Non-secure memory.
425 	 */
426 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
427 
428 	scr_el3 |= SCR_SIF_BIT;
429 
430 	/*
431 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
432 	 *  Exception level as specified by SPSR.
433 	 */
434 	if (GET_RW(ep->spsr) == MODE_RW_64) {
435 		scr_el3 |= SCR_RW_BIT;
436 	}
437 
438 	/*
439 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
440 	 * Secure timer registers to EL3, from AArch64 state only, if specified
441 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
442 	 * bit always behaves as 1 (i.e. secure physical timer register access
443 	 * is not trapped)
444 	 */
445 	if (EP_GET_ST(ep->h.attr) != 0U) {
446 		scr_el3 |= SCR_ST_BIT;
447 	}
448 
449 	/*
450 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
451 	 * SCR_EL3.HXEn.
452 	 */
453 	if (is_feat_hcx_supported()) {
454 		scr_el3 |= SCR_HXEn_BIT;
455 	}
456 
457 	/*
458 	 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by
459 	 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting
460 	 * SCR_EL3.EnAS0.
461 	 */
462 	if (is_feat_ls64_accdata_supported()) {
463 		scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT;
464 	}
465 
466 	/*
467 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
468 	 * registers are trapped to EL3.
469 	 */
470 	if (is_feat_rng_trap_supported()) {
471 		scr_el3 |= SCR_TRNDR_BIT;
472 	}
473 
474 #if FAULT_INJECTION_SUPPORT
475 	/* Enable fault injection from lower ELs */
476 	scr_el3 |= SCR_FIEN_BIT;
477 #endif
478 
479 	/*
480 	 * Enable Pointer Authentication globally for all the worlds.
481 	 *
482 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
483 	 *  other than EL3
484 	 *
485 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
486 	 *  than EL3
487 	 */
488 	if (is_ctx_pauth_supported()) {
489 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
490 	}
491 
492 	/*
493 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
494 	 * registers for AArch64 if present.
495 	 */
496 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
497 		scr_el3 |= SCR_PIEN_BIT;
498 	}
499 
500 	/*
501 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
502 	 */
503 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
504 		scr_el3 |= SCR_GCSEn_BIT;
505 	}
506 
507 	/*
508 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
509 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
510 	 * next mode is Hyp.
511 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
512 	 * same conditions as HVC instructions and when the processor supports
513 	 * ARMv8.6-FGT.
514 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
515 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
516 	 * and when the processor supports ECV.
517 	 */
518 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
519 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
520 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
521 		scr_el3 |= SCR_HCE_BIT;
522 
523 		if (is_feat_fgt_supported()) {
524 			scr_el3 |= SCR_FGTEN_BIT;
525 		}
526 
527 		if (is_feat_ecv_supported()) {
528 			scr_el3 |= SCR_ECVEN_BIT;
529 		}
530 	}
531 
532 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
533 	if (is_feat_twed_supported()) {
534 		/* Set delay in SCR_EL3 */
535 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
536 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
537 				<< SCR_TWEDEL_SHIFT);
538 
539 		/* Enable WFE delay */
540 		scr_el3 |= SCR_TWEDEn_BIT;
541 	}
542 
543 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
544 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
545 	if (is_feat_sel2_supported()) {
546 		scr_el3 |= SCR_EEL2_BIT;
547 	}
548 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
549 
550 	if (is_feat_mec_supported()) {
551 		scr_el3 |= SCR_MECEn_BIT;
552 	}
553 
554 	/*
555 	 * Populate EL3 state so that we've the right context
556 	 * before doing ERET
557 	 */
558 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
559 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
560 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
561 
562 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
563 	mdcr_el3 = MDCR_EL3_RESET_VAL;
564 
565 	/* ---------------------------------------------------------------------
566 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
567 	 * Some fields are architecturally UNKNOWN on reset.
568 	 *
569 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
570 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
571 	 *  disabled from all ELs in Secure state.
572 	 *
573 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
574 	 *  privileged debug from S-EL1.
575 	 *
576 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
577 	 *  access to the powerdown debug registers do not trap to EL3.
578 	 *
579 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
580 	 *  debug registers, other than those registers that are controlled by
581 	 *  MDCR_EL3.TDOSA.
582 	 */
583 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
584 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
585 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
586 
587 #if IMAGE_BL31
588 	/* Enable FEAT_TRF for Non-Secure and prohibit for Secure state. */
589 	if (is_feat_trf_supported()) {
590 		trf_enable(ctx);
591 	}
592 
593 	if (is_feat_tcr2_supported()) {
594 		tcr2_enable(ctx);
595 	}
596 
597 	pmuv3_enable(ctx);
598 
599 #if CTX_INCLUDE_EL2_REGS
600 	/*
601 	 * Initialize SCTLR_EL2 context register with reset value.
602 	 */
603 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
604 #endif /* CTX_INCLUDE_EL2_REGS */
605 #endif /* IMAGE_BL31 */
606 
607 	/*
608 	 * Store the X0-X7 value from the entrypoint into the context
609 	 * Use memcpy as we are in control of the layout of the structures
610 	 */
611 	gp_regs = get_gpregs_ctx(ctx);
612 	memcpy((void *)gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
613 }
614 
615 /*******************************************************************************
616  * Context management library initialization routine. This library is used by
617  * runtime services to share pointers to 'cpu_context' structures for secure
618  * non-secure and realm states. Management of the structures and their associated
619  * memory is not done by the context management library e.g. the PSCI service
620  * manages the cpu context used for entry from and exit to the non-secure state.
621  * The Secure payload dispatcher service manages the context(s) corresponding to
622  * the secure state. It also uses this library to get access to the non-secure
623  * state cpu context pointers.
624  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
625  * which will be used for programming an entry into a lower EL. The same context
626  * will be used to save state upon exception entry from that EL.
627  ******************************************************************************/
628 void __init cm_init(void)
629 {
630 	/*
631 	 * The context management library has only global data to initialize, but
632 	 * that will be done when the BSS is zeroed out.
633 	 */
634 }
635 
636 /*******************************************************************************
637  * This is the high-level function used to initialize the cpu_context 'ctx' for
638  * first use. It performs initializations that are common to all security states
639  * and initializations specific to the security state specified in 'ep'
640  ******************************************************************************/
641 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
642 {
643 	size_t security_state;
644 
645 	assert(ctx != NULL);
646 
647 	/*
648 	 * Perform initializations that are common
649 	 * to all security states
650 	 */
651 	setup_context_common(ctx, ep);
652 
653 	security_state = GET_SECURITY_STATE(ep->h.attr);
654 
655 	/* Perform security state specific initializations */
656 	switch (security_state) {
657 	case SECURE:
658 		setup_secure_context(ctx, ep);
659 		break;
660 #if ENABLE_RME && IMAGE_BL31
661 	case REALM:
662 		setup_realm_context(ctx, ep);
663 		break;
664 #endif
665 	case NON_SECURE:
666 		setup_ns_context(ctx, ep);
667 		break;
668 	default:
669 		ERROR("Invalid security state\n");
670 		panic();
671 		break;
672 	}
673 }
674 
675 /*******************************************************************************
676  * Enable architecture extensions for EL3 execution. This function only updates
677  * registers in-place which are expected to either never change or be
678  * overwritten by el3_exit. Expects the core_pos of the current core as argument.
679  ******************************************************************************/
680 #if IMAGE_BL31
681 void __no_pauth cm_manage_extensions_el3(unsigned int my_idx)
682 {
683 	if (is_feat_pauth_supported()) {
684 		pauth_init_enable_el3();
685 	}
686 
687 	if (is_feat_sve_supported()) {
688 		sve_init_el3();
689 	}
690 
691 	if (is_feat_amu_supported()) {
692 		amu_init_el3(my_idx);
693 	}
694 
695 	if (is_feat_sme_supported()) {
696 		sme_init_el3();
697 	}
698 
699 	if (is_feat_fgwte3_supported()) {
700 		write_fgwte3_el3(FGWTE3_EL3_EARLY_INIT_VAL);
701 	}
702 
703 	if (is_feat_mpam_supported()) {
704 		mpam_init_el3();
705 	}
706 
707 	pmuv3_init_el3();
708 }
709 
710 /******************************************************************************
711  * Function to initialise the registers with the RESET values in the context
712  * memory, which are maintained per world.
713  ******************************************************************************/
714 static void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
715 {
716 	/*
717 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
718 	 *
719 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
720 	 *  by Advanced SIMD, floating-point or SVE instructions (if
721 	 *  implemented) do not trap to EL3.
722 	 *
723 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
724 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
725 	 */
726 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
727 
728 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
729 
730 	/*
731 	 * Initialize MPAM3_EL3 to its default reset value
732 	 *
733 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
734 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
735 	 */
736 
737 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
738 }
739 
740 /*******************************************************************************
741  * Initialise per_world_context for Non-Secure world.
742  * This function enables the architecture extensions, which have same value
743  * across the cores for the non-secure world.
744  ******************************************************************************/
745 static void manage_extensions_nonsecure_per_world(void)
746 {
747 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
748 
749 	if (is_feat_sme_supported()) {
750 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
751 	}
752 
753 	if (is_feat_sve_supported()) {
754 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
755 	}
756 
757 	if (is_feat_amu_supported()) {
758 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
759 	}
760 
761 	if (is_feat_sys_reg_trace_supported()) {
762 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
763 	}
764 
765 	if (is_feat_mpam_supported()) {
766 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
767 	}
768 
769 	if (is_feat_fpmr_supported()) {
770 		fpmr_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
771 	}
772 }
773 
774 /*******************************************************************************
775  * Initialise per_world_context for Secure world.
776  * This function enables the architecture extensions, which have same value
777  * across the cores for the secure world.
778  ******************************************************************************/
779 static void manage_extensions_secure_per_world(void)
780 {
781 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
782 
783 	if (is_feat_sme_supported()) {
784 
785 		if (ENABLE_SME_FOR_SWD) {
786 		/*
787 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
788 		 * SME, SVE, and FPU/SIMD context properly managed.
789 		 */
790 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
791 		} else {
792 		/*
793 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
794 		 * world can safely use the associated registers.
795 		 */
796 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
797 		}
798 	}
799 	if (is_feat_sve_supported()) {
800 		if (ENABLE_SVE_FOR_SWD) {
801 		/*
802 		 * Enable SVE and FPU in secure context, SPM must ensure
803 		 * that the SVE and FPU register contexts are properly managed.
804 		 */
805 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
806 		} else {
807 		/*
808 		 * Disable SVE and FPU in secure context so non-secure world
809 		 * can safely use them.
810 		 */
811 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
812 		}
813 	}
814 
815 	/* NS can access this but Secure shouldn't */
816 	if (is_feat_sys_reg_trace_supported()) {
817 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
818 	}
819 }
820 
821 static void manage_extensions_realm_per_world(void)
822 {
823 #if ENABLE_RME
824 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_REALM]);
825 
826 	if (is_feat_sve_supported()) {
827 	/*
828 	 * Enable SVE and FPU in realm context when it is enabled for NS.
829 	 * Realm manager must ensure that the SVE and FPU register
830 	 * contexts are properly managed.
831 	 */
832 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
833 	}
834 
835 	/* NS can access this but Realm shouldn't */
836 	if (is_feat_sys_reg_trace_supported()) {
837 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
838 	}
839 
840 	/*
841 	 * If SME/SME2 is supported and enabled for NS world, then disable trapping
842 	 * of SME instructions for Realm world. RMM will save/restore required
843 	 * registers that are shared with SVE/FPU so that Realm can use FPU or SVE.
844 	 */
845 	if (is_feat_sme_supported()) {
846 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
847 	}
848 
849 	/*
850 	 * If FEAT_MPAM is supported and enabled, then disable trapping access
851 	 * to the MPAM registers for Realm world. Instead, RMM will configure
852 	 * the access to be trapped by itself so it can inject undefined aborts
853 	 * back to the Realm.
854 	 */
855 	if (is_feat_mpam_supported()) {
856 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
857 	}
858 #endif /* ENABLE_RME */
859 }
860 
861 void cm_manage_extensions_per_world(void)
862 {
863 	manage_extensions_nonsecure_per_world();
864 	manage_extensions_secure_per_world();
865 	manage_extensions_realm_per_world();
866 }
867 #endif /* IMAGE_BL31 */
868 
869 /*******************************************************************************
870  * Enable architecture extensions on first entry to Non-secure world.
871  ******************************************************************************/
872 static void manage_extensions_nonsecure(cpu_context_t *ctx)
873 {
874 #if IMAGE_BL31
875 	/* NOTE: registers are not context switched */
876 	if (is_feat_amu_supported()) {
877 		amu_enable(ctx);
878 	}
879 
880 	if (is_feat_sme_supported()) {
881 		sme_enable(ctx);
882 	}
883 
884 	if (is_feat_fgt2_supported()) {
885 		fgt2_enable(ctx);
886 	}
887 
888 	if (is_feat_debugv8p9_supported()) {
889 		debugv8p9_extended_bp_wp_enable(ctx);
890 	}
891 
892 	if (is_feat_spe_supported()) {
893 		spe_enable_ns(ctx);
894 	}
895 
896 	if (is_feat_trbe_supported()) {
897 		if (check_if_trbe_disable_affected_core()) {
898 			trbe_disable_ns(ctx);
899 		} else {
900 			trbe_enable_ns(ctx);
901 		}
902 	}
903 
904 	if (is_feat_brbe_supported()) {
905 		brbe_enable(ctx);
906 	}
907 #endif /* IMAGE_BL31 */
908 }
909 
910 #if INIT_UNUSED_NS_EL2
911 /*******************************************************************************
912  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
913  * world when EL2 is empty and unused.
914  ******************************************************************************/
915 static void manage_extensions_nonsecure_el2_unused(void)
916 {
917 #if IMAGE_BL31
918 	if (is_feat_spe_supported()) {
919 		spe_init_el2_unused();
920 	}
921 
922 	if (is_feat_amu_supported()) {
923 		amu_init_el2_unused();
924 	}
925 
926 	if (is_feat_mpam_supported()) {
927 		mpam_init_el2_unused();
928 	}
929 
930 	if (is_feat_trbe_supported()) {
931 		trbe_init_el2_unused();
932 	}
933 
934 	if (is_feat_sys_reg_trace_supported()) {
935 		sys_reg_trace_init_el2_unused();
936 	}
937 
938 	if (is_feat_trf_supported()) {
939 		trf_init_el2_unused();
940 	}
941 
942 	pmuv3_init_el2_unused();
943 
944 	if (is_feat_sve_supported()) {
945 		sve_init_el2_unused();
946 	}
947 
948 	if (is_feat_sme_supported()) {
949 		sme_init_el2_unused();
950 	}
951 
952 	if (is_feat_mops_supported() && is_feat_hcx_supported()) {
953 		write_hcrx_el2(read_hcrx_el2() | HCRX_EL2_MSCEn_BIT);
954 	}
955 
956 	if (is_feat_pauth_supported()) {
957 		pauth_enable_el2();
958 	}
959 #endif /* IMAGE_BL31 */
960 }
961 #endif /* INIT_UNUSED_NS_EL2 */
962 
963 /*******************************************************************************
964  * Enable architecture extensions on first entry to Secure world.
965  ******************************************************************************/
966 static void manage_extensions_secure(cpu_context_t *ctx)
967 {
968 #if IMAGE_BL31
969 	if (is_feat_sme_supported()) {
970 		if (ENABLE_SME_FOR_SWD) {
971 		/*
972 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
973 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
974 		 */
975 			sme_init_el3();
976 			sme_enable(ctx);
977 		} else {
978 		/*
979 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
980 		 * world can safely use the associated registers.
981 		 */
982 			sme_disable(ctx);
983 		}
984 	}
985 
986 	if (is_feat_spe_supported()) {
987 		spe_disable_secure(ctx);
988 	}
989 
990 	if (is_feat_trbe_supported()) {
991 		trbe_disable_secure(ctx);
992 	}
993 #endif /* IMAGE_BL31 */
994 }
995 
996 /*******************************************************************************
997  * The following function initializes the cpu_context for the current CPU
998  * for first use, and sets the initial entrypoint state as specified by the
999  * entry_point_info structure.
1000  ******************************************************************************/
1001 void cm_init_my_context(const entry_point_info_t *ep)
1002 {
1003 	cpu_context_t *ctx;
1004 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
1005 	cm_setup_context(ctx, ep);
1006 }
1007 
1008 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
1009 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
1010 {
1011 #if INIT_UNUSED_NS_EL2
1012 	u_register_t hcr_el2 = HCR_RESET_VAL;
1013 	u_register_t mdcr_el2;
1014 	u_register_t scr_el3;
1015 
1016 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1017 
1018 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
1019 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
1020 		hcr_el2 |= HCR_RW_BIT;
1021 	}
1022 
1023 	write_hcr_el2(hcr_el2);
1024 
1025 	/*
1026 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
1027 	 * All fields have architecturally UNKNOWN reset values.
1028 	 */
1029 	write_cptr_el2(CPTR_EL2_RESET_VAL);
1030 
1031 	/*
1032 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
1033 	 * reset and are set to zero except for field(s) listed below.
1034 	 *
1035 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
1036 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
1037 	 *
1038 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
1039 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
1040 	 */
1041 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
1042 
1043 	/*
1044 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
1045 	 * UNKNOWN value.
1046 	 */
1047 	write_cntvoff_el2(0);
1048 
1049 	/*
1050 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
1051 	 * respectively.
1052 	 */
1053 	write_vpidr_el2(read_midr_el1());
1054 	write_vmpidr_el2(read_mpidr_el1());
1055 
1056 	/*
1057 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
1058 	 *
1059 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
1060 	 * translation is disabled, cache maintenance operations depend on the
1061 	 * VMID.
1062 	 *
1063 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
1064 	 * disabled.
1065 	 */
1066 	write_vttbr_el2(VTTBR_RESET_VAL &
1067 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1068 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1069 
1070 	/*
1071 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1072 	 * Some fields are architecturally UNKNOWN on reset.
1073 	 *
1074 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1075 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1076 	 *
1077 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1078 	 * accesses to the powerdown debug registers are not trapped to EL2.
1079 	 *
1080 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1081 	 * debug registers do not trap to EL2.
1082 	 *
1083 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1084 	 * EL2.
1085 	 */
1086 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1087 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1088 		   MDCR_EL2_TDE_BIT);
1089 
1090 	write_mdcr_el2(mdcr_el2);
1091 
1092 	/*
1093 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1094 	 *
1095 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1096 	 * EL1 accesses to System registers do not trap to EL2.
1097 	 */
1098 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1099 
1100 	/*
1101 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1102 	 * reset.
1103 	 *
1104 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1105 	 * and prevent timer interrupts.
1106 	 */
1107 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1108 
1109 	manage_extensions_nonsecure_el2_unused();
1110 #endif /* INIT_UNUSED_NS_EL2 */
1111 }
1112 
1113 /*******************************************************************************
1114  * Prepare the CPU system registers for first entry into realm, secure, or
1115  * normal world.
1116  *
1117  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1118  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1119  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1120  * For all entries, the EL1 registers are initialized from the cpu_context
1121  ******************************************************************************/
1122 void cm_prepare_el3_exit(size_t security_state)
1123 {
1124 	u_register_t sctlr_el2, scr_el3;
1125 	cpu_context_t *ctx = cm_get_context(security_state);
1126 
1127 	assert(ctx != NULL);
1128 
1129 	if (security_state == NON_SECURE) {
1130 		uint64_t el2_implemented = el_implemented(2);
1131 
1132 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1133 						 CTX_SCR_EL3);
1134 
1135 		if (el2_implemented != EL_IMPL_NONE) {
1136 
1137 			/*
1138 			 * If context is not being used for EL2, initialize
1139 			 * HCRX_EL2 with its init value here.
1140 			 */
1141 			if (is_feat_hcx_supported()) {
1142 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1143 			}
1144 
1145 			/*
1146 			 * Initialize Fine-grained trap registers introduced
1147 			 * by FEAT_FGT so all traps are initially disabled when
1148 			 * switching to EL2 or a lower EL, preventing undesired
1149 			 * behavior.
1150 			 */
1151 			if (is_feat_fgt_supported()) {
1152 				/*
1153 				 * Initialize HFG*_EL2 registers with a default
1154 				 * value so legacy systems unaware of FEAT_FGT
1155 				 * do not get trapped due to their lack of
1156 				 * initialization for this feature.
1157 				 */
1158 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1159 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1160 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1161 			}
1162 
1163 			/* Condition to ensure EL2 is being used. */
1164 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1165 				/* Initialize SCTLR_EL2 register with reset value. */
1166 				sctlr_el2 = SCTLR_EL2_RES1;
1167 
1168 				/*
1169 				 * If workaround of errata 764081 for Cortex-A75
1170 				 * is used then set SCTLR_EL2.IESB to enable
1171 				 * Implicit Error Synchronization Barrier.
1172 				 */
1173 				if (errata_a75_764081_applies()) {
1174 					sctlr_el2 |= SCTLR_IESB_BIT;
1175 				}
1176 
1177 				write_sctlr_el2(sctlr_el2);
1178 			} else {
1179 				/*
1180 				 * (scr_el3 & SCR_HCE_BIT==0)
1181 				 * EL2 implemented but unused.
1182 				 */
1183 				init_nonsecure_el2_unused(ctx);
1184 			}
1185 		}
1186 
1187 		if (is_feat_fgwte3_supported()) {
1188 			/*
1189 			 * TCR_EL3 and ACTLR_EL3 could be overwritten
1190 			 * by platforms and hence is locked a bit late.
1191 			 */
1192 			write_fgwte3_el3(FGWTE3_EL3_LATE_INIT_VAL);
1193 		}
1194 	}
1195 #if (!CTX_INCLUDE_EL2_REGS)
1196 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1197 	cm_el1_sysregs_context_restore(security_state);
1198 #endif
1199 	cm_set_next_eret_context(security_state);
1200 }
1201 
1202 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1203 
1204 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1205 {
1206 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1207 	if (is_feat_amu_supported()) {
1208 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1209 	}
1210 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1211 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1212 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1213 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1214 }
1215 
1216 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1217 {
1218 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1219 	if (is_feat_amu_supported()) {
1220 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1221 	}
1222 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1223 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1224 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1225 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1226 }
1227 
1228 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1229 {
1230 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1231 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1232 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1233 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1234 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1235 }
1236 
1237 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1238 {
1239 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1240 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1241 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1242 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1243 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1244 }
1245 
1246 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1247 {
1248 	u_register_t mpam_idr = read_mpamidr_el1();
1249 
1250 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1251 
1252 	/*
1253 	 * The context registers that we intend to save would be part of the
1254 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1255 	 */
1256 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1257 		return;
1258 	}
1259 
1260 	/*
1261 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1262 	 * MPAMIDR_HAS_HCR_BIT == 1.
1263 	 */
1264 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1265 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1266 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1267 
1268 	/*
1269 	 * The number of MPAMVPM registers is implementation defined, their
1270 	 * number is stored in the MPAMIDR_EL1 register.
1271 	 */
1272 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1273 	case 7:
1274 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1275 		__fallthrough;
1276 	case 6:
1277 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1278 		__fallthrough;
1279 	case 5:
1280 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1281 		__fallthrough;
1282 	case 4:
1283 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1284 		__fallthrough;
1285 	case 3:
1286 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1287 		__fallthrough;
1288 	case 2:
1289 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1290 		__fallthrough;
1291 	case 1:
1292 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1293 		break;
1294 	}
1295 }
1296 
1297 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1298 {
1299 	u_register_t mpam_idr = read_mpamidr_el1();
1300 
1301 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1302 
1303 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1304 		return;
1305 	}
1306 
1307 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1308 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1309 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1310 
1311 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1312 	case 7:
1313 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1314 		__fallthrough;
1315 	case 6:
1316 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1317 		__fallthrough;
1318 	case 5:
1319 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1320 		__fallthrough;
1321 	case 4:
1322 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1323 		__fallthrough;
1324 	case 3:
1325 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1326 		__fallthrough;
1327 	case 2:
1328 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1329 		__fallthrough;
1330 	case 1:
1331 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1332 		break;
1333 	}
1334 }
1335 
1336 /* ---------------------------------------------------------------------------
1337  * The following registers are not added:
1338  * ICH_AP0R<n>_EL2
1339  * ICH_AP1R<n>_EL2
1340  * ICH_LR<n>_EL2
1341  *
1342  * NOTE: For a system with S-EL2 present but not enabled, accessing
1343  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1344  * SCR_EL3.NS = 1 before accessing this register.
1345  * ---------------------------------------------------------------------------
1346  */
1347 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx, uint32_t security_state)
1348 {
1349 	u_register_t scr_el3 = read_scr_el3();
1350 
1351 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1352 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1353 #else
1354 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1355 	isb();
1356 
1357 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1358 
1359 	write_scr_el3(scr_el3);
1360 	isb();
1361 #endif
1362 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1363 
1364 	if (errata_ich_vmcr_el2_applies()) {
1365 		if (security_state == SECURE) {
1366 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1367 		} else {
1368 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1369 		}
1370 		isb();
1371 	}
1372 
1373 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1374 
1375 	if (errata_ich_vmcr_el2_applies()) {
1376 		write_scr_el3(scr_el3);
1377 		isb();
1378 	}
1379 }
1380 
1381 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx, uint32_t security_state)
1382 {
1383 	u_register_t scr_el3 = read_scr_el3();
1384 
1385 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1386 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1387 #else
1388 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1389 	isb();
1390 
1391 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1392 
1393 	write_scr_el3(scr_el3);
1394 	isb();
1395 #endif
1396 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1397 
1398 	if (errata_ich_vmcr_el2_applies()) {
1399 		if (security_state == SECURE) {
1400 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1401 		} else {
1402 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1403 		}
1404 		isb();
1405 	}
1406 
1407 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1408 
1409 	if (errata_ich_vmcr_el2_applies()) {
1410 		write_scr_el3(scr_el3);
1411 		isb();
1412 	}
1413 }
1414 
1415 /* -----------------------------------------------------
1416  * The following registers are not added:
1417  * AMEVCNTVOFF0<n>_EL2
1418  * AMEVCNTVOFF1<n>_EL2
1419  * -----------------------------------------------------
1420  */
1421 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1422 {
1423 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1424 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1425 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1426 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1427 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1428 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1429 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1430 	if (CTX_INCLUDE_AARCH32_REGS) {
1431 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1432 	}
1433 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1434 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1435 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1436 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1437 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1438 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1439 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1440 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1441 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1442 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1443 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1444 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1445 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1446 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1447 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1448 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1449 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1450 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1451 
1452 	write_el2_ctx_common_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1453 	write_el2_ctx_common_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1454 }
1455 
1456 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1457 {
1458 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1459 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1460 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1461 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1462 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1463 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1464 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1465 	if (CTX_INCLUDE_AARCH32_REGS) {
1466 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1467 	}
1468 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1469 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1470 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1471 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1472 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1473 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1474 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1475 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1476 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1477 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1478 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1479 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1480 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1481 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1482 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1483 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1484 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1485 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1486 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1487 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1488 }
1489 
1490 /*******************************************************************************
1491  * Save EL2 sysreg context
1492  ******************************************************************************/
1493 void cm_el2_sysregs_context_save(uint32_t security_state)
1494 {
1495 	cpu_context_t *ctx;
1496 	el2_sysregs_t *el2_sysregs_ctx;
1497 
1498 	ctx = cm_get_context(security_state);
1499 	assert(ctx != NULL);
1500 
1501 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1502 
1503 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1504 	el2_sysregs_context_save_gic(el2_sysregs_ctx, security_state);
1505 
1506 	if (is_feat_mte2_supported()) {
1507 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1508 	}
1509 
1510 	if (is_feat_mpam_supported()) {
1511 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1512 	}
1513 
1514 	if (is_feat_fgt_supported()) {
1515 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1516 	}
1517 
1518 	if (is_feat_fgt2_supported()) {
1519 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1520 	}
1521 
1522 	if (is_feat_ecv_v2_supported()) {
1523 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1524 	}
1525 
1526 	if (is_feat_vhe_supported()) {
1527 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1528 					read_contextidr_el2());
1529 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1530 	}
1531 
1532 	if (is_feat_ras_supported()) {
1533 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1534 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1535 	}
1536 
1537 	if (is_feat_nv2_supported()) {
1538 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1539 	}
1540 
1541 	if (is_feat_trf_supported()) {
1542 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1543 	}
1544 
1545 	if (is_feat_csv2_2_supported()) {
1546 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1547 					read_scxtnum_el2());
1548 	}
1549 
1550 	if (is_feat_hcx_supported()) {
1551 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1552 	}
1553 
1554 	if (is_feat_tcr2_supported()) {
1555 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1556 	}
1557 
1558 	if (is_feat_sxpie_supported()) {
1559 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1560 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1561 	}
1562 
1563 	if (is_feat_sxpoe_supported()) {
1564 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1565 	}
1566 
1567 	if (is_feat_brbe_supported()) {
1568 		write_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2, read_brbcr_el2());
1569 	}
1570 
1571 	if (is_feat_s2pie_supported()) {
1572 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1573 	}
1574 
1575 	if (is_feat_gcs_supported()) {
1576 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1577 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1578 	}
1579 
1580 	if (is_feat_sctlr2_supported()) {
1581 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1582 	}
1583 }
1584 
1585 /*******************************************************************************
1586  * Restore EL2 sysreg context
1587  ******************************************************************************/
1588 void cm_el2_sysregs_context_restore(uint32_t security_state)
1589 {
1590 	cpu_context_t *ctx;
1591 	el2_sysregs_t *el2_sysregs_ctx;
1592 
1593 	ctx = cm_get_context(security_state);
1594 	assert(ctx != NULL);
1595 
1596 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1597 
1598 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1599 	el2_sysregs_context_restore_gic(el2_sysregs_ctx, security_state);
1600 
1601 	if (is_feat_mte2_supported()) {
1602 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1603 	}
1604 
1605 	if (is_feat_mpam_supported()) {
1606 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1607 	}
1608 
1609 	if (is_feat_fgt_supported()) {
1610 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1611 	}
1612 
1613 	if (is_feat_fgt2_supported()) {
1614 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1615 	}
1616 
1617 	if (is_feat_ecv_v2_supported()) {
1618 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1619 	}
1620 
1621 	if (is_feat_vhe_supported()) {
1622 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1623 					contextidr_el2));
1624 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1625 	}
1626 
1627 	if (is_feat_ras_supported()) {
1628 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1629 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1630 	}
1631 
1632 	if (is_feat_nv2_supported()) {
1633 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1634 	}
1635 
1636 	if (is_feat_trf_supported()) {
1637 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1638 	}
1639 
1640 	if (is_feat_csv2_2_supported()) {
1641 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1642 					scxtnum_el2));
1643 	}
1644 
1645 	if (is_feat_hcx_supported()) {
1646 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1647 	}
1648 
1649 	if (is_feat_tcr2_supported()) {
1650 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1651 	}
1652 
1653 	if (is_feat_sxpie_supported()) {
1654 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1655 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1656 	}
1657 
1658 	if (is_feat_sxpoe_supported()) {
1659 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1660 	}
1661 
1662 	if (is_feat_s2pie_supported()) {
1663 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1664 	}
1665 
1666 	if (is_feat_gcs_supported()) {
1667 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1668 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1669 	}
1670 
1671 	if (is_feat_sctlr2_supported()) {
1672 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1673 	}
1674 
1675 	if (is_feat_brbe_supported()) {
1676 		write_brbcr_el2(read_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2));
1677 	}
1678 }
1679 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1680 
1681 /*******************************************************************************
1682  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1683  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1684  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1685  * cm_prepare_el3_exit function.
1686  ******************************************************************************/
1687 void cm_prepare_el3_exit_ns(void)
1688 {
1689 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1690 #if ENABLE_ASSERTIONS
1691 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1692 	assert(ctx != NULL);
1693 
1694 	/* Assert that EL2 is used. */
1695 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1696 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1697 			(el_implemented(2U) != EL_IMPL_NONE));
1698 #endif /* ENABLE_ASSERTIONS */
1699 
1700 	/* Restore EL2 sysreg contexts */
1701 	cm_el2_sysregs_context_restore(NON_SECURE);
1702 	cm_set_next_eret_context(NON_SECURE);
1703 #else
1704 	cm_prepare_el3_exit(NON_SECURE);
1705 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1706 }
1707 
1708 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1709 /*******************************************************************************
1710  * The next set of six functions are used by runtime services to save and restore
1711  * EL1 context on the 'cpu_context' structure for the specified security state.
1712  ******************************************************************************/
1713 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1714 {
1715 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1716 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1717 
1718 #if (!ERRATA_SPECULATIVE_AT)
1719 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1720 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1721 #endif /* (!ERRATA_SPECULATIVE_AT) */
1722 
1723 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1724 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1725 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1726 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1727 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1728 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1729 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1730 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1731 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1732 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1733 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1734 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1735 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1736 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1737 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1738 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1739 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1740 
1741 	write_el1_ctx_common_sysreg128(ctx, par_el1, read_par_el1());
1742 	write_el1_ctx_common_sysreg128(ctx, ttbr0_el1, read_ttbr0_el1());
1743 	write_el1_ctx_common_sysreg128(ctx, ttbr1_el1, read_ttbr1_el1());
1744 
1745 	if (CTX_INCLUDE_AARCH32_REGS) {
1746 		/* Save Aarch32 registers */
1747 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1748 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1749 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1750 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1751 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1752 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1753 	}
1754 
1755 	if (NS_TIMER_SWITCH) {
1756 		/* Save NS Timer registers */
1757 		write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1758 		write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1759 		write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1760 		write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1761 		write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1762 	}
1763 
1764 	if (is_feat_mte2_supported()) {
1765 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1766 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1767 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1768 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1769 	}
1770 
1771 	if (is_feat_ras_supported()) {
1772 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1773 	}
1774 
1775 	if (is_feat_s1pie_supported()) {
1776 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1777 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1778 	}
1779 
1780 	if (is_feat_s1poe_supported()) {
1781 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1782 	}
1783 
1784 	if (is_feat_s2poe_supported()) {
1785 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1786 	}
1787 
1788 	if (is_feat_tcr2_supported()) {
1789 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1790 	}
1791 
1792 	if (is_feat_trf_supported()) {
1793 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1794 	}
1795 
1796 	if (is_feat_csv2_2_supported()) {
1797 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1798 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1799 	}
1800 
1801 	if (is_feat_gcs_supported()) {
1802 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1803 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1804 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1805 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1806 	}
1807 
1808 	if (is_feat_the_supported()) {
1809 		write_el1_ctx_the_sysreg128(ctx, rcwmask_el1, read_rcwmask_el1());
1810 		write_el1_ctx_the_sysreg128(ctx, rcwsmask_el1, read_rcwsmask_el1());
1811 	}
1812 
1813 	if (is_feat_sctlr2_supported()) {
1814 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1815 	}
1816 
1817 	if (is_feat_ls64_accdata_supported()) {
1818 		write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1());
1819 	}
1820 }
1821 
1822 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1823 {
1824 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1825 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1826 
1827 #if (!ERRATA_SPECULATIVE_AT)
1828 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1829 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1830 #endif /* (!ERRATA_SPECULATIVE_AT) */
1831 
1832 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1833 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1834 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1835 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1836 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1837 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1838 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1839 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1840 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1841 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1842 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1843 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1844 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1845 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1846 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1847 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1848 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1849 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1850 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1851 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1852 
1853 	if (CTX_INCLUDE_AARCH32_REGS) {
1854 		/* Restore Aarch32 registers */
1855 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1856 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1857 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1858 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1859 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1860 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1861 	}
1862 
1863 	if (NS_TIMER_SWITCH) {
1864 		/* Restore NS Timer registers */
1865 		write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1866 		write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1867 		write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1868 		write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1869 		write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1870 	}
1871 
1872 	if (is_feat_mte2_supported()) {
1873 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1874 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1875 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1876 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1877 	}
1878 
1879 	if (is_feat_ras_supported()) {
1880 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1881 	}
1882 
1883 	if (is_feat_s1pie_supported()) {
1884 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1885 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1886 	}
1887 
1888 	if (is_feat_s1poe_supported()) {
1889 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1890 	}
1891 
1892 	if (is_feat_s2poe_supported()) {
1893 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1894 	}
1895 
1896 	if (is_feat_tcr2_supported()) {
1897 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1898 	}
1899 
1900 	if (is_feat_trf_supported()) {
1901 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1902 	}
1903 
1904 	if (is_feat_csv2_2_supported()) {
1905 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1906 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1907 	}
1908 
1909 	if (is_feat_gcs_supported()) {
1910 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1911 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1912 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1913 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1914 	}
1915 
1916 	if (is_feat_the_supported()) {
1917 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1918 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1919 	}
1920 
1921 	if (is_feat_sctlr2_supported()) {
1922 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1923 	}
1924 
1925 	if (is_feat_ls64_accdata_supported()) {
1926 		write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1));
1927 	}
1928 }
1929 
1930 /*******************************************************************************
1931  * The next couple of functions are used by runtime services to save and restore
1932  * EL1 context on the 'cpu_context' structure for the specified security state.
1933  ******************************************************************************/
1934 void cm_el1_sysregs_context_save(uint32_t security_state)
1935 {
1936 	cpu_context_t *ctx;
1937 
1938 	ctx = cm_get_context(security_state);
1939 	assert(ctx != NULL);
1940 
1941 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1942 
1943 #if IMAGE_BL31
1944 	if (security_state == SECURE) {
1945 		PUBLISH_EVENT(cm_exited_secure_world);
1946 	} else {
1947 		PUBLISH_EVENT(cm_exited_normal_world);
1948 	}
1949 #endif
1950 }
1951 
1952 void cm_el1_sysregs_context_restore(uint32_t security_state)
1953 {
1954 	cpu_context_t *ctx;
1955 
1956 	ctx = cm_get_context(security_state);
1957 	assert(ctx != NULL);
1958 
1959 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1960 
1961 #if IMAGE_BL31
1962 	if (security_state == SECURE) {
1963 		PUBLISH_EVENT(cm_entering_secure_world);
1964 	} else {
1965 		PUBLISH_EVENT(cm_entering_normal_world);
1966 	}
1967 #endif
1968 }
1969 
1970 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1971 
1972 /*******************************************************************************
1973  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1974  * given security state with the given entrypoint
1975  ******************************************************************************/
1976 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1977 {
1978 	cpu_context_t *ctx;
1979 	el3_state_t *state;
1980 
1981 	ctx = cm_get_context(security_state);
1982 	assert(ctx != NULL);
1983 
1984 	/* Populate EL3 state so that ERET jumps to the correct entry */
1985 	state = get_el3state_ctx(ctx);
1986 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1987 }
1988 
1989 /*******************************************************************************
1990  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1991  * pertaining to the given security state
1992  ******************************************************************************/
1993 void cm_set_elr_spsr_el3(uint32_t security_state,
1994 			uintptr_t entrypoint, uint32_t spsr)
1995 {
1996 	cpu_context_t *ctx;
1997 	el3_state_t *state;
1998 
1999 	ctx = cm_get_context(security_state);
2000 	assert(ctx != NULL);
2001 
2002 	/* Populate EL3 state so that ERET jumps to the correct entry */
2003 	state = get_el3state_ctx(ctx);
2004 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2005 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
2006 }
2007 
2008 /*******************************************************************************
2009  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
2010  * pertaining to the given security state using the value and bit position
2011  * specified in the parameters. It preserves all other bits.
2012  ******************************************************************************/
2013 void cm_write_scr_el3_bit(uint32_t security_state,
2014 			  uint32_t bit_pos,
2015 			  uint32_t value)
2016 {
2017 	cpu_context_t *ctx;
2018 	el3_state_t *state;
2019 	u_register_t scr_el3;
2020 
2021 	ctx = cm_get_context(security_state);
2022 	assert(ctx != NULL);
2023 
2024 	/* Ensure that the bit position is a valid one */
2025 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
2026 
2027 	/* Ensure that the 'value' is only a bit wide */
2028 	assert(value <= 1U);
2029 
2030 	/*
2031 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
2032 	 * and set it to its new value.
2033 	 */
2034 	state = get_el3state_ctx(ctx);
2035 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
2036 	scr_el3 &= ~(1UL << bit_pos);
2037 	scr_el3 |= (u_register_t)value << bit_pos;
2038 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
2039 }
2040 
2041 /*******************************************************************************
2042  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
2043  * given security state.
2044  ******************************************************************************/
2045 u_register_t cm_get_scr_el3(uint32_t security_state)
2046 {
2047 	const cpu_context_t *ctx;
2048 	const el3_state_t *state;
2049 
2050 	ctx = cm_get_context(security_state);
2051 	assert(ctx != NULL);
2052 
2053 	/* Populate EL3 state so that ERET jumps to the correct entry */
2054 	state = get_el3state_ctx(ctx);
2055 	return read_ctx_reg(state, CTX_SCR_EL3);
2056 }
2057 
2058 /*******************************************************************************
2059  * This function is used to program the context that's used for exception
2060  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
2061  * the required security state
2062  ******************************************************************************/
2063 void cm_set_next_eret_context(uint32_t security_state)
2064 {
2065 	cpu_context_t *ctx;
2066 
2067 	ctx = cm_get_context(security_state);
2068 	assert(ctx != NULL);
2069 
2070 	cm_set_next_context(ctx);
2071 }
2072