xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 06f3c7058c42a9f1a9f7df75ea2de71a000855e8)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/debug_v8p9.h>
30 #include <lib/extensions/fgt2.h>
31 #include <lib/extensions/fpmr.h>
32 #include <lib/extensions/mpam.h>
33 #include <lib/extensions/pauth.h>
34 #include <lib/extensions/pmuv3.h>
35 #include <lib/extensions/sme.h>
36 #include <lib/extensions/spe.h>
37 #include <lib/extensions/sve.h>
38 #include <lib/extensions/sysreg128.h>
39 #include <lib/extensions/sys_reg_trace.h>
40 #include <lib/extensions/tcr2.h>
41 #include <lib/extensions/trbe.h>
42 #include <lib/extensions/trf.h>
43 #include <lib/utils.h>
44 
45 #if ENABLE_FEAT_TWED
46 /* Make sure delay value fits within the range(0-15) */
47 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
48 #endif /* ENABLE_FEAT_TWED */
49 
50 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
51 static bool has_secure_perworld_init;
52 
53 static void manage_extensions_nonsecure(cpu_context_t *ctx);
54 static void manage_extensions_secure(cpu_context_t *ctx);
55 static void manage_extensions_secure_per_world(void);
56 
57 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
58 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
59 {
60 	u_register_t sctlr_elx, actlr_elx;
61 
62 	/*
63 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
64 	 * execution state setting all fields rather than relying on the hw.
65 	 * Some fields have architecturally UNKNOWN reset values and these are
66 	 * set to zero.
67 	 *
68 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
69 	 *
70 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
71 	 * required by PSCI specification)
72 	 */
73 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
74 	if (GET_RW(ep->spsr) == MODE_RW_64) {
75 		sctlr_elx |= SCTLR_EL1_RES1;
76 	} else {
77 		/*
78 		 * If the target execution state is AArch32 then the following
79 		 * fields need to be set.
80 		 *
81 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
82 		 *  instructions are not trapped to EL1.
83 		 *
84 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
85 		 *  instructions are not trapped to EL1.
86 		 *
87 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
88 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
89 		 */
90 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
91 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
92 	}
93 
94 	/*
95 	 * If workaround of errata 764081 for Cortex-A75 is used then set
96 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
97 	 */
98 	if (errata_a75_764081_applies()) {
99 		sctlr_elx |= SCTLR_IESB_BIT;
100 	}
101 
102 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
103 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
104 
105 	/*
106 	 * Base the context ACTLR_EL1 on the current value, as it is
107 	 * implementation defined. The context restore process will write
108 	 * the value from the context to the actual register and can cause
109 	 * problems for processor cores that don't expect certain bits to
110 	 * be zero.
111 	 */
112 	actlr_elx = read_actlr_el1();
113 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
114 }
115 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
116 
117 /******************************************************************************
118  * This function performs initializations that are specific to SECURE state
119  * and updates the cpu context specified by 'ctx'.
120  *****************************************************************************/
121 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
122 {
123 	u_register_t scr_el3;
124 	el3_state_t *state;
125 
126 	state = get_el3state_ctx(ctx);
127 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
128 
129 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
130 	/*
131 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
132 	 * indicated by the interrupt routing model for BL31.
133 	 */
134 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
135 #endif
136 
137 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
138 	if (is_feat_mte2_supported()) {
139 		scr_el3 |= SCR_ATA_BIT;
140 	}
141 
142 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
143 
144 	/*
145 	 * Initialize EL1 context registers unless SPMC is running
146 	 * at S-EL2.
147 	 */
148 #if (!SPMD_SPM_AT_SEL2)
149 	setup_el1_context(ctx, ep);
150 #endif
151 
152 	manage_extensions_secure(ctx);
153 
154 	/**
155 	 * manage_extensions_secure_per_world api has to be executed once,
156 	 * as the registers getting initialised, maintain constant value across
157 	 * all the cpus for the secure world.
158 	 * Henceforth, this check ensures that the registers are initialised once
159 	 * and avoids re-initialization from multiple cores.
160 	 */
161 	if (!has_secure_perworld_init) {
162 		manage_extensions_secure_per_world();
163 	}
164 }
165 
166 #if ENABLE_RME
167 /******************************************************************************
168  * This function performs initializations that are specific to REALM state
169  * and updates the cpu context specified by 'ctx'.
170  *****************************************************************************/
171 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
172 {
173 	u_register_t scr_el3;
174 	el3_state_t *state;
175 
176 	state = get_el3state_ctx(ctx);
177 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
178 
179 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
180 
181 	/* CSV2 version 2 and above */
182 	if (is_feat_csv2_2_supported()) {
183 		/* Enable access to the SCXTNUM_ELx registers. */
184 		scr_el3 |= SCR_EnSCXT_BIT;
185 	}
186 
187 	if (is_feat_sctlr2_supported()) {
188 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
189 		 * SCTLR2_ELx registers.
190 		 */
191 		scr_el3 |= SCR_SCTLR2En_BIT;
192 	}
193 
194 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
195 
196 	if (is_feat_fgt2_supported()) {
197 		fgt2_enable(ctx);
198 	}
199 
200 	if (is_feat_debugv8p9_supported()) {
201 		debugv8p9_extended_bp_wp_enable(ctx);
202 	}
203 
204 	if (is_feat_brbe_supported()) {
205 		brbe_enable(ctx);
206 	}
207 
208 }
209 #endif /* ENABLE_RME */
210 
211 /******************************************************************************
212  * This function performs initializations that are specific to NON-SECURE state
213  * and updates the cpu context specified by 'ctx'.
214  *****************************************************************************/
215 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
216 {
217 	u_register_t scr_el3;
218 	el3_state_t *state;
219 
220 	state = get_el3state_ctx(ctx);
221 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
222 
223 	/* SCR_NS: Set the NS bit */
224 	scr_el3 |= SCR_NS_BIT;
225 
226 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
227 	if (is_feat_mte2_supported()) {
228 		scr_el3 |= SCR_ATA_BIT;
229 	}
230 
231 	/*
232 	 * Pointer Authentication feature, if present, is always enabled by
233 	 * default for Non secure lower exception levels. We do not have an
234 	 * explicit flag to set it. To prevent the leakage between the worlds
235 	 * during world switch, we enable it only for the non-secure world.
236 	 *
237 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
238 	 * exception levels of secure and realm worlds.
239 	 *
240 	 * If the Secure/realm world wants to use pointer authentication,
241 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
242 	 * it will be enabled globally for all the contexts.
243 	 *
244 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
245 	 *  other than EL3
246 	 *
247 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
248 	 *  than EL3
249 	 */
250 	if (!is_ctx_pauth_supported()) {
251 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
252 	}
253 
254 #if HANDLE_EA_EL3_FIRST_NS
255 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
256 	scr_el3 |= SCR_EA_BIT;
257 #endif
258 
259 #if RAS_TRAP_NS_ERR_REC_ACCESS
260 	/*
261 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
262 	 * and RAS ERX registers from EL1 and EL2(from any security state)
263 	 * are trapped to EL3.
264 	 * Set here to trap only for NS EL1/EL2
265 	 */
266 	scr_el3 |= SCR_TERR_BIT;
267 #endif
268 
269 	/* CSV2 version 2 and above */
270 	if (is_feat_csv2_2_supported()) {
271 		/* Enable access to the SCXTNUM_ELx registers. */
272 		scr_el3 |= SCR_EnSCXT_BIT;
273 	}
274 
275 #ifdef IMAGE_BL31
276 	/*
277 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
278 	 *  indicated by the interrupt routing model for BL31.
279 	 */
280 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
281 #endif
282 
283 	if (is_feat_the_supported()) {
284 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
285 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
286 		 */
287 		scr_el3 |= SCR_RCWMASKEn_BIT;
288 	}
289 
290 	if (is_feat_sctlr2_supported()) {
291 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
292 		 * SCTLR2_ELx registers.
293 		 */
294 		scr_el3 |= SCR_SCTLR2En_BIT;
295 	}
296 
297 	if (is_feat_d128_supported()) {
298 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
299 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
300 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
301 		 */
302 		scr_el3 |= SCR_D128En_BIT;
303 	}
304 
305 	if (is_feat_fpmr_supported()) {
306 		/* Set the EnFPM bit in SCR_EL3 to enable access to FPMR
307 		 * register.
308 		 */
309 		scr_el3 |= SCR_EnFPM_BIT;
310 	}
311 
312 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
313 
314 	/* Initialize EL2 context registers */
315 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
316 
317 	/*
318 	 * Initialize SCTLR_EL2 context register with reset value.
319 	 */
320 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
321 
322 	if (is_feat_hcx_supported()) {
323 		/*
324 		 * Initialize register HCRX_EL2 with its init value.
325 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
326 		 * chance that this can lead to unexpected behavior in lower
327 		 * ELs that have not been updated since the introduction of
328 		 * this feature if not properly initialized, especially when
329 		 * it comes to those bits that enable/disable traps.
330 		 */
331 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
332 			HCRX_EL2_INIT_VAL);
333 	}
334 
335 	if (is_feat_fgt_supported()) {
336 		/*
337 		 * Initialize HFG*_EL2 registers with a default value so legacy
338 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
339 		 * of initialization for this feature.
340 		 */
341 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
342 			HFGITR_EL2_INIT_VAL);
343 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
344 			HFGRTR_EL2_INIT_VAL);
345 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
346 			HFGWTR_EL2_INIT_VAL);
347 	}
348 #else
349 	/* Initialize EL1 context registers */
350 	setup_el1_context(ctx, ep);
351 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
352 
353 	manage_extensions_nonsecure(ctx);
354 }
355 
356 /*******************************************************************************
357  * The following function performs initialization of the cpu_context 'ctx'
358  * for first use that is common to all security states, and sets the
359  * initial entrypoint state as specified by the entry_point_info structure.
360  *
361  * The EE and ST attributes are used to configure the endianness and secure
362  * timer availability for the new execution context.
363  ******************************************************************************/
364 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
365 {
366 	u_register_t scr_el3;
367 	u_register_t mdcr_el3;
368 	el3_state_t *state;
369 	gp_regs_t *gp_regs;
370 
371 	state = get_el3state_ctx(ctx);
372 
373 	/* Clear any residual register values from the context */
374 	zeromem(ctx, sizeof(*ctx));
375 
376 	/*
377 	 * The lower-EL context is zeroed so that no stale values leak to a world.
378 	 * It is assumed that an all-zero lower-EL context is good enough for it
379 	 * to boot correctly. However, there are very few registers where this
380 	 * is not true and some values need to be recreated.
381 	 */
382 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
383 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
384 
385 	/*
386 	 * These bits are set in the gicv3 driver. Losing them (especially the
387 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
388 	 */
389 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
390 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
391 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
392 
393 	/*
394 	 * The actlr_el2 register can be initialized in platform's reset handler
395 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
396 	 */
397 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
398 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
399 
400 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
401 	scr_el3 = SCR_RESET_VAL;
402 
403 	/*
404 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
405 	 *  EL2, EL1 and EL0 are not trapped to EL3.
406 	 *
407 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
408 	 *  EL2, EL1 and EL0 are not trapped to EL3.
409 	 *
410 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
411 	 *  both Security states and both Execution states.
412 	 *
413 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
414 	 *  Non-secure memory.
415 	 */
416 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
417 
418 	scr_el3 |= SCR_SIF_BIT;
419 
420 	/*
421 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
422 	 *  Exception level as specified by SPSR.
423 	 */
424 	if (GET_RW(ep->spsr) == MODE_RW_64) {
425 		scr_el3 |= SCR_RW_BIT;
426 	}
427 
428 	/*
429 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
430 	 * Secure timer registers to EL3, from AArch64 state only, if specified
431 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
432 	 * bit always behaves as 1 (i.e. secure physical timer register access
433 	 * is not trapped)
434 	 */
435 	if (EP_GET_ST(ep->h.attr) != 0U) {
436 		scr_el3 |= SCR_ST_BIT;
437 	}
438 
439 	/*
440 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
441 	 * SCR_EL3.HXEn.
442 	 */
443 	if (is_feat_hcx_supported()) {
444 		scr_el3 |= SCR_HXEn_BIT;
445 	}
446 
447 	/*
448 	 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by
449 	 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting
450 	 * SCR_EL3.EnAS0.
451 	 */
452 	if (is_feat_ls64_accdata_supported()) {
453 		scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT;
454 	}
455 
456 	/*
457 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
458 	 * registers are trapped to EL3.
459 	 */
460 	if (is_feat_rng_trap_supported()) {
461 		scr_el3 |= SCR_TRNDR_BIT;
462 	}
463 
464 #if FAULT_INJECTION_SUPPORT
465 	/* Enable fault injection from lower ELs */
466 	scr_el3 |= SCR_FIEN_BIT;
467 #endif
468 
469 	/*
470 	 * Enable Pointer Authentication globally for all the worlds.
471 	 *
472 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
473 	 *  other than EL3
474 	 *
475 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
476 	 *  than EL3
477 	 */
478 	if (is_ctx_pauth_supported()) {
479 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
480 	}
481 
482 	/*
483 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
484 	 * registers for AArch64 if present.
485 	 */
486 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
487 		scr_el3 |= SCR_PIEN_BIT;
488 	}
489 
490 	/*
491 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
492 	 */
493 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
494 		scr_el3 |= SCR_GCSEn_BIT;
495 	}
496 
497 	/*
498 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
499 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
500 	 * next mode is Hyp.
501 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
502 	 * same conditions as HVC instructions and when the processor supports
503 	 * ARMv8.6-FGT.
504 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
505 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
506 	 * and when the processor supports ECV.
507 	 */
508 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
509 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
510 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
511 		scr_el3 |= SCR_HCE_BIT;
512 
513 		if (is_feat_fgt_supported()) {
514 			scr_el3 |= SCR_FGTEN_BIT;
515 		}
516 
517 		if (is_feat_ecv_supported()) {
518 			scr_el3 |= SCR_ECVEN_BIT;
519 		}
520 	}
521 
522 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
523 	if (is_feat_twed_supported()) {
524 		/* Set delay in SCR_EL3 */
525 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
526 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
527 				<< SCR_TWEDEL_SHIFT);
528 
529 		/* Enable WFE delay */
530 		scr_el3 |= SCR_TWEDEn_BIT;
531 	}
532 
533 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
534 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
535 	if (is_feat_sel2_supported()) {
536 		scr_el3 |= SCR_EEL2_BIT;
537 	}
538 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
539 
540 	if (is_feat_mec_supported()) {
541 		scr_el3 |= SCR_MECEn_BIT;
542 	}
543 
544 	/*
545 	 * Populate EL3 state so that we've the right context
546 	 * before doing ERET
547 	 */
548 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
549 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
550 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
551 
552 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
553 	mdcr_el3 = MDCR_EL3_RESET_VAL;
554 
555 	/* ---------------------------------------------------------------------
556 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
557 	 * Some fields are architecturally UNKNOWN on reset.
558 	 *
559 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
560 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
561 	 *  disabled from all ELs in Secure state.
562 	 *
563 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
564 	 *  privileged debug from S-EL1.
565 	 *
566 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
567 	 *  access to the powerdown debug registers do not trap to EL3.
568 	 *
569 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
570 	 *  debug registers, other than those registers that are controlled by
571 	 *  MDCR_EL3.TDOSA.
572 	 */
573 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
574 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
575 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
576 
577 #if IMAGE_BL31
578 	/* Enable FEAT_TRF for Non-Secure and prohibit for Secure state. */
579 	if (is_feat_trf_supported()) {
580 		trf_enable(ctx);
581 	}
582 
583 	if (is_feat_tcr2_supported()) {
584 		tcr2_enable(ctx);
585 	}
586 
587 	pmuv3_enable(ctx);
588 #endif /* IMAGE_BL31 */
589 
590 	/*
591 	 * Store the X0-X7 value from the entrypoint into the context
592 	 * Use memcpy as we are in control of the layout of the structures
593 	 */
594 	gp_regs = get_gpregs_ctx(ctx);
595 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
596 }
597 
598 /*******************************************************************************
599  * Context management library initialization routine. This library is used by
600  * runtime services to share pointers to 'cpu_context' structures for secure
601  * non-secure and realm states. Management of the structures and their associated
602  * memory is not done by the context management library e.g. the PSCI service
603  * manages the cpu context used for entry from and exit to the non-secure state.
604  * The Secure payload dispatcher service manages the context(s) corresponding to
605  * the secure state. It also uses this library to get access to the non-secure
606  * state cpu context pointers.
607  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
608  * which will be used for programming an entry into a lower EL. The same context
609  * will be used to save state upon exception entry from that EL.
610  ******************************************************************************/
611 void __init cm_init(void)
612 {
613 	/*
614 	 * The context management library has only global data to initialize, but
615 	 * that will be done when the BSS is zeroed out.
616 	 */
617 }
618 
619 /*******************************************************************************
620  * This is the high-level function used to initialize the cpu_context 'ctx' for
621  * first use. It performs initializations that are common to all security states
622  * and initializations specific to the security state specified in 'ep'
623  ******************************************************************************/
624 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
625 {
626 	unsigned int security_state;
627 
628 	assert(ctx != NULL);
629 
630 	/*
631 	 * Perform initializations that are common
632 	 * to all security states
633 	 */
634 	setup_context_common(ctx, ep);
635 
636 	security_state = GET_SECURITY_STATE(ep->h.attr);
637 
638 	/* Perform security state specific initializations */
639 	switch (security_state) {
640 	case SECURE:
641 		setup_secure_context(ctx, ep);
642 		break;
643 #if ENABLE_RME
644 	case REALM:
645 		setup_realm_context(ctx, ep);
646 		break;
647 #endif
648 	case NON_SECURE:
649 		setup_ns_context(ctx, ep);
650 		break;
651 	default:
652 		ERROR("Invalid security state\n");
653 		panic();
654 		break;
655 	}
656 }
657 
658 /*******************************************************************************
659  * Enable architecture extensions for EL3 execution. This function only updates
660  * registers in-place which are expected to either never change or be
661  * overwritten by el3_exit. Expects the core_pos of the current core as argument.
662  ******************************************************************************/
663 #if IMAGE_BL31
664 void cm_manage_extensions_el3(unsigned int my_idx)
665 {
666 	if (is_feat_sve_supported()) {
667 		sve_init_el3();
668 	}
669 
670 	if (is_feat_amu_supported()) {
671 		amu_init_el3(my_idx);
672 	}
673 
674 	if (is_feat_sme_supported()) {
675 		sme_init_el3();
676 	}
677 
678 	pmuv3_init_el3();
679 }
680 #endif /* IMAGE_BL31 */
681 
682 /******************************************************************************
683  * Function to initialise the registers with the RESET values in the context
684  * memory, which are maintained per world.
685  ******************************************************************************/
686 #if IMAGE_BL31
687 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
688 {
689 	/*
690 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
691 	 *
692 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
693 	 *  by Advanced SIMD, floating-point or SVE instructions (if
694 	 *  implemented) do not trap to EL3.
695 	 *
696 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
697 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
698 	 */
699 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
700 
701 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
702 
703 	/*
704 	 * Initialize MPAM3_EL3 to its default reset value
705 	 *
706 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
707 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
708 	 */
709 
710 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
711 }
712 #endif /* IMAGE_BL31 */
713 
714 /*******************************************************************************
715  * Initialise per_world_context for Non-Secure world.
716  * This function enables the architecture extensions, which have same value
717  * across the cores for the non-secure world.
718  ******************************************************************************/
719 #if IMAGE_BL31
720 void manage_extensions_nonsecure_per_world(void)
721 {
722 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
723 
724 	if (is_feat_sme_supported()) {
725 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
726 	}
727 
728 	if (is_feat_sve_supported()) {
729 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
730 	}
731 
732 	if (is_feat_amu_supported()) {
733 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
734 	}
735 
736 	if (is_feat_sys_reg_trace_supported()) {
737 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
738 	}
739 
740 	if (is_feat_mpam_supported()) {
741 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
742 	}
743 
744 	if (is_feat_fpmr_supported()) {
745 		fpmr_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
746 	}
747 }
748 #endif /* IMAGE_BL31 */
749 
750 /*******************************************************************************
751  * Initialise per_world_context for Secure world.
752  * This function enables the architecture extensions, which have same value
753  * across the cores for the secure world.
754  ******************************************************************************/
755 static void manage_extensions_secure_per_world(void)
756 {
757 #if IMAGE_BL31
758 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
759 
760 	if (is_feat_sme_supported()) {
761 
762 		if (ENABLE_SME_FOR_SWD) {
763 		/*
764 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
765 		 * SME, SVE, and FPU/SIMD context properly managed.
766 		 */
767 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
768 		} else {
769 		/*
770 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
771 		 * world can safely use the associated registers.
772 		 */
773 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
774 		}
775 	}
776 	if (is_feat_sve_supported()) {
777 		if (ENABLE_SVE_FOR_SWD) {
778 		/*
779 		 * Enable SVE and FPU in secure context, SPM must ensure
780 		 * that the SVE and FPU register contexts are properly managed.
781 		 */
782 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
783 		} else {
784 		/*
785 		 * Disable SVE and FPU in secure context so non-secure world
786 		 * can safely use them.
787 		 */
788 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
789 		}
790 	}
791 
792 	/* NS can access this but Secure shouldn't */
793 	if (is_feat_sys_reg_trace_supported()) {
794 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
795 	}
796 
797 	has_secure_perworld_init = true;
798 #endif /* IMAGE_BL31 */
799 }
800 
801 /*******************************************************************************
802  * Enable architecture extensions on first entry to Non-secure world.
803  ******************************************************************************/
804 static void manage_extensions_nonsecure(cpu_context_t *ctx)
805 {
806 #if IMAGE_BL31
807 	/* NOTE: registers are not context switched */
808 	if (is_feat_amu_supported()) {
809 		amu_enable(ctx);
810 	}
811 
812 	if (is_feat_sme_supported()) {
813 		sme_enable(ctx);
814 	}
815 
816 	if (is_feat_fgt2_supported()) {
817 		fgt2_enable(ctx);
818 	}
819 
820 	if (is_feat_debugv8p9_supported()) {
821 		debugv8p9_extended_bp_wp_enable(ctx);
822 	}
823 
824 	/*
825 	 * SPE, TRBE, and BRBE have multi-field enables that affect which world
826 	 * they apply to. Despite this, it is useful to ignore these for
827 	 * simplicity in determining the feature's per world enablement status.
828 	 * This is only possible when context is written per-world. Relied on
829 	 * by SMCCC_ARCH_FEATURE_AVAILABILITY
830 	 */
831 	if (is_feat_spe_supported()) {
832 		spe_enable(ctx);
833 	}
834 
835 	if (!check_if_trbe_disable_affected_core()) {
836 		if (is_feat_trbe_supported()) {
837 			trbe_enable(ctx);
838 		}
839 	}
840 
841 	if (is_feat_brbe_supported()) {
842 		brbe_enable(ctx);
843 	}
844 #endif /* IMAGE_BL31 */
845 }
846 
847 #if INIT_UNUSED_NS_EL2
848 /*******************************************************************************
849  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
850  * world when EL2 is empty and unused.
851  ******************************************************************************/
852 static void manage_extensions_nonsecure_el2_unused(void)
853 {
854 #if IMAGE_BL31
855 	if (is_feat_spe_supported()) {
856 		spe_init_el2_unused();
857 	}
858 
859 	if (is_feat_amu_supported()) {
860 		amu_init_el2_unused();
861 	}
862 
863 	if (is_feat_mpam_supported()) {
864 		mpam_init_el2_unused();
865 	}
866 
867 	if (is_feat_trbe_supported()) {
868 		trbe_init_el2_unused();
869 	}
870 
871 	if (is_feat_sys_reg_trace_supported()) {
872 		sys_reg_trace_init_el2_unused();
873 	}
874 
875 	if (is_feat_trf_supported()) {
876 		trf_init_el2_unused();
877 	}
878 
879 	pmuv3_init_el2_unused();
880 
881 	if (is_feat_sve_supported()) {
882 		sve_init_el2_unused();
883 	}
884 
885 	if (is_feat_sme_supported()) {
886 		sme_init_el2_unused();
887 	}
888 
889 	if (is_feat_mops_supported() && is_feat_hcx_supported()) {
890 		write_hcrx_el2(read_hcrx_el2() | HCRX_EL2_MSCEn_BIT);
891 	}
892 
893 	if (is_feat_pauth_supported()) {
894 		pauth_enable_el2();
895 	}
896 #endif /* IMAGE_BL31 */
897 }
898 #endif /* INIT_UNUSED_NS_EL2 */
899 
900 /*******************************************************************************
901  * Enable architecture extensions on first entry to Secure world.
902  ******************************************************************************/
903 static void manage_extensions_secure(cpu_context_t *ctx)
904 {
905 #if IMAGE_BL31
906 	if (is_feat_sme_supported()) {
907 		if (ENABLE_SME_FOR_SWD) {
908 		/*
909 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
910 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
911 		 */
912 			sme_init_el3();
913 			sme_enable(ctx);
914 		} else {
915 		/*
916 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
917 		 * world can safely use the associated registers.
918 		 */
919 			sme_disable(ctx);
920 		}
921 	}
922 
923 	/*
924 	 * SPE and TRBE cannot be fully disabled from EL3 registers alone, only
925 	 * sysreg access can. In case the EL1 controls leave them active on
926 	 * context switch, we want the owning security state to be NS so Secure
927 	 * can't be DOSed.
928 	 */
929 	if (is_feat_spe_supported()) {
930 		spe_disable(ctx);
931 	}
932 
933 	if (is_feat_trbe_supported()) {
934 		trbe_disable(ctx);
935 	}
936 #endif /* IMAGE_BL31 */
937 }
938 
939 /*******************************************************************************
940  * The following function initializes the cpu_context for the current CPU
941  * for first use, and sets the initial entrypoint state as specified by the
942  * entry_point_info structure.
943  ******************************************************************************/
944 void cm_init_my_context(const entry_point_info_t *ep)
945 {
946 	cpu_context_t *ctx;
947 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
948 	cm_setup_context(ctx, ep);
949 }
950 
951 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
952 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
953 {
954 #if INIT_UNUSED_NS_EL2
955 	u_register_t hcr_el2 = HCR_RESET_VAL;
956 	u_register_t mdcr_el2;
957 	u_register_t scr_el3;
958 
959 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
960 
961 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
962 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
963 		hcr_el2 |= HCR_RW_BIT;
964 	}
965 
966 	write_hcr_el2(hcr_el2);
967 
968 	/*
969 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
970 	 * All fields have architecturally UNKNOWN reset values.
971 	 */
972 	write_cptr_el2(CPTR_EL2_RESET_VAL);
973 
974 	/*
975 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
976 	 * reset and are set to zero except for field(s) listed below.
977 	 *
978 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
979 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
980 	 *
981 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
982 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
983 	 */
984 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
985 
986 	/*
987 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
988 	 * UNKNOWN value.
989 	 */
990 	write_cntvoff_el2(0);
991 
992 	/*
993 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
994 	 * respectively.
995 	 */
996 	write_vpidr_el2(read_midr_el1());
997 	write_vmpidr_el2(read_mpidr_el1());
998 
999 	/*
1000 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
1001 	 *
1002 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
1003 	 * translation is disabled, cache maintenance operations depend on the
1004 	 * VMID.
1005 	 *
1006 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
1007 	 * disabled.
1008 	 */
1009 	write_vttbr_el2(VTTBR_RESET_VAL &
1010 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1011 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1012 
1013 	/*
1014 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1015 	 * Some fields are architecturally UNKNOWN on reset.
1016 	 *
1017 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1018 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1019 	 *
1020 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1021 	 * accesses to the powerdown debug registers are not trapped to EL2.
1022 	 *
1023 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1024 	 * debug registers do not trap to EL2.
1025 	 *
1026 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1027 	 * EL2.
1028 	 */
1029 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1030 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1031 		   MDCR_EL2_TDE_BIT);
1032 
1033 	write_mdcr_el2(mdcr_el2);
1034 
1035 	/*
1036 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1037 	 *
1038 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1039 	 * EL1 accesses to System registers do not trap to EL2.
1040 	 */
1041 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1042 
1043 	/*
1044 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1045 	 * reset.
1046 	 *
1047 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1048 	 * and prevent timer interrupts.
1049 	 */
1050 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1051 
1052 	manage_extensions_nonsecure_el2_unused();
1053 #endif /* INIT_UNUSED_NS_EL2 */
1054 }
1055 
1056 /*******************************************************************************
1057  * Prepare the CPU system registers for first entry into realm, secure, or
1058  * normal world.
1059  *
1060  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1061  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1062  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1063  * For all entries, the EL1 registers are initialized from the cpu_context
1064  ******************************************************************************/
1065 void cm_prepare_el3_exit(uint32_t security_state)
1066 {
1067 	u_register_t sctlr_el2, scr_el3;
1068 	cpu_context_t *ctx = cm_get_context(security_state);
1069 
1070 	assert(ctx != NULL);
1071 
1072 	if (security_state == NON_SECURE) {
1073 		uint64_t el2_implemented = el_implemented(2);
1074 
1075 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1076 						 CTX_SCR_EL3);
1077 
1078 		if (el2_implemented != EL_IMPL_NONE) {
1079 
1080 			/*
1081 			 * If context is not being used for EL2, initialize
1082 			 * HCRX_EL2 with its init value here.
1083 			 */
1084 			if (is_feat_hcx_supported()) {
1085 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1086 			}
1087 
1088 			/*
1089 			 * Initialize Fine-grained trap registers introduced
1090 			 * by FEAT_FGT so all traps are initially disabled when
1091 			 * switching to EL2 or a lower EL, preventing undesired
1092 			 * behavior.
1093 			 */
1094 			if (is_feat_fgt_supported()) {
1095 				/*
1096 				 * Initialize HFG*_EL2 registers with a default
1097 				 * value so legacy systems unaware of FEAT_FGT
1098 				 * do not get trapped due to their lack of
1099 				 * initialization for this feature.
1100 				 */
1101 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1102 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1103 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1104 			}
1105 
1106 			/* Condition to ensure EL2 is being used. */
1107 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1108 				/* Initialize SCTLR_EL2 register with reset value. */
1109 				sctlr_el2 = SCTLR_EL2_RES1;
1110 
1111 				/*
1112 				 * If workaround of errata 764081 for Cortex-A75
1113 				 * is used then set SCTLR_EL2.IESB to enable
1114 				 * Implicit Error Synchronization Barrier.
1115 				 */
1116 				if (errata_a75_764081_applies()) {
1117 					sctlr_el2 |= SCTLR_IESB_BIT;
1118 				}
1119 
1120 				write_sctlr_el2(sctlr_el2);
1121 			} else {
1122 				/*
1123 				 * (scr_el3 & SCR_HCE_BIT==0)
1124 				 * EL2 implemented but unused.
1125 				 */
1126 				init_nonsecure_el2_unused(ctx);
1127 			}
1128 		}
1129 	}
1130 #if (!CTX_INCLUDE_EL2_REGS)
1131 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1132 	cm_el1_sysregs_context_restore(security_state);
1133 #endif
1134 	cm_set_next_eret_context(security_state);
1135 }
1136 
1137 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1138 
1139 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1140 {
1141 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1142 	if (is_feat_amu_supported()) {
1143 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1144 	}
1145 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1146 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1147 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1148 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1149 }
1150 
1151 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1152 {
1153 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1154 	if (is_feat_amu_supported()) {
1155 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1156 	}
1157 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1158 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1159 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1160 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1161 }
1162 
1163 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1164 {
1165 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1166 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1167 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1168 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1169 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1170 }
1171 
1172 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1173 {
1174 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1175 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1176 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1177 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1178 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1179 }
1180 
1181 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1182 {
1183 	u_register_t mpam_idr = read_mpamidr_el1();
1184 
1185 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1186 
1187 	/*
1188 	 * The context registers that we intend to save would be part of the
1189 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1190 	 */
1191 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1192 		return;
1193 	}
1194 
1195 	/*
1196 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1197 	 * MPAMIDR_HAS_HCR_BIT == 1.
1198 	 */
1199 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1200 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1201 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1202 
1203 	/*
1204 	 * The number of MPAMVPM registers is implementation defined, their
1205 	 * number is stored in the MPAMIDR_EL1 register.
1206 	 */
1207 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1208 	case 7:
1209 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1210 		__fallthrough;
1211 	case 6:
1212 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1213 		__fallthrough;
1214 	case 5:
1215 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1216 		__fallthrough;
1217 	case 4:
1218 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1219 		__fallthrough;
1220 	case 3:
1221 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1222 		__fallthrough;
1223 	case 2:
1224 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1225 		__fallthrough;
1226 	case 1:
1227 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1228 		break;
1229 	}
1230 }
1231 
1232 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1233 {
1234 	u_register_t mpam_idr = read_mpamidr_el1();
1235 
1236 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1237 
1238 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1239 		return;
1240 	}
1241 
1242 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1243 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1244 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1245 
1246 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1247 	case 7:
1248 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1249 		__fallthrough;
1250 	case 6:
1251 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1252 		__fallthrough;
1253 	case 5:
1254 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1255 		__fallthrough;
1256 	case 4:
1257 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1258 		__fallthrough;
1259 	case 3:
1260 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1261 		__fallthrough;
1262 	case 2:
1263 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1264 		__fallthrough;
1265 	case 1:
1266 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1267 		break;
1268 	}
1269 }
1270 
1271 /* ---------------------------------------------------------------------------
1272  * The following registers are not added:
1273  * ICH_AP0R<n>_EL2
1274  * ICH_AP1R<n>_EL2
1275  * ICH_LR<n>_EL2
1276  *
1277  * NOTE: For a system with S-EL2 present but not enabled, accessing
1278  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1279  * SCR_EL3.NS = 1 before accessing this register.
1280  * ---------------------------------------------------------------------------
1281  */
1282 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx, uint32_t security_state)
1283 {
1284 	u_register_t scr_el3 = read_scr_el3();
1285 
1286 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1287 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1288 #else
1289 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1290 	isb();
1291 
1292 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1293 
1294 	write_scr_el3(scr_el3);
1295 	isb();
1296 #endif
1297 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1298 
1299 	if (errata_ich_vmcr_el2_applies()) {
1300 		if (security_state == SECURE) {
1301 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1302 		} else {
1303 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1304 		}
1305 		isb();
1306 	}
1307 
1308 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1309 
1310 	if (errata_ich_vmcr_el2_applies()) {
1311 		write_scr_el3(scr_el3);
1312 		isb();
1313 	}
1314 }
1315 
1316 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx, uint32_t security_state)
1317 {
1318 	u_register_t scr_el3 = read_scr_el3();
1319 
1320 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1321 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1322 #else
1323 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1324 	isb();
1325 
1326 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1327 
1328 	write_scr_el3(scr_el3);
1329 	isb();
1330 #endif
1331 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1332 
1333 	if (errata_ich_vmcr_el2_applies()) {
1334 		if (security_state == SECURE) {
1335 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1336 		} else {
1337 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1338 		}
1339 		isb();
1340 	}
1341 
1342 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1343 
1344 	if (errata_ich_vmcr_el2_applies()) {
1345 		write_scr_el3(scr_el3);
1346 		isb();
1347 	}
1348 }
1349 
1350 /* -----------------------------------------------------
1351  * The following registers are not added:
1352  * AMEVCNTVOFF0<n>_EL2
1353  * AMEVCNTVOFF1<n>_EL2
1354  * -----------------------------------------------------
1355  */
1356 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1357 {
1358 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1359 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1360 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1361 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1362 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1363 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1364 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1365 	if (CTX_INCLUDE_AARCH32_REGS) {
1366 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1367 	}
1368 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1369 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1370 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1371 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1372 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1373 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1374 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1375 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1376 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1377 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1378 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1379 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1380 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1381 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1382 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1383 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1384 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1385 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1386 
1387 	write_el2_ctx_common_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1388 	write_el2_ctx_common_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1389 }
1390 
1391 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1392 {
1393 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1394 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1395 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1396 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1397 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1398 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1399 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1400 	if (CTX_INCLUDE_AARCH32_REGS) {
1401 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1402 	}
1403 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1404 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1405 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1406 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1407 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1408 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1409 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1410 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1411 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1412 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1413 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1414 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1415 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1416 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1417 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1418 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1419 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1420 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1421 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1422 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1423 }
1424 
1425 /*******************************************************************************
1426  * Save EL2 sysreg context
1427  ******************************************************************************/
1428 void cm_el2_sysregs_context_save(uint32_t security_state)
1429 {
1430 	cpu_context_t *ctx;
1431 	el2_sysregs_t *el2_sysregs_ctx;
1432 
1433 	ctx = cm_get_context(security_state);
1434 	assert(ctx != NULL);
1435 
1436 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1437 
1438 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1439 	el2_sysregs_context_save_gic(el2_sysregs_ctx, security_state);
1440 
1441 	if (is_feat_mte2_supported()) {
1442 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1443 	}
1444 
1445 	if (is_feat_mpam_supported()) {
1446 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1447 	}
1448 
1449 	if (is_feat_fgt_supported()) {
1450 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1451 	}
1452 
1453 	if (is_feat_fgt2_supported()) {
1454 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1455 	}
1456 
1457 	if (is_feat_ecv_v2_supported()) {
1458 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1459 	}
1460 
1461 	if (is_feat_vhe_supported()) {
1462 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1463 					read_contextidr_el2());
1464 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1465 	}
1466 
1467 	if (is_feat_ras_supported()) {
1468 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1469 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1470 	}
1471 
1472 	if (is_feat_nv2_supported()) {
1473 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1474 	}
1475 
1476 	if (is_feat_trf_supported()) {
1477 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1478 	}
1479 
1480 	if (is_feat_csv2_2_supported()) {
1481 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1482 					read_scxtnum_el2());
1483 	}
1484 
1485 	if (is_feat_hcx_supported()) {
1486 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1487 	}
1488 
1489 	if (is_feat_tcr2_supported()) {
1490 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1491 	}
1492 
1493 	if (is_feat_sxpie_supported()) {
1494 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1495 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1496 	}
1497 
1498 	if (is_feat_sxpoe_supported()) {
1499 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1500 	}
1501 
1502 	if (is_feat_brbe_supported()) {
1503 		write_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2, read_brbcr_el2());
1504 	}
1505 
1506 	if (is_feat_s2pie_supported()) {
1507 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1508 	}
1509 
1510 	if (is_feat_gcs_supported()) {
1511 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1512 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1513 	}
1514 
1515 	if (is_feat_sctlr2_supported()) {
1516 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1517 	}
1518 }
1519 
1520 /*******************************************************************************
1521  * Restore EL2 sysreg context
1522  ******************************************************************************/
1523 void cm_el2_sysregs_context_restore(uint32_t security_state)
1524 {
1525 	cpu_context_t *ctx;
1526 	el2_sysregs_t *el2_sysregs_ctx;
1527 
1528 	ctx = cm_get_context(security_state);
1529 	assert(ctx != NULL);
1530 
1531 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1532 
1533 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1534 	el2_sysregs_context_restore_gic(el2_sysregs_ctx, security_state);
1535 
1536 	if (is_feat_mte2_supported()) {
1537 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1538 	}
1539 
1540 	if (is_feat_mpam_supported()) {
1541 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1542 	}
1543 
1544 	if (is_feat_fgt_supported()) {
1545 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1546 	}
1547 
1548 	if (is_feat_fgt2_supported()) {
1549 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1550 	}
1551 
1552 	if (is_feat_ecv_v2_supported()) {
1553 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1554 	}
1555 
1556 	if (is_feat_vhe_supported()) {
1557 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1558 					contextidr_el2));
1559 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1560 	}
1561 
1562 	if (is_feat_ras_supported()) {
1563 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1564 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1565 	}
1566 
1567 	if (is_feat_nv2_supported()) {
1568 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1569 	}
1570 
1571 	if (is_feat_trf_supported()) {
1572 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1573 	}
1574 
1575 	if (is_feat_csv2_2_supported()) {
1576 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1577 					scxtnum_el2));
1578 	}
1579 
1580 	if (is_feat_hcx_supported()) {
1581 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1582 	}
1583 
1584 	if (is_feat_tcr2_supported()) {
1585 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1586 	}
1587 
1588 	if (is_feat_sxpie_supported()) {
1589 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1590 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1591 	}
1592 
1593 	if (is_feat_sxpoe_supported()) {
1594 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1595 	}
1596 
1597 	if (is_feat_s2pie_supported()) {
1598 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1599 	}
1600 
1601 	if (is_feat_gcs_supported()) {
1602 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1603 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1604 	}
1605 
1606 	if (is_feat_sctlr2_supported()) {
1607 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1608 	}
1609 
1610 	if (is_feat_brbe_supported()) {
1611 		write_brbcr_el2(read_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2));
1612 	}
1613 }
1614 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1615 
1616 /*******************************************************************************
1617  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1618  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1619  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1620  * cm_prepare_el3_exit function.
1621  ******************************************************************************/
1622 void cm_prepare_el3_exit_ns(void)
1623 {
1624 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1625 #if ENABLE_ASSERTIONS
1626 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1627 	assert(ctx != NULL);
1628 
1629 	/* Assert that EL2 is used. */
1630 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1631 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1632 			(el_implemented(2U) != EL_IMPL_NONE));
1633 #endif /* ENABLE_ASSERTIONS */
1634 
1635 	/* Restore EL2 sysreg contexts */
1636 	cm_el2_sysregs_context_restore(NON_SECURE);
1637 	cm_set_next_eret_context(NON_SECURE);
1638 #else
1639 	cm_prepare_el3_exit(NON_SECURE);
1640 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1641 }
1642 
1643 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1644 /*******************************************************************************
1645  * The next set of six functions are used by runtime services to save and restore
1646  * EL1 context on the 'cpu_context' structure for the specified security state.
1647  ******************************************************************************/
1648 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1649 {
1650 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1651 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1652 
1653 #if (!ERRATA_SPECULATIVE_AT)
1654 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1655 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1656 #endif /* (!ERRATA_SPECULATIVE_AT) */
1657 
1658 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1659 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1660 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1661 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1662 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1663 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1664 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1665 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1666 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1667 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1668 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1669 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1670 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1671 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1672 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1673 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1674 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1675 
1676 	write_el1_ctx_common_sysreg128(ctx, par_el1, read_par_el1());
1677 	write_el1_ctx_common_sysreg128(ctx, ttbr0_el1, read_ttbr0_el1());
1678 	write_el1_ctx_common_sysreg128(ctx, ttbr1_el1, read_ttbr1_el1());
1679 
1680 	if (CTX_INCLUDE_AARCH32_REGS) {
1681 		/* Save Aarch32 registers */
1682 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1683 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1684 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1685 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1686 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1687 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1688 	}
1689 
1690 	if (NS_TIMER_SWITCH) {
1691 		/* Save NS Timer registers */
1692 		write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1693 		write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1694 		write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1695 		write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1696 		write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1697 	}
1698 
1699 	if (is_feat_mte2_supported()) {
1700 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1701 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1702 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1703 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1704 	}
1705 
1706 	if (is_feat_ras_supported()) {
1707 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1708 	}
1709 
1710 	if (is_feat_s1pie_supported()) {
1711 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1712 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1713 	}
1714 
1715 	if (is_feat_s1poe_supported()) {
1716 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1717 	}
1718 
1719 	if (is_feat_s2poe_supported()) {
1720 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1721 	}
1722 
1723 	if (is_feat_tcr2_supported()) {
1724 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1725 	}
1726 
1727 	if (is_feat_trf_supported()) {
1728 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1729 	}
1730 
1731 	if (is_feat_csv2_2_supported()) {
1732 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1733 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1734 	}
1735 
1736 	if (is_feat_gcs_supported()) {
1737 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1738 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1739 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1740 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1741 	}
1742 
1743 	if (is_feat_the_supported()) {
1744 		write_el1_ctx_the_sysreg128(ctx, rcwmask_el1, read_rcwmask_el1());
1745 		write_el1_ctx_the_sysreg128(ctx, rcwsmask_el1, read_rcwsmask_el1());
1746 	}
1747 
1748 	if (is_feat_sctlr2_supported()) {
1749 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1750 	}
1751 
1752 	if (is_feat_ls64_accdata_supported()) {
1753 		write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1());
1754 	}
1755 }
1756 
1757 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1758 {
1759 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1760 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1761 
1762 #if (!ERRATA_SPECULATIVE_AT)
1763 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1764 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1765 #endif /* (!ERRATA_SPECULATIVE_AT) */
1766 
1767 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1768 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1769 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1770 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1771 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1772 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1773 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1774 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1775 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1776 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1777 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1778 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1779 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1780 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1781 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1782 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1783 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1784 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1785 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1786 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1787 
1788 	if (CTX_INCLUDE_AARCH32_REGS) {
1789 		/* Restore Aarch32 registers */
1790 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1791 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1792 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1793 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1794 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1795 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1796 	}
1797 
1798 	if (NS_TIMER_SWITCH) {
1799 		/* Restore NS Timer registers */
1800 		write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1801 		write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1802 		write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1803 		write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1804 		write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1805 	}
1806 
1807 	if (is_feat_mte2_supported()) {
1808 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1809 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1810 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1811 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1812 	}
1813 
1814 	if (is_feat_ras_supported()) {
1815 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1816 	}
1817 
1818 	if (is_feat_s1pie_supported()) {
1819 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1820 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1821 	}
1822 
1823 	if (is_feat_s1poe_supported()) {
1824 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1825 	}
1826 
1827 	if (is_feat_s2poe_supported()) {
1828 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1829 	}
1830 
1831 	if (is_feat_tcr2_supported()) {
1832 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1833 	}
1834 
1835 	if (is_feat_trf_supported()) {
1836 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1837 	}
1838 
1839 	if (is_feat_csv2_2_supported()) {
1840 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1841 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1842 	}
1843 
1844 	if (is_feat_gcs_supported()) {
1845 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1846 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1847 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1848 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1849 	}
1850 
1851 	if (is_feat_the_supported()) {
1852 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1853 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1854 	}
1855 
1856 	if (is_feat_sctlr2_supported()) {
1857 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1858 	}
1859 
1860 	if (is_feat_ls64_accdata_supported()) {
1861 		write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1));
1862 	}
1863 }
1864 
1865 /*******************************************************************************
1866  * The next couple of functions are used by runtime services to save and restore
1867  * EL1 context on the 'cpu_context' structure for the specified security state.
1868  ******************************************************************************/
1869 void cm_el1_sysregs_context_save(uint32_t security_state)
1870 {
1871 	cpu_context_t *ctx;
1872 
1873 	ctx = cm_get_context(security_state);
1874 	assert(ctx != NULL);
1875 
1876 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1877 
1878 #if IMAGE_BL31
1879 	if (security_state == SECURE) {
1880 		PUBLISH_EVENT(cm_exited_secure_world);
1881 	} else {
1882 		PUBLISH_EVENT(cm_exited_normal_world);
1883 	}
1884 #endif
1885 }
1886 
1887 void cm_el1_sysregs_context_restore(uint32_t security_state)
1888 {
1889 	cpu_context_t *ctx;
1890 
1891 	ctx = cm_get_context(security_state);
1892 	assert(ctx != NULL);
1893 
1894 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1895 
1896 #if IMAGE_BL31
1897 	if (security_state == SECURE) {
1898 		PUBLISH_EVENT(cm_entering_secure_world);
1899 	} else {
1900 		PUBLISH_EVENT(cm_entering_normal_world);
1901 	}
1902 #endif
1903 }
1904 
1905 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1906 
1907 /*******************************************************************************
1908  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1909  * given security state with the given entrypoint
1910  ******************************************************************************/
1911 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1912 {
1913 	cpu_context_t *ctx;
1914 	el3_state_t *state;
1915 
1916 	ctx = cm_get_context(security_state);
1917 	assert(ctx != NULL);
1918 
1919 	/* Populate EL3 state so that ERET jumps to the correct entry */
1920 	state = get_el3state_ctx(ctx);
1921 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1922 }
1923 
1924 /*******************************************************************************
1925  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1926  * pertaining to the given security state
1927  ******************************************************************************/
1928 void cm_set_elr_spsr_el3(uint32_t security_state,
1929 			uintptr_t entrypoint, uint32_t spsr)
1930 {
1931 	cpu_context_t *ctx;
1932 	el3_state_t *state;
1933 
1934 	ctx = cm_get_context(security_state);
1935 	assert(ctx != NULL);
1936 
1937 	/* Populate EL3 state so that ERET jumps to the correct entry */
1938 	state = get_el3state_ctx(ctx);
1939 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1940 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1941 }
1942 
1943 /*******************************************************************************
1944  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1945  * pertaining to the given security state using the value and bit position
1946  * specified in the parameters. It preserves all other bits.
1947  ******************************************************************************/
1948 void cm_write_scr_el3_bit(uint32_t security_state,
1949 			  uint32_t bit_pos,
1950 			  uint32_t value)
1951 {
1952 	cpu_context_t *ctx;
1953 	el3_state_t *state;
1954 	u_register_t scr_el3;
1955 
1956 	ctx = cm_get_context(security_state);
1957 	assert(ctx != NULL);
1958 
1959 	/* Ensure that the bit position is a valid one */
1960 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1961 
1962 	/* Ensure that the 'value' is only a bit wide */
1963 	assert(value <= 1U);
1964 
1965 	/*
1966 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1967 	 * and set it to its new value.
1968 	 */
1969 	state = get_el3state_ctx(ctx);
1970 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1971 	scr_el3 &= ~(1UL << bit_pos);
1972 	scr_el3 |= (u_register_t)value << bit_pos;
1973 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1974 }
1975 
1976 /*******************************************************************************
1977  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1978  * given security state.
1979  ******************************************************************************/
1980 u_register_t cm_get_scr_el3(uint32_t security_state)
1981 {
1982 	const cpu_context_t *ctx;
1983 	const el3_state_t *state;
1984 
1985 	ctx = cm_get_context(security_state);
1986 	assert(ctx != NULL);
1987 
1988 	/* Populate EL3 state so that ERET jumps to the correct entry */
1989 	state = get_el3state_ctx(ctx);
1990 	return read_ctx_reg(state, CTX_SCR_EL3);
1991 }
1992 
1993 /*******************************************************************************
1994  * This function is used to program the context that's used for exception
1995  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1996  * the required security state
1997  ******************************************************************************/
1998 void cm_set_next_eret_context(uint32_t security_state)
1999 {
2000 	cpu_context_t *ctx;
2001 
2002 	ctx = cm_get_context(security_state);
2003 	assert(ctx != NULL);
2004 
2005 	cm_set_next_context(ctx);
2006 }
2007