1532ed618SSoby Mathew /* 2532ed618SSoby Mathew * Copyright (c) 2013-2016, ARM Limited and Contributors. All rights reserved. 3532ed618SSoby Mathew * 4532ed618SSoby Mathew * Redistribution and use in source and binary forms, with or without 5532ed618SSoby Mathew * modification, are permitted provided that the following conditions are met: 6532ed618SSoby Mathew * 7532ed618SSoby Mathew * Redistributions of source code must retain the above copyright notice, this 8532ed618SSoby Mathew * list of conditions and the following disclaimer. 9532ed618SSoby Mathew * 10532ed618SSoby Mathew * Redistributions in binary form must reproduce the above copyright notice, 11532ed618SSoby Mathew * this list of conditions and the following disclaimer in the documentation 12532ed618SSoby Mathew * and/or other materials provided with the distribution. 13532ed618SSoby Mathew * 14532ed618SSoby Mathew * Neither the name of ARM nor the names of its contributors may be used 15532ed618SSoby Mathew * to endorse or promote products derived from this software without specific 16532ed618SSoby Mathew * prior written permission. 17532ed618SSoby Mathew * 18532ed618SSoby Mathew * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 19532ed618SSoby Mathew * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20532ed618SSoby Mathew * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21532ed618SSoby Mathew * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 22532ed618SSoby Mathew * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23532ed618SSoby Mathew * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24532ed618SSoby Mathew * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25532ed618SSoby Mathew * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26532ed618SSoby Mathew * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27532ed618SSoby Mathew * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28532ed618SSoby Mathew * POSSIBILITY OF SUCH DAMAGE. 29532ed618SSoby Mathew */ 30532ed618SSoby Mathew 31532ed618SSoby Mathew #include <arch.h> 32532ed618SSoby Mathew #include <arch_helpers.h> 33532ed618SSoby Mathew #include <assert.h> 34532ed618SSoby Mathew #include <bl_common.h> 35532ed618SSoby Mathew #include <context.h> 36532ed618SSoby Mathew #include <context_mgmt.h> 37532ed618SSoby Mathew #include <interrupt_mgmt.h> 38532ed618SSoby Mathew #include <platform.h> 39532ed618SSoby Mathew #include <platform_def.h> 40532ed618SSoby Mathew #include <smcc_helpers.h> 41532ed618SSoby Mathew #include <string.h> 42532ed618SSoby Mathew 43532ed618SSoby Mathew 44532ed618SSoby Mathew /******************************************************************************* 45532ed618SSoby Mathew * Context management library initialisation routine. This library is used by 46532ed618SSoby Mathew * runtime services to share pointers to 'cpu_context' structures for the secure 47532ed618SSoby Mathew * and non-secure states. Management of the structures and their associated 48532ed618SSoby Mathew * memory is not done by the context management library e.g. the PSCI service 49532ed618SSoby Mathew * manages the cpu context used for entry from and exit to the non-secure state. 50532ed618SSoby Mathew * The Secure payload dispatcher service manages the context(s) corresponding to 51532ed618SSoby Mathew * the secure state. It also uses this library to get access to the non-secure 52532ed618SSoby Mathew * state cpu context pointers. 53532ed618SSoby Mathew * Lastly, this library provides the api to make SP_EL3 point to the cpu context 54532ed618SSoby Mathew * which will used for programming an entry into a lower EL. The same context 55532ed618SSoby Mathew * will used to save state upon exception entry from that EL. 56532ed618SSoby Mathew ******************************************************************************/ 57532ed618SSoby Mathew void cm_init(void) 58532ed618SSoby Mathew { 59532ed618SSoby Mathew /* 60532ed618SSoby Mathew * The context management library has only global data to intialize, but 61532ed618SSoby Mathew * that will be done when the BSS is zeroed out 62532ed618SSoby Mathew */ 63532ed618SSoby Mathew } 64532ed618SSoby Mathew 65532ed618SSoby Mathew /******************************************************************************* 66532ed618SSoby Mathew * The following function initializes the cpu_context 'ctx' for 67532ed618SSoby Mathew * first use, and sets the initial entrypoint state as specified by the 68532ed618SSoby Mathew * entry_point_info structure. 69532ed618SSoby Mathew * 70532ed618SSoby Mathew * The security state to initialize is determined by the SECURE attribute 71532ed618SSoby Mathew * of the entry_point_info. The function returns a pointer to the initialized 72532ed618SSoby Mathew * context and sets this as the next context to return to. 73532ed618SSoby Mathew * 74532ed618SSoby Mathew * The EE and ST attributes are used to configure the endianess and secure 75532ed618SSoby Mathew * timer availability for the new execution context. 76532ed618SSoby Mathew * 77532ed618SSoby Mathew * To prepare the register state for entry call cm_prepare_el3_exit() and 78532ed618SSoby Mathew * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to 79532ed618SSoby Mathew * cm_e1_sysreg_context_restore(). 80532ed618SSoby Mathew ******************************************************************************/ 81532ed618SSoby Mathew static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) 82532ed618SSoby Mathew { 83532ed618SSoby Mathew unsigned int security_state; 84532ed618SSoby Mathew uint32_t scr_el3; 85532ed618SSoby Mathew el3_state_t *state; 86532ed618SSoby Mathew gp_regs_t *gp_regs; 87532ed618SSoby Mathew unsigned long sctlr_elx; 88532ed618SSoby Mathew 89532ed618SSoby Mathew assert(ctx); 90532ed618SSoby Mathew 91532ed618SSoby Mathew security_state = GET_SECURITY_STATE(ep->h.attr); 92532ed618SSoby Mathew 93532ed618SSoby Mathew /* Clear any residual register values from the context */ 94532ed618SSoby Mathew memset(ctx, 0, sizeof(*ctx)); 95532ed618SSoby Mathew 96532ed618SSoby Mathew /* 97532ed618SSoby Mathew * Base the context SCR on the current value, adjust for entry point 98532ed618SSoby Mathew * specific requirements and set trap bits from the IMF 99532ed618SSoby Mathew * TODO: provide the base/global SCR bits using another mechanism? 100532ed618SSoby Mathew */ 101532ed618SSoby Mathew scr_el3 = read_scr(); 102532ed618SSoby Mathew scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | 103532ed618SSoby Mathew SCR_ST_BIT | SCR_HCE_BIT); 104532ed618SSoby Mathew 105532ed618SSoby Mathew if (security_state != SECURE) 106532ed618SSoby Mathew scr_el3 |= SCR_NS_BIT; 107532ed618SSoby Mathew 108532ed618SSoby Mathew if (GET_RW(ep->spsr) == MODE_RW_64) 109532ed618SSoby Mathew scr_el3 |= SCR_RW_BIT; 110532ed618SSoby Mathew 111532ed618SSoby Mathew if (EP_GET_ST(ep->h.attr)) 112532ed618SSoby Mathew scr_el3 |= SCR_ST_BIT; 113532ed618SSoby Mathew 114532ed618SSoby Mathew #ifndef HANDLE_EA_EL3_FIRST 115532ed618SSoby Mathew /* Explicitly stop to trap aborts from lower exception levels. */ 116532ed618SSoby Mathew scr_el3 &= ~SCR_EA_BIT; 117532ed618SSoby Mathew #endif 118532ed618SSoby Mathew 119532ed618SSoby Mathew #if IMAGE_BL31 120532ed618SSoby Mathew /* 121532ed618SSoby Mathew * IRQ/FIQ bits only need setting if interrupt routing 122532ed618SSoby Mathew * model has been set up for BL31. 123532ed618SSoby Mathew */ 124532ed618SSoby Mathew scr_el3 |= get_scr_el3_from_routing_model(security_state); 125532ed618SSoby Mathew #endif 126532ed618SSoby Mathew 127532ed618SSoby Mathew /* 128532ed618SSoby Mathew * Set up SCTLR_ELx for the target exception level: 129532ed618SSoby Mathew * EE bit is taken from the entrypoint attributes 130532ed618SSoby Mathew * M, C and I bits must be zero (as required by PSCI specification) 131532ed618SSoby Mathew * 132532ed618SSoby Mathew * The target exception level is based on the spsr mode requested. 133532ed618SSoby Mathew * If execution is requested to EL2 or hyp mode, HVC is enabled 134532ed618SSoby Mathew * via SCR_EL3.HCE. 135532ed618SSoby Mathew * 136532ed618SSoby Mathew * Always compute the SCTLR_EL1 value and save in the cpu_context 137532ed618SSoby Mathew * - the EL2 registers are set up by cm_preapre_ns_entry() as they 138532ed618SSoby Mathew * are not part of the stored cpu_context 139532ed618SSoby Mathew * 140532ed618SSoby Mathew * TODO: In debug builds the spsr should be validated and checked 141532ed618SSoby Mathew * against the CPU support, security state, endianess and pc 142532ed618SSoby Mathew */ 143532ed618SSoby Mathew sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; 144532ed618SSoby Mathew if (GET_RW(ep->spsr) == MODE_RW_64) 145532ed618SSoby Mathew sctlr_elx |= SCTLR_EL1_RES1; 146b7b0787dSSoby Mathew else { 147532ed618SSoby Mathew sctlr_elx |= SCTLR_AARCH32_EL1_RES1; 148b7b0787dSSoby Mathew /* 149b7b0787dSSoby Mathew * If lower non-secure EL is AArch32, enable the CP15BEN, nTWI 150b7b0787dSSoby Mathew * & nTWI bits. This aligns with SCTLR initialization on 151b7b0787dSSoby Mathew * systems with an AArch32 EL3, where these bits 152b7b0787dSSoby Mathew * architecturally reset to 1. 153b7b0787dSSoby Mathew */ 154b7b0787dSSoby Mathew if (security_state != SECURE) 155b7b0787dSSoby Mathew sctlr_elx |= SCTLR_CP15BEN_BIT | SCTLR_NTWI_BIT 156b7b0787dSSoby Mathew | SCTLR_NTWE_BIT; 157b7b0787dSSoby Mathew } 158b7b0787dSSoby Mathew 159532ed618SSoby Mathew write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); 160532ed618SSoby Mathew 161532ed618SSoby Mathew if ((GET_RW(ep->spsr) == MODE_RW_64 162532ed618SSoby Mathew && GET_EL(ep->spsr) == MODE_EL2) 163532ed618SSoby Mathew || (GET_RW(ep->spsr) != MODE_RW_64 164532ed618SSoby Mathew && GET_M32(ep->spsr) == MODE32_hyp)) { 165532ed618SSoby Mathew scr_el3 |= SCR_HCE_BIT; 166532ed618SSoby Mathew } 167532ed618SSoby Mathew 168532ed618SSoby Mathew /* Populate EL3 state so that we've the right context before doing ERET */ 169532ed618SSoby Mathew state = get_el3state_ctx(ctx); 170532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 171532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, ep->pc); 172532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); 173532ed618SSoby Mathew 174532ed618SSoby Mathew /* 175532ed618SSoby Mathew * Store the X0-X7 value from the entrypoint into the context 176532ed618SSoby Mathew * Use memcpy as we are in control of the layout of the structures 177532ed618SSoby Mathew */ 178532ed618SSoby Mathew gp_regs = get_gpregs_ctx(ctx); 179532ed618SSoby Mathew memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); 180532ed618SSoby Mathew } 181532ed618SSoby Mathew 182532ed618SSoby Mathew /******************************************************************************* 183532ed618SSoby Mathew * The following function initializes the cpu_context for a CPU specified by 184532ed618SSoby Mathew * its `cpu_idx` for first use, and sets the initial entrypoint state as 185532ed618SSoby Mathew * specified by the entry_point_info structure. 186532ed618SSoby Mathew ******************************************************************************/ 187532ed618SSoby Mathew void cm_init_context_by_index(unsigned int cpu_idx, 188532ed618SSoby Mathew const entry_point_info_t *ep) 189532ed618SSoby Mathew { 190532ed618SSoby Mathew cpu_context_t *ctx; 191532ed618SSoby Mathew ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 192532ed618SSoby Mathew cm_init_context_common(ctx, ep); 193532ed618SSoby Mathew } 194532ed618SSoby Mathew 195532ed618SSoby Mathew /******************************************************************************* 196532ed618SSoby Mathew * The following function initializes the cpu_context for the current CPU 197532ed618SSoby Mathew * for first use, and sets the initial entrypoint state as specified by the 198532ed618SSoby Mathew * entry_point_info structure. 199532ed618SSoby Mathew ******************************************************************************/ 200532ed618SSoby Mathew void cm_init_my_context(const entry_point_info_t *ep) 201532ed618SSoby Mathew { 202532ed618SSoby Mathew cpu_context_t *ctx; 203532ed618SSoby Mathew ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 204532ed618SSoby Mathew cm_init_context_common(ctx, ep); 205532ed618SSoby Mathew } 206532ed618SSoby Mathew 207532ed618SSoby Mathew /******************************************************************************* 208532ed618SSoby Mathew * Prepare the CPU system registers for first entry into secure or normal world 209532ed618SSoby Mathew * 210532ed618SSoby Mathew * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized 211532ed618SSoby Mathew * If execution is requested to non-secure EL1 or svc mode, and the CPU supports 212532ed618SSoby Mathew * EL2 then EL2 is disabled by configuring all necessary EL2 registers. 213532ed618SSoby Mathew * For all entries, the EL1 registers are initialized from the cpu_context 214532ed618SSoby Mathew ******************************************************************************/ 215532ed618SSoby Mathew void cm_prepare_el3_exit(uint32_t security_state) 216532ed618SSoby Mathew { 217532ed618SSoby Mathew uint32_t sctlr_elx, scr_el3, cptr_el2; 218532ed618SSoby Mathew cpu_context_t *ctx = cm_get_context(security_state); 219532ed618SSoby Mathew 220532ed618SSoby Mathew assert(ctx); 221532ed618SSoby Mathew 222532ed618SSoby Mathew if (security_state == NON_SECURE) { 223532ed618SSoby Mathew scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); 224532ed618SSoby Mathew if (scr_el3 & SCR_HCE_BIT) { 225532ed618SSoby Mathew /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ 226532ed618SSoby Mathew sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx), 227532ed618SSoby Mathew CTX_SCTLR_EL1); 228532ed618SSoby Mathew sctlr_elx &= ~SCTLR_EE_BIT; 229532ed618SSoby Mathew sctlr_elx |= SCTLR_EL2_RES1; 230532ed618SSoby Mathew write_sctlr_el2(sctlr_elx); 231532ed618SSoby Mathew } else if (read_id_aa64pfr0_el1() & 232532ed618SSoby Mathew (ID_AA64PFR0_ELX_MASK << ID_AA64PFR0_EL2_SHIFT)) { 233532ed618SSoby Mathew /* EL2 present but unused, need to disable safely */ 234532ed618SSoby Mathew 235532ed618SSoby Mathew /* HCR_EL2 = 0, except RW bit set to match SCR_EL3 */ 236532ed618SSoby Mathew write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0); 237532ed618SSoby Mathew 238532ed618SSoby Mathew /* SCTLR_EL2 : can be ignored when bypassing */ 239532ed618SSoby Mathew 240532ed618SSoby Mathew /* CPTR_EL2 : disable all traps TCPAC, TTA, TFP */ 241532ed618SSoby Mathew cptr_el2 = read_cptr_el2(); 242532ed618SSoby Mathew cptr_el2 &= ~(TCPAC_BIT | TTA_BIT | TFP_BIT); 243532ed618SSoby Mathew write_cptr_el2(cptr_el2); 244532ed618SSoby Mathew 245532ed618SSoby Mathew /* Enable EL1 access to timer */ 246532ed618SSoby Mathew write_cnthctl_el2(EL1PCEN_BIT | EL1PCTEN_BIT); 247532ed618SSoby Mathew 248532ed618SSoby Mathew /* Reset CNTVOFF_EL2 */ 249532ed618SSoby Mathew write_cntvoff_el2(0); 250532ed618SSoby Mathew 251532ed618SSoby Mathew /* Set VPIDR, VMPIDR to match MIDR, MPIDR */ 252532ed618SSoby Mathew write_vpidr_el2(read_midr_el1()); 253532ed618SSoby Mathew write_vmpidr_el2(read_mpidr_el1()); 254532ed618SSoby Mathew 255532ed618SSoby Mathew /* 256532ed618SSoby Mathew * Reset VTTBR_EL2. 257532ed618SSoby Mathew * Needed because cache maintenance operations depend on 258532ed618SSoby Mathew * the VMID even when non-secure EL1&0 stage 2 address 259532ed618SSoby Mathew * translation are disabled. 260532ed618SSoby Mathew */ 261532ed618SSoby Mathew write_vttbr_el2(0); 262495f3d3cSDavid Cunado /* 263495f3d3cSDavid Cunado * Avoid unexpected debug traps in case where MDCR_EL2 264495f3d3cSDavid Cunado * is not completely reset by the hardware - set 265495f3d3cSDavid Cunado * MDCR_EL2.HPMN to PMCR_EL0.N and zero the remaining 266495f3d3cSDavid Cunado * bits. 267495f3d3cSDavid Cunado * MDCR_EL2.HPMN and PMCR_EL0.N fields are the same size 268495f3d3cSDavid Cunado * (5 bits) and HPMN is at offset zero within MDCR_EL2. 269495f3d3cSDavid Cunado */ 270495f3d3cSDavid Cunado write_mdcr_el2((read_pmcr_el0() & PMCR_EL0_N_BITS) 271495f3d3cSDavid Cunado >> PMCR_EL0_N_SHIFT); 272*939f66d6SDavid Cunado /* 273*939f66d6SDavid Cunado * Avoid unexpected traps of non-secure access to 274*939f66d6SDavid Cunado * certain system registers at EL1 or lower where 275*939f66d6SDavid Cunado * HSTR_EL2 is not completely reset to zero by the 276*939f66d6SDavid Cunado * hardware - zero the entire register. 277*939f66d6SDavid Cunado */ 278*939f66d6SDavid Cunado write_hstr_el2(0); 279*939f66d6SDavid Cunado /* 280*939f66d6SDavid Cunado * Reset CNTHP_CTL_EL2 to disable the EL2 physical timer 281*939f66d6SDavid Cunado * and therefore prevent timer interrupts. 282*939f66d6SDavid Cunado */ 283*939f66d6SDavid Cunado write_cnthp_ctl_el2(0); 284532ed618SSoby Mathew } 285532ed618SSoby Mathew } 286532ed618SSoby Mathew 287532ed618SSoby Mathew el1_sysregs_context_restore(get_sysregs_ctx(ctx)); 288532ed618SSoby Mathew 289532ed618SSoby Mathew cm_set_next_context(ctx); 290532ed618SSoby Mathew } 291532ed618SSoby Mathew 292532ed618SSoby Mathew /******************************************************************************* 293532ed618SSoby Mathew * The next four functions are used by runtime services to save and restore 294532ed618SSoby Mathew * EL1 context on the 'cpu_context' structure for the specified security 295532ed618SSoby Mathew * state. 296532ed618SSoby Mathew ******************************************************************************/ 297532ed618SSoby Mathew void cm_el1_sysregs_context_save(uint32_t security_state) 298532ed618SSoby Mathew { 299532ed618SSoby Mathew cpu_context_t *ctx; 300532ed618SSoby Mathew 301532ed618SSoby Mathew ctx = cm_get_context(security_state); 302532ed618SSoby Mathew assert(ctx); 303532ed618SSoby Mathew 304532ed618SSoby Mathew el1_sysregs_context_save(get_sysregs_ctx(ctx)); 305532ed618SSoby Mathew } 306532ed618SSoby Mathew 307532ed618SSoby Mathew void cm_el1_sysregs_context_restore(uint32_t security_state) 308532ed618SSoby Mathew { 309532ed618SSoby Mathew cpu_context_t *ctx; 310532ed618SSoby Mathew 311532ed618SSoby Mathew ctx = cm_get_context(security_state); 312532ed618SSoby Mathew assert(ctx); 313532ed618SSoby Mathew 314532ed618SSoby Mathew el1_sysregs_context_restore(get_sysregs_ctx(ctx)); 315532ed618SSoby Mathew } 316532ed618SSoby Mathew 317532ed618SSoby Mathew /******************************************************************************* 318532ed618SSoby Mathew * This function populates ELR_EL3 member of 'cpu_context' pertaining to the 319532ed618SSoby Mathew * given security state with the given entrypoint 320532ed618SSoby Mathew ******************************************************************************/ 321532ed618SSoby Mathew void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) 322532ed618SSoby Mathew { 323532ed618SSoby Mathew cpu_context_t *ctx; 324532ed618SSoby Mathew el3_state_t *state; 325532ed618SSoby Mathew 326532ed618SSoby Mathew ctx = cm_get_context(security_state); 327532ed618SSoby Mathew assert(ctx); 328532ed618SSoby Mathew 329532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 330532ed618SSoby Mathew state = get_el3state_ctx(ctx); 331532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 332532ed618SSoby Mathew } 333532ed618SSoby Mathew 334532ed618SSoby Mathew /******************************************************************************* 335532ed618SSoby Mathew * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' 336532ed618SSoby Mathew * pertaining to the given security state 337532ed618SSoby Mathew ******************************************************************************/ 338532ed618SSoby Mathew void cm_set_elr_spsr_el3(uint32_t security_state, 339532ed618SSoby Mathew uintptr_t entrypoint, uint32_t spsr) 340532ed618SSoby Mathew { 341532ed618SSoby Mathew cpu_context_t *ctx; 342532ed618SSoby Mathew el3_state_t *state; 343532ed618SSoby Mathew 344532ed618SSoby Mathew ctx = cm_get_context(security_state); 345532ed618SSoby Mathew assert(ctx); 346532ed618SSoby Mathew 347532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 348532ed618SSoby Mathew state = get_el3state_ctx(ctx); 349532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 350532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, spsr); 351532ed618SSoby Mathew } 352532ed618SSoby Mathew 353532ed618SSoby Mathew /******************************************************************************* 354532ed618SSoby Mathew * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' 355532ed618SSoby Mathew * pertaining to the given security state using the value and bit position 356532ed618SSoby Mathew * specified in the parameters. It preserves all other bits. 357532ed618SSoby Mathew ******************************************************************************/ 358532ed618SSoby Mathew void cm_write_scr_el3_bit(uint32_t security_state, 359532ed618SSoby Mathew uint32_t bit_pos, 360532ed618SSoby Mathew uint32_t value) 361532ed618SSoby Mathew { 362532ed618SSoby Mathew cpu_context_t *ctx; 363532ed618SSoby Mathew el3_state_t *state; 364532ed618SSoby Mathew uint32_t scr_el3; 365532ed618SSoby Mathew 366532ed618SSoby Mathew ctx = cm_get_context(security_state); 367532ed618SSoby Mathew assert(ctx); 368532ed618SSoby Mathew 369532ed618SSoby Mathew /* Ensure that the bit position is a valid one */ 370532ed618SSoby Mathew assert((1 << bit_pos) & SCR_VALID_BIT_MASK); 371532ed618SSoby Mathew 372532ed618SSoby Mathew /* Ensure that the 'value' is only a bit wide */ 373532ed618SSoby Mathew assert(value <= 1); 374532ed618SSoby Mathew 375532ed618SSoby Mathew /* 376532ed618SSoby Mathew * Get the SCR_EL3 value from the cpu context, clear the desired bit 377532ed618SSoby Mathew * and set it to its new value. 378532ed618SSoby Mathew */ 379532ed618SSoby Mathew state = get_el3state_ctx(ctx); 380532ed618SSoby Mathew scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 381532ed618SSoby Mathew scr_el3 &= ~(1 << bit_pos); 382532ed618SSoby Mathew scr_el3 |= value << bit_pos; 383532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 384532ed618SSoby Mathew } 385532ed618SSoby Mathew 386532ed618SSoby Mathew /******************************************************************************* 387532ed618SSoby Mathew * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the 388532ed618SSoby Mathew * given security state. 389532ed618SSoby Mathew ******************************************************************************/ 390532ed618SSoby Mathew uint32_t cm_get_scr_el3(uint32_t security_state) 391532ed618SSoby Mathew { 392532ed618SSoby Mathew cpu_context_t *ctx; 393532ed618SSoby Mathew el3_state_t *state; 394532ed618SSoby Mathew 395532ed618SSoby Mathew ctx = cm_get_context(security_state); 396532ed618SSoby Mathew assert(ctx); 397532ed618SSoby Mathew 398532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 399532ed618SSoby Mathew state = get_el3state_ctx(ctx); 400532ed618SSoby Mathew return read_ctx_reg(state, CTX_SCR_EL3); 401532ed618SSoby Mathew } 402532ed618SSoby Mathew 403532ed618SSoby Mathew /******************************************************************************* 404532ed618SSoby Mathew * This function is used to program the context that's used for exception 405532ed618SSoby Mathew * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 406532ed618SSoby Mathew * the required security state 407532ed618SSoby Mathew ******************************************************************************/ 408532ed618SSoby Mathew void cm_set_next_eret_context(uint32_t security_state) 409532ed618SSoby Mathew { 410532ed618SSoby Mathew cpu_context_t *ctx; 411532ed618SSoby Mathew 412532ed618SSoby Mathew ctx = cm_get_context(security_state); 413532ed618SSoby Mathew assert(ctx); 414532ed618SSoby Mathew 415532ed618SSoby Mathew cm_set_next_context(ctx); 416532ed618SSoby Mathew } 417