1532ed618SSoby Mathew /* 2d20052f3SZelalem Aweke * Copyright (c) 2013-2022, Arm Limited and Contributors. All rights reserved. 32b28727eSVarun Wadekar * Copyright (c) 2022, NVIDIA Corporation. All rights reserved. 4532ed618SSoby Mathew * 582cb2c1aSdp-arm * SPDX-License-Identifier: BSD-3-Clause 6532ed618SSoby Mathew */ 7532ed618SSoby Mathew 8532ed618SSoby Mathew #include <assert.h> 940daecc1SAntonio Nino Diaz #include <stdbool.h> 10532ed618SSoby Mathew #include <string.h> 1109d40e0eSAntonio Nino Diaz 1209d40e0eSAntonio Nino Diaz #include <platform_def.h> 1309d40e0eSAntonio Nino Diaz 1409d40e0eSAntonio Nino Diaz #include <arch.h> 1509d40e0eSAntonio Nino Diaz #include <arch_helpers.h> 16b7e398d6SSoby Mathew #include <arch_features.h> 1709d40e0eSAntonio Nino Diaz #include <bl31/interrupt_mgmt.h> 1809d40e0eSAntonio Nino Diaz #include <common/bl_common.h> 19*885e2683SClaus Pedersen #include <common/debug.h> 2009d40e0eSAntonio Nino Diaz #include <context.h> 218b95e848SZelalem Aweke #include <drivers/arm/gicv3.h> 2209d40e0eSAntonio Nino Diaz #include <lib/el3_runtime/context_mgmt.h> 2309d40e0eSAntonio Nino Diaz #include <lib/el3_runtime/pubsub_events.h> 2409d40e0eSAntonio Nino Diaz #include <lib/extensions/amu.h> 25744ad974Sjohpow01 #include <lib/extensions/brbe.h> 2609d40e0eSAntonio Nino Diaz #include <lib/extensions/mpam.h> 27dc78e62dSjohpow01 #include <lib/extensions/sme.h> 2809d40e0eSAntonio Nino Diaz #include <lib/extensions/spe.h> 2909d40e0eSAntonio Nino Diaz #include <lib/extensions/sve.h> 30d4582d30SManish V Badarkhe #include <lib/extensions/sys_reg_trace.h> 31813524eaSManish V Badarkhe #include <lib/extensions/trbe.h> 328fcd3d96SManish V Badarkhe #include <lib/extensions/trf.h> 3309d40e0eSAntonio Nino Diaz #include <lib/utils.h> 34532ed618SSoby Mathew 35781d07a4SJayanth Dodderi Chidanand #if ENABLE_FEAT_TWED 36781d07a4SJayanth Dodderi Chidanand /* Make sure delay value fits within the range(0-15) */ 37781d07a4SJayanth Dodderi Chidanand CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check); 38781d07a4SJayanth Dodderi Chidanand #endif /* ENABLE_FEAT_TWED */ 39532ed618SSoby Mathew 40781d07a4SJayanth Dodderi Chidanand static void manage_extensions_secure(cpu_context_t *ctx); 41b515f541SZelalem Aweke 42b515f541SZelalem Aweke static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep) 43b515f541SZelalem Aweke { 44b515f541SZelalem Aweke u_register_t sctlr_elx, actlr_elx; 45b515f541SZelalem Aweke 46b515f541SZelalem Aweke /* 47b515f541SZelalem Aweke * Initialise SCTLR_EL1 to the reset value corresponding to the target 48b515f541SZelalem Aweke * execution state setting all fields rather than relying on the hw. 49b515f541SZelalem Aweke * Some fields have architecturally UNKNOWN reset values and these are 50b515f541SZelalem Aweke * set to zero. 51b515f541SZelalem Aweke * 52b515f541SZelalem Aweke * SCTLR.EE: Endianness is taken from the entrypoint attributes. 53b515f541SZelalem Aweke * 54b515f541SZelalem Aweke * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as 55b515f541SZelalem Aweke * required by PSCI specification) 56b515f541SZelalem Aweke */ 57b515f541SZelalem Aweke sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL; 58b515f541SZelalem Aweke if (GET_RW(ep->spsr) == MODE_RW_64) { 59b515f541SZelalem Aweke sctlr_elx |= SCTLR_EL1_RES1; 60b515f541SZelalem Aweke } else { 61b515f541SZelalem Aweke /* 62b515f541SZelalem Aweke * If the target execution state is AArch32 then the following 63b515f541SZelalem Aweke * fields need to be set. 64b515f541SZelalem Aweke * 65b515f541SZelalem Aweke * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE 66b515f541SZelalem Aweke * instructions are not trapped to EL1. 67b515f541SZelalem Aweke * 68b515f541SZelalem Aweke * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI 69b515f541SZelalem Aweke * instructions are not trapped to EL1. 70b515f541SZelalem Aweke * 71b515f541SZelalem Aweke * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the 72b515f541SZelalem Aweke * CP15DMB, CP15DSB, and CP15ISB instructions. 73b515f541SZelalem Aweke */ 74b515f541SZelalem Aweke sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT 75b515f541SZelalem Aweke | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; 76b515f541SZelalem Aweke } 77b515f541SZelalem Aweke 78b515f541SZelalem Aweke #if ERRATA_A75_764081 79b515f541SZelalem Aweke /* 80b515f541SZelalem Aweke * If workaround of errata 764081 for Cortex-A75 is used then set 81b515f541SZelalem Aweke * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier. 82b515f541SZelalem Aweke */ 83b515f541SZelalem Aweke sctlr_elx |= SCTLR_IESB_BIT; 84b515f541SZelalem Aweke #endif 85b515f541SZelalem Aweke /* Store the initialised SCTLR_EL1 value in the cpu_context */ 86b515f541SZelalem Aweke write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); 87b515f541SZelalem Aweke 88b515f541SZelalem Aweke /* 89b515f541SZelalem Aweke * Base the context ACTLR_EL1 on the current value, as it is 90b515f541SZelalem Aweke * implementation defined. The context restore process will write 91b515f541SZelalem Aweke * the value from the context to the actual register and can cause 92b515f541SZelalem Aweke * problems for processor cores that don't expect certain bits to 93b515f541SZelalem Aweke * be zero. 94b515f541SZelalem Aweke */ 95b515f541SZelalem Aweke actlr_elx = read_actlr_el1(); 96b515f541SZelalem Aweke write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx)); 97b515f541SZelalem Aweke } 98b515f541SZelalem Aweke 992bbad1d1SZelalem Aweke /****************************************************************************** 1002bbad1d1SZelalem Aweke * This function performs initializations that are specific to SECURE state 1012bbad1d1SZelalem Aweke * and updates the cpu context specified by 'ctx'. 1022bbad1d1SZelalem Aweke *****************************************************************************/ 1032bbad1d1SZelalem Aweke static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep) 104532ed618SSoby Mathew { 1052bbad1d1SZelalem Aweke u_register_t scr_el3; 1062bbad1d1SZelalem Aweke el3_state_t *state; 1072bbad1d1SZelalem Aweke 1082bbad1d1SZelalem Aweke state = get_el3state_ctx(ctx); 1092bbad1d1SZelalem Aweke scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 1102bbad1d1SZelalem Aweke 1112bbad1d1SZelalem Aweke #if defined(IMAGE_BL31) && !defined(SPD_spmd) 112532ed618SSoby Mathew /* 1132bbad1d1SZelalem Aweke * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as 1142bbad1d1SZelalem Aweke * indicated by the interrupt routing model for BL31. 115532ed618SSoby Mathew */ 1162bbad1d1SZelalem Aweke scr_el3 |= get_scr_el3_from_routing_model(SECURE); 1172bbad1d1SZelalem Aweke #endif 1182bbad1d1SZelalem Aweke 1192bbad1d1SZelalem Aweke #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS 1202bbad1d1SZelalem Aweke /* Get Memory Tagging Extension support level */ 1212bbad1d1SZelalem Aweke unsigned int mte = get_armv8_5_mte_support(); 1222bbad1d1SZelalem Aweke #endif 1232bbad1d1SZelalem Aweke /* 1242bbad1d1SZelalem Aweke * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS 1252bbad1d1SZelalem Aweke * is set, or when MTE is only implemented at EL0. 1262bbad1d1SZelalem Aweke */ 1272bbad1d1SZelalem Aweke #if CTX_INCLUDE_MTE_REGS 1282bbad1d1SZelalem Aweke assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY)); 1292bbad1d1SZelalem Aweke scr_el3 |= SCR_ATA_BIT; 1302bbad1d1SZelalem Aweke #else 1312bbad1d1SZelalem Aweke if (mte == MTE_IMPLEMENTED_EL0) { 1322bbad1d1SZelalem Aweke scr_el3 |= SCR_ATA_BIT; 1332bbad1d1SZelalem Aweke } 1342bbad1d1SZelalem Aweke #endif /* CTX_INCLUDE_MTE_REGS */ 1352bbad1d1SZelalem Aweke 1362bbad1d1SZelalem Aweke /* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */ 1372bbad1d1SZelalem Aweke if ((GET_EL(ep->spsr) == MODE_EL2) && is_armv8_4_sel2_present()) { 1382bbad1d1SZelalem Aweke if (GET_RW(ep->spsr) != MODE_RW_64) { 1392bbad1d1SZelalem Aweke ERROR("S-EL2 can not be used in AArch32\n."); 1402bbad1d1SZelalem Aweke panic(); 1412bbad1d1SZelalem Aweke } 1422bbad1d1SZelalem Aweke 1432bbad1d1SZelalem Aweke scr_el3 |= SCR_EEL2_BIT; 1442bbad1d1SZelalem Aweke } 1452bbad1d1SZelalem Aweke 1462bbad1d1SZelalem Aweke write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 1472bbad1d1SZelalem Aweke 148b515f541SZelalem Aweke /* 149b515f541SZelalem Aweke * Initialize EL1 context registers unless SPMC is running 150b515f541SZelalem Aweke * at S-EL2. 151b515f541SZelalem Aweke */ 152b515f541SZelalem Aweke #if !SPMD_SPM_AT_SEL2 153b515f541SZelalem Aweke setup_el1_context(ctx, ep); 154b515f541SZelalem Aweke #endif 155b515f541SZelalem Aweke 1562bbad1d1SZelalem Aweke manage_extensions_secure(ctx); 1572bbad1d1SZelalem Aweke } 1582bbad1d1SZelalem Aweke 1592bbad1d1SZelalem Aweke #if ENABLE_RME 1602bbad1d1SZelalem Aweke /****************************************************************************** 1612bbad1d1SZelalem Aweke * This function performs initializations that are specific to REALM state 1622bbad1d1SZelalem Aweke * and updates the cpu context specified by 'ctx'. 1632bbad1d1SZelalem Aweke *****************************************************************************/ 1642bbad1d1SZelalem Aweke static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep) 1652bbad1d1SZelalem Aweke { 1662bbad1d1SZelalem Aweke u_register_t scr_el3; 1672bbad1d1SZelalem Aweke el3_state_t *state; 1682bbad1d1SZelalem Aweke 1692bbad1d1SZelalem Aweke state = get_el3state_ctx(ctx); 1702bbad1d1SZelalem Aweke scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 1712bbad1d1SZelalem Aweke 1722bbad1d1SZelalem Aweke scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT | SCR_EnSCXT_BIT; 1732bbad1d1SZelalem Aweke 1742bbad1d1SZelalem Aweke write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 1752bbad1d1SZelalem Aweke } 1762bbad1d1SZelalem Aweke #endif /* ENABLE_RME */ 1772bbad1d1SZelalem Aweke 1782bbad1d1SZelalem Aweke /****************************************************************************** 1792bbad1d1SZelalem Aweke * This function performs initializations that are specific to NON-SECURE state 1802bbad1d1SZelalem Aweke * and updates the cpu context specified by 'ctx'. 1812bbad1d1SZelalem Aweke *****************************************************************************/ 1822bbad1d1SZelalem Aweke static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep) 1832bbad1d1SZelalem Aweke { 1842bbad1d1SZelalem Aweke u_register_t scr_el3; 1852bbad1d1SZelalem Aweke el3_state_t *state; 1862bbad1d1SZelalem Aweke 1872bbad1d1SZelalem Aweke state = get_el3state_ctx(ctx); 1882bbad1d1SZelalem Aweke scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 1892bbad1d1SZelalem Aweke 1902bbad1d1SZelalem Aweke /* SCR_NS: Set the NS bit */ 1912bbad1d1SZelalem Aweke scr_el3 |= SCR_NS_BIT; 1922bbad1d1SZelalem Aweke 1932bbad1d1SZelalem Aweke #if !CTX_INCLUDE_PAUTH_REGS 1942bbad1d1SZelalem Aweke /* 1952bbad1d1SZelalem Aweke * If the pointer authentication registers aren't saved during world 1962bbad1d1SZelalem Aweke * switches the value of the registers can be leaked from the Secure to 1972bbad1d1SZelalem Aweke * the Non-secure world. To prevent this, rather than enabling pointer 1982bbad1d1SZelalem Aweke * authentication everywhere, we only enable it in the Non-secure world. 1992bbad1d1SZelalem Aweke * 2002bbad1d1SZelalem Aweke * If the Secure world wants to use pointer authentication, 2012bbad1d1SZelalem Aweke * CTX_INCLUDE_PAUTH_REGS must be set to 1. 2022bbad1d1SZelalem Aweke */ 2032bbad1d1SZelalem Aweke scr_el3 |= SCR_API_BIT | SCR_APK_BIT; 2042bbad1d1SZelalem Aweke #endif /* !CTX_INCLUDE_PAUTH_REGS */ 2052bbad1d1SZelalem Aweke 2062bbad1d1SZelalem Aweke /* Allow access to Allocation Tags when MTE is implemented. */ 2072bbad1d1SZelalem Aweke scr_el3 |= SCR_ATA_BIT; 2082bbad1d1SZelalem Aweke 2092bbad1d1SZelalem Aweke #ifdef IMAGE_BL31 2102bbad1d1SZelalem Aweke /* 2112bbad1d1SZelalem Aweke * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as 2122bbad1d1SZelalem Aweke * indicated by the interrupt routing model for BL31. 2132bbad1d1SZelalem Aweke */ 2142bbad1d1SZelalem Aweke scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE); 2152bbad1d1SZelalem Aweke #endif 2162bbad1d1SZelalem Aweke write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 2178b95e848SZelalem Aweke 218b515f541SZelalem Aweke /* Initialize EL1 context registers */ 219b515f541SZelalem Aweke setup_el1_context(ctx, ep); 220b515f541SZelalem Aweke 2218b95e848SZelalem Aweke /* Initialize EL2 context registers */ 2228b95e848SZelalem Aweke #if CTX_INCLUDE_EL2_REGS 2238b95e848SZelalem Aweke 2248b95e848SZelalem Aweke /* 2258b95e848SZelalem Aweke * Initialize SCTLR_EL2 context register using Endianness value 2268b95e848SZelalem Aweke * taken from the entrypoint attribute. 2278b95e848SZelalem Aweke */ 2288b95e848SZelalem Aweke u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL; 2298b95e848SZelalem Aweke sctlr_el2 |= SCTLR_EL2_RES1; 2308b95e848SZelalem Aweke write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2, 2318b95e848SZelalem Aweke sctlr_el2); 2328b95e848SZelalem Aweke 2338b95e848SZelalem Aweke /* 2342b28727eSVarun Wadekar * Program the ICC_SRE_EL2 to make sure the correct bits are set 2352b28727eSVarun Wadekar * when restoring NS context. 2368b95e848SZelalem Aweke */ 2372b28727eSVarun Wadekar u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT | 2382b28727eSVarun Wadekar ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT; 2398b95e848SZelalem Aweke write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2, 2408b95e848SZelalem Aweke icc_sre_el2); 2418b95e848SZelalem Aweke #endif /* CTX_INCLUDE_EL2_REGS */ 242532ed618SSoby Mathew } 243532ed618SSoby Mathew 244532ed618SSoby Mathew /******************************************************************************* 2452bbad1d1SZelalem Aweke * The following function performs initialization of the cpu_context 'ctx' 2462bbad1d1SZelalem Aweke * for first use that is common to all security states, and sets the 2472bbad1d1SZelalem Aweke * initial entrypoint state as specified by the entry_point_info structure. 248532ed618SSoby Mathew * 2498aabea33SPaul Beesley * The EE and ST attributes are used to configure the endianness and secure 250532ed618SSoby Mathew * timer availability for the new execution context. 251532ed618SSoby Mathew ******************************************************************************/ 2522bbad1d1SZelalem Aweke static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) 253532ed618SSoby Mathew { 254f1be00daSLouis Mayencourt u_register_t scr_el3; 255532ed618SSoby Mathew el3_state_t *state; 256532ed618SSoby Mathew gp_regs_t *gp_regs; 257532ed618SSoby Mathew 258532ed618SSoby Mathew /* Clear any residual register values from the context */ 25932f0d3c6SDouglas Raillard zeromem(ctx, sizeof(*ctx)); 260532ed618SSoby Mathew 261532ed618SSoby Mathew /* 26218f2efd6SDavid Cunado * SCR_EL3 was initialised during reset sequence in macro 26318f2efd6SDavid Cunado * el3_arch_init_common. This code modifies the SCR_EL3 fields that 26418f2efd6SDavid Cunado * affect the next EL. 26518f2efd6SDavid Cunado * 26618f2efd6SDavid Cunado * The following fields are initially set to zero and then updated to 26718f2efd6SDavid Cunado * the required value depending on the state of the SPSR_EL3 and the 26818f2efd6SDavid Cunado * Security state and entrypoint attributes of the next EL. 269532ed618SSoby Mathew */ 270f1be00daSLouis Mayencourt scr_el3 = read_scr(); 271532ed618SSoby Mathew scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | 2722bbad1d1SZelalem Aweke SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT); 273c5ea4f8aSZelalem Aweke 27418f2efd6SDavid Cunado /* 27518f2efd6SDavid Cunado * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next 27618f2efd6SDavid Cunado * Exception level as specified by SPSR. 27718f2efd6SDavid Cunado */ 278c5ea4f8aSZelalem Aweke if (GET_RW(ep->spsr) == MODE_RW_64) { 279532ed618SSoby Mathew scr_el3 |= SCR_RW_BIT; 280c5ea4f8aSZelalem Aweke } 2812bbad1d1SZelalem Aweke 28218f2efd6SDavid Cunado /* 28318f2efd6SDavid Cunado * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical 28418f2efd6SDavid Cunado * Secure timer registers to EL3, from AArch64 state only, if specified 285b515f541SZelalem Aweke * by the entrypoint attributes. If SEL2 is present and enabled, the ST 286b515f541SZelalem Aweke * bit always behaves as 1 (i.e. secure physical timer register access 287b515f541SZelalem Aweke * is not trapped) 28818f2efd6SDavid Cunado */ 289c5ea4f8aSZelalem Aweke if (EP_GET_ST(ep->h.attr) != 0U) { 290532ed618SSoby Mathew scr_el3 |= SCR_ST_BIT; 291c5ea4f8aSZelalem Aweke } 292532ed618SSoby Mathew 293cb4ec47bSjohpow01 /* 294cb4ec47bSjohpow01 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting 295cb4ec47bSjohpow01 * SCR_EL3.HXEn. 296cb4ec47bSjohpow01 */ 297cb4ec47bSjohpow01 #if ENABLE_FEAT_HCX 298cb4ec47bSjohpow01 scr_el3 |= SCR_HXEn_BIT; 299cb4ec47bSjohpow01 #endif 300cb4ec47bSjohpow01 301ff86e0b4SJuan Pablo Conde /* 302ff86e0b4SJuan Pablo Conde * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS 303ff86e0b4SJuan Pablo Conde * registers are trapped to EL3. 304ff86e0b4SJuan Pablo Conde */ 305ff86e0b4SJuan Pablo Conde #if ENABLE_FEAT_RNG_TRAP 306ff86e0b4SJuan Pablo Conde scr_el3 |= SCR_TRNDR_BIT; 307ff86e0b4SJuan Pablo Conde #endif 308ff86e0b4SJuan Pablo Conde 309fbc44bd1SVarun Wadekar #if RAS_TRAP_LOWER_EL_ERR_ACCESS 310fbc44bd1SVarun Wadekar /* 311fbc44bd1SVarun Wadekar * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR 312fbc44bd1SVarun Wadekar * and RAS ERX registers from EL1 and EL2 are trapped to EL3. 313fbc44bd1SVarun Wadekar */ 314fbc44bd1SVarun Wadekar scr_el3 |= SCR_TERR_BIT; 315fbc44bd1SVarun Wadekar #endif 316fbc44bd1SVarun Wadekar 31724f671f3SJulius Werner #if !HANDLE_EA_EL3_FIRST 31818f2efd6SDavid Cunado /* 31918f2efd6SDavid Cunado * SCR_EL3.EA: Do not route External Abort and SError Interrupt External 32018f2efd6SDavid Cunado * to EL3 when executing at a lower EL. When executing at EL3, External 32118f2efd6SDavid Cunado * Aborts are taken to EL3. 32218f2efd6SDavid Cunado */ 323532ed618SSoby Mathew scr_el3 &= ~SCR_EA_BIT; 324532ed618SSoby Mathew #endif 325532ed618SSoby Mathew 3261a7c1cfeSJeenu Viswambharan #if FAULT_INJECTION_SUPPORT 3271a7c1cfeSJeenu Viswambharan /* Enable fault injection from lower ELs */ 3281a7c1cfeSJeenu Viswambharan scr_el3 |= SCR_FIEN_BIT; 3291a7c1cfeSJeenu Viswambharan #endif 3301a7c1cfeSJeenu Viswambharan 3315283962eSAntonio Nino Diaz /* 3322bbad1d1SZelalem Aweke * CPTR_EL3 was initialized out of reset, copy that value to the 3332bbad1d1SZelalem Aweke * context register. 3345283962eSAntonio Nino Diaz */ 33568ac5ed0SArunachalam Ganapathy write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3()); 336532ed618SSoby Mathew 337532ed618SSoby Mathew /* 33818f2efd6SDavid Cunado * SCR_EL3.HCE: Enable HVC instructions if next execution state is 33918f2efd6SDavid Cunado * AArch64 and next EL is EL2, or if next execution state is AArch32 and 34018f2efd6SDavid Cunado * next mode is Hyp. 341110ee433SJimmy Brisson * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the 342110ee433SJimmy Brisson * same conditions as HVC instructions and when the processor supports 343110ee433SJimmy Brisson * ARMv8.6-FGT. 34429d0ee54SJimmy Brisson * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV) 34529d0ee54SJimmy Brisson * CNTPOFF_EL2 register under the same conditions as HVC instructions 34629d0ee54SJimmy Brisson * and when the processor supports ECV. 347532ed618SSoby Mathew */ 348a0fee747SAntonio Nino Diaz if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2)) 349a0fee747SAntonio Nino Diaz || ((GET_RW(ep->spsr) != MODE_RW_64) 350a0fee747SAntonio Nino Diaz && (GET_M32(ep->spsr) == MODE32_hyp))) { 351532ed618SSoby Mathew scr_el3 |= SCR_HCE_BIT; 352110ee433SJimmy Brisson 353110ee433SJimmy Brisson if (is_armv8_6_fgt_present()) { 354110ee433SJimmy Brisson scr_el3 |= SCR_FGTEN_BIT; 355110ee433SJimmy Brisson } 35629d0ee54SJimmy Brisson 35729d0ee54SJimmy Brisson if (get_armv8_6_ecv_support() 35829d0ee54SJimmy Brisson == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) { 35929d0ee54SJimmy Brisson scr_el3 |= SCR_ECVEN_BIT; 36029d0ee54SJimmy Brisson } 361532ed618SSoby Mathew } 362532ed618SSoby Mathew 363781d07a4SJayanth Dodderi Chidanand #if ENABLE_FEAT_TWED 3646cac724dSjohpow01 /* Enable WFE trap delay in SCR_EL3 if supported and configured */ 3656cac724dSjohpow01 /* Set delay in SCR_EL3 */ 3666cac724dSjohpow01 scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT); 367781d07a4SJayanth Dodderi Chidanand scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK) 3686cac724dSjohpow01 << SCR_TWEDEL_SHIFT); 3696cac724dSjohpow01 3706cac724dSjohpow01 /* Enable WFE delay */ 3716cac724dSjohpow01 scr_el3 |= SCR_TWEDEn_BIT; 372781d07a4SJayanth Dodderi Chidanand #endif /* ENABLE_FEAT_TWED */ 3736cac724dSjohpow01 37418f2efd6SDavid Cunado /* 375e290a8fcSAlexei Fedorov * Populate EL3 state so that we've the right context 376e290a8fcSAlexei Fedorov * before doing ERET 3773e61b2b5SDavid Cunado */ 378532ed618SSoby Mathew state = get_el3state_ctx(ctx); 379532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 380532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, ep->pc); 381532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); 382532ed618SSoby Mathew 383532ed618SSoby Mathew /* 384532ed618SSoby Mathew * Store the X0-X7 value from the entrypoint into the context 385532ed618SSoby Mathew * Use memcpy as we are in control of the layout of the structures 386532ed618SSoby Mathew */ 387532ed618SSoby Mathew gp_regs = get_gpregs_ctx(ctx); 388532ed618SSoby Mathew memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); 389532ed618SSoby Mathew } 390532ed618SSoby Mathew 391532ed618SSoby Mathew /******************************************************************************* 3922bbad1d1SZelalem Aweke * Context management library initialization routine. This library is used by 3932bbad1d1SZelalem Aweke * runtime services to share pointers to 'cpu_context' structures for secure 3942bbad1d1SZelalem Aweke * non-secure and realm states. Management of the structures and their associated 3952bbad1d1SZelalem Aweke * memory is not done by the context management library e.g. the PSCI service 3962bbad1d1SZelalem Aweke * manages the cpu context used for entry from and exit to the non-secure state. 3972bbad1d1SZelalem Aweke * The Secure payload dispatcher service manages the context(s) corresponding to 3982bbad1d1SZelalem Aweke * the secure state. It also uses this library to get access to the non-secure 3992bbad1d1SZelalem Aweke * state cpu context pointers. 4002bbad1d1SZelalem Aweke * Lastly, this library provides the API to make SP_EL3 point to the cpu context 4012bbad1d1SZelalem Aweke * which will be used for programming an entry into a lower EL. The same context 4022bbad1d1SZelalem Aweke * will be used to save state upon exception entry from that EL. 4032bbad1d1SZelalem Aweke ******************************************************************************/ 4042bbad1d1SZelalem Aweke void __init cm_init(void) 4052bbad1d1SZelalem Aweke { 4062bbad1d1SZelalem Aweke /* 4072bbad1d1SZelalem Aweke * The context management library has only global data to intialize, but 4082bbad1d1SZelalem Aweke * that will be done when the BSS is zeroed out. 4092bbad1d1SZelalem Aweke */ 4102bbad1d1SZelalem Aweke } 4112bbad1d1SZelalem Aweke 4122bbad1d1SZelalem Aweke /******************************************************************************* 4132bbad1d1SZelalem Aweke * This is the high-level function used to initialize the cpu_context 'ctx' for 4142bbad1d1SZelalem Aweke * first use. It performs initializations that are common to all security states 4152bbad1d1SZelalem Aweke * and initializations specific to the security state specified in 'ep' 4162bbad1d1SZelalem Aweke ******************************************************************************/ 4172bbad1d1SZelalem Aweke void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep) 4182bbad1d1SZelalem Aweke { 4192bbad1d1SZelalem Aweke unsigned int security_state; 4202bbad1d1SZelalem Aweke 4212bbad1d1SZelalem Aweke assert(ctx != NULL); 4222bbad1d1SZelalem Aweke 4232bbad1d1SZelalem Aweke /* 4242bbad1d1SZelalem Aweke * Perform initializations that are common 4252bbad1d1SZelalem Aweke * to all security states 4262bbad1d1SZelalem Aweke */ 4272bbad1d1SZelalem Aweke setup_context_common(ctx, ep); 4282bbad1d1SZelalem Aweke 4292bbad1d1SZelalem Aweke security_state = GET_SECURITY_STATE(ep->h.attr); 4302bbad1d1SZelalem Aweke 4312bbad1d1SZelalem Aweke /* Perform security state specific initializations */ 4322bbad1d1SZelalem Aweke switch (security_state) { 4332bbad1d1SZelalem Aweke case SECURE: 4342bbad1d1SZelalem Aweke setup_secure_context(ctx, ep); 4352bbad1d1SZelalem Aweke break; 4362bbad1d1SZelalem Aweke #if ENABLE_RME 4372bbad1d1SZelalem Aweke case REALM: 4382bbad1d1SZelalem Aweke setup_realm_context(ctx, ep); 4392bbad1d1SZelalem Aweke break; 4402bbad1d1SZelalem Aweke #endif 4412bbad1d1SZelalem Aweke case NON_SECURE: 4422bbad1d1SZelalem Aweke setup_ns_context(ctx, ep); 4432bbad1d1SZelalem Aweke break; 4442bbad1d1SZelalem Aweke default: 4452bbad1d1SZelalem Aweke ERROR("Invalid security state\n"); 4462bbad1d1SZelalem Aweke panic(); 4472bbad1d1SZelalem Aweke break; 4482bbad1d1SZelalem Aweke } 4492bbad1d1SZelalem Aweke } 4502bbad1d1SZelalem Aweke 4512bbad1d1SZelalem Aweke /******************************************************************************* 4520fd0f222SDimitris Papastamos * Enable architecture extensions on first entry to Non-secure world. 4530fd0f222SDimitris Papastamos * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise 4540fd0f222SDimitris Papastamos * it is zero. 4550fd0f222SDimitris Papastamos ******************************************************************************/ 456dc78e62dSjohpow01 static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx) 4570fd0f222SDimitris Papastamos { 4580fd0f222SDimitris Papastamos #if IMAGE_BL31 459281a08ccSDimitris Papastamos #if ENABLE_SPE_FOR_LOWER_ELS 460281a08ccSDimitris Papastamos spe_enable(el2_unused); 461281a08ccSDimitris Papastamos #endif 462380559c1SDimitris Papastamos 463380559c1SDimitris Papastamos #if ENABLE_AMU 46468ac5ed0SArunachalam Ganapathy amu_enable(el2_unused, ctx); 46568ac5ed0SArunachalam Ganapathy #endif 46668ac5ed0SArunachalam Ganapathy 467dc78e62dSjohpow01 #if ENABLE_SME_FOR_NS 468dc78e62dSjohpow01 /* Enable SME, SVE, and FPU/SIMD for non-secure world. */ 469dc78e62dSjohpow01 sme_enable(ctx); 470dc78e62dSjohpow01 #elif ENABLE_SVE_FOR_NS 471dc78e62dSjohpow01 /* Enable SVE and FPU/SIMD for non-secure world. */ 47268ac5ed0SArunachalam Ganapathy sve_enable(ctx); 473380559c1SDimitris Papastamos #endif 4741a853370SDavid Cunado 4755f835918SJeenu Viswambharan #if ENABLE_MPAM_FOR_LOWER_ELS 4765f835918SJeenu Viswambharan mpam_enable(el2_unused); 4775f835918SJeenu Viswambharan #endif 478813524eaSManish V Badarkhe 479813524eaSManish V Badarkhe #if ENABLE_TRBE_FOR_NS 480813524eaSManish V Badarkhe trbe_enable(); 481813524eaSManish V Badarkhe #endif /* ENABLE_TRBE_FOR_NS */ 482813524eaSManish V Badarkhe 483744ad974Sjohpow01 #if ENABLE_BRBE_FOR_NS 484744ad974Sjohpow01 brbe_enable(); 485744ad974Sjohpow01 #endif /* ENABLE_BRBE_FOR_NS */ 486744ad974Sjohpow01 487d4582d30SManish V Badarkhe #if ENABLE_SYS_REG_TRACE_FOR_NS 488d4582d30SManish V Badarkhe sys_reg_trace_enable(ctx); 489d4582d30SManish V Badarkhe #endif /* ENABLE_SYS_REG_TRACE_FOR_NS */ 490d4582d30SManish V Badarkhe 4918fcd3d96SManish V Badarkhe #if ENABLE_TRF_FOR_NS 4928fcd3d96SManish V Badarkhe trf_enable(); 4938fcd3d96SManish V Badarkhe #endif /* ENABLE_TRF_FOR_NS */ 4940fd0f222SDimitris Papastamos #endif 4950fd0f222SDimitris Papastamos } 4960fd0f222SDimitris Papastamos 4970fd0f222SDimitris Papastamos /******************************************************************************* 49868ac5ed0SArunachalam Ganapathy * Enable architecture extensions on first entry to Secure world. 49968ac5ed0SArunachalam Ganapathy ******************************************************************************/ 500dc78e62dSjohpow01 static void manage_extensions_secure(cpu_context_t *ctx) 50168ac5ed0SArunachalam Ganapathy { 50268ac5ed0SArunachalam Ganapathy #if IMAGE_BL31 503dc78e62dSjohpow01 #if ENABLE_SME_FOR_NS 504dc78e62dSjohpow01 #if ENABLE_SME_FOR_SWD 505dc78e62dSjohpow01 /* 506dc78e62dSjohpow01 * Enable SME, SVE, FPU/SIMD in secure context, secure manager must 507dc78e62dSjohpow01 * ensure SME, SVE, and FPU/SIMD context properly managed. 508dc78e62dSjohpow01 */ 509dc78e62dSjohpow01 sme_enable(ctx); 510dc78e62dSjohpow01 #else /* ENABLE_SME_FOR_SWD */ 511dc78e62dSjohpow01 /* 512dc78e62dSjohpow01 * Disable SME, SVE, FPU/SIMD in secure context so non-secure world can 513dc78e62dSjohpow01 * safely use the associated registers. 514dc78e62dSjohpow01 */ 515dc78e62dSjohpow01 sme_disable(ctx); 516dc78e62dSjohpow01 #endif /* ENABLE_SME_FOR_SWD */ 517dc78e62dSjohpow01 #elif ENABLE_SVE_FOR_NS 51868ac5ed0SArunachalam Ganapathy #if ENABLE_SVE_FOR_SWD 519dc78e62dSjohpow01 /* 520dc78e62dSjohpow01 * Enable SVE and FPU in secure context, secure manager must ensure that 521dc78e62dSjohpow01 * the SVE and FPU register contexts are properly managed. 522dc78e62dSjohpow01 */ 52368ac5ed0SArunachalam Ganapathy sve_enable(ctx); 524dc78e62dSjohpow01 #else /* ENABLE_SVE_FOR_SWD */ 525dc78e62dSjohpow01 /* 526dc78e62dSjohpow01 * Disable SVE and FPU in secure context so non-secure world can safely 527dc78e62dSjohpow01 * use them. 528dc78e62dSjohpow01 */ 529dc78e62dSjohpow01 sve_disable(ctx); 530dc78e62dSjohpow01 #endif /* ENABLE_SVE_FOR_SWD */ 531dc78e62dSjohpow01 #endif /* ENABLE_SVE_FOR_NS */ 532dc78e62dSjohpow01 #endif /* IMAGE_BL31 */ 53368ac5ed0SArunachalam Ganapathy } 53468ac5ed0SArunachalam Ganapathy 53568ac5ed0SArunachalam Ganapathy /******************************************************************************* 536532ed618SSoby Mathew * The following function initializes the cpu_context for a CPU specified by 537532ed618SSoby Mathew * its `cpu_idx` for first use, and sets the initial entrypoint state as 538532ed618SSoby Mathew * specified by the entry_point_info structure. 539532ed618SSoby Mathew ******************************************************************************/ 540532ed618SSoby Mathew void cm_init_context_by_index(unsigned int cpu_idx, 541532ed618SSoby Mathew const entry_point_info_t *ep) 542532ed618SSoby Mathew { 543532ed618SSoby Mathew cpu_context_t *ctx; 544532ed618SSoby Mathew ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 5451634cae8SAntonio Nino Diaz cm_setup_context(ctx, ep); 546532ed618SSoby Mathew } 547532ed618SSoby Mathew 548532ed618SSoby Mathew /******************************************************************************* 549532ed618SSoby Mathew * The following function initializes the cpu_context for the current CPU 550532ed618SSoby Mathew * for first use, and sets the initial entrypoint state as specified by the 551532ed618SSoby Mathew * entry_point_info structure. 552532ed618SSoby Mathew ******************************************************************************/ 553532ed618SSoby Mathew void cm_init_my_context(const entry_point_info_t *ep) 554532ed618SSoby Mathew { 555532ed618SSoby Mathew cpu_context_t *ctx; 556532ed618SSoby Mathew ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 5571634cae8SAntonio Nino Diaz cm_setup_context(ctx, ep); 558532ed618SSoby Mathew } 559532ed618SSoby Mathew 560532ed618SSoby Mathew /******************************************************************************* 561c5ea4f8aSZelalem Aweke * Prepare the CPU system registers for first entry into realm, secure, or 562c5ea4f8aSZelalem Aweke * normal world. 563532ed618SSoby Mathew * 564532ed618SSoby Mathew * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized 565532ed618SSoby Mathew * If execution is requested to non-secure EL1 or svc mode, and the CPU supports 566532ed618SSoby Mathew * EL2 then EL2 is disabled by configuring all necessary EL2 registers. 567532ed618SSoby Mathew * For all entries, the EL1 registers are initialized from the cpu_context 568532ed618SSoby Mathew ******************************************************************************/ 569532ed618SSoby Mathew void cm_prepare_el3_exit(uint32_t security_state) 570532ed618SSoby Mathew { 571f1be00daSLouis Mayencourt u_register_t sctlr_elx, scr_el3, mdcr_el2; 572532ed618SSoby Mathew cpu_context_t *ctx = cm_get_context(security_state); 57340daecc1SAntonio Nino Diaz bool el2_unused = false; 574a0fee747SAntonio Nino Diaz uint64_t hcr_el2 = 0U; 575532ed618SSoby Mathew 576a0fee747SAntonio Nino Diaz assert(ctx != NULL); 577532ed618SSoby Mathew 578532ed618SSoby Mathew if (security_state == NON_SECURE) { 579f1be00daSLouis Mayencourt scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), 580a0fee747SAntonio Nino Diaz CTX_SCR_EL3); 581a0fee747SAntonio Nino Diaz if ((scr_el3 & SCR_HCE_BIT) != 0U) { 582532ed618SSoby Mathew /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ 5832825946eSMax Shvetsov sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx), 584532ed618SSoby Mathew CTX_SCTLR_EL1); 5852e09d4f8SKen Kuang sctlr_elx &= SCTLR_EE_BIT; 586532ed618SSoby Mathew sctlr_elx |= SCTLR_EL2_RES1; 5875f5d1ed7SLouis Mayencourt #if ERRATA_A75_764081 5885f5d1ed7SLouis Mayencourt /* 5895f5d1ed7SLouis Mayencourt * If workaround of errata 764081 for Cortex-A75 is used 5905f5d1ed7SLouis Mayencourt * then set SCTLR_EL2.IESB to enable Implicit Error 5915f5d1ed7SLouis Mayencourt * Synchronization Barrier. 5925f5d1ed7SLouis Mayencourt */ 5935f5d1ed7SLouis Mayencourt sctlr_elx |= SCTLR_IESB_BIT; 5945f5d1ed7SLouis Mayencourt #endif 595532ed618SSoby Mathew write_sctlr_el2(sctlr_elx); 596a0fee747SAntonio Nino Diaz } else if (el_implemented(2) != EL_IMPL_NONE) { 59740daecc1SAntonio Nino Diaz el2_unused = true; 5980fd0f222SDimitris Papastamos 59918f2efd6SDavid Cunado /* 60018f2efd6SDavid Cunado * EL2 present but unused, need to disable safely. 60118f2efd6SDavid Cunado * SCTLR_EL2 can be ignored in this case. 60218f2efd6SDavid Cunado * 6033ff4aaacSJeenu Viswambharan * Set EL2 register width appropriately: Set HCR_EL2 6043ff4aaacSJeenu Viswambharan * field to match SCR_EL3.RW. 60518f2efd6SDavid Cunado */ 606a0fee747SAntonio Nino Diaz if ((scr_el3 & SCR_RW_BIT) != 0U) 6073ff4aaacSJeenu Viswambharan hcr_el2 |= HCR_RW_BIT; 6083ff4aaacSJeenu Viswambharan 6093ff4aaacSJeenu Viswambharan /* 6103ff4aaacSJeenu Viswambharan * For Armv8.3 pointer authentication feature, disable 6113ff4aaacSJeenu Viswambharan * traps to EL2 when accessing key registers or using 6123ff4aaacSJeenu Viswambharan * pointer authentication instructions from lower ELs. 6133ff4aaacSJeenu Viswambharan */ 6143ff4aaacSJeenu Viswambharan hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT); 6153ff4aaacSJeenu Viswambharan 6163ff4aaacSJeenu Viswambharan write_hcr_el2(hcr_el2); 617532ed618SSoby Mathew 61818f2efd6SDavid Cunado /* 61918f2efd6SDavid Cunado * Initialise CPTR_EL2 setting all fields rather than 62018f2efd6SDavid Cunado * relying on the hw. All fields have architecturally 62118f2efd6SDavid Cunado * UNKNOWN reset values. 62218f2efd6SDavid Cunado * 62318f2efd6SDavid Cunado * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1 62418f2efd6SDavid Cunado * accesses to the CPACR_EL1 or CPACR from both 62518f2efd6SDavid Cunado * Execution states do not trap to EL2. 62618f2efd6SDavid Cunado * 62718f2efd6SDavid Cunado * CPTR_EL2.TTA: Set to zero so that Non-secure System 62818f2efd6SDavid Cunado * register accesses to the trace registers from both 62918f2efd6SDavid Cunado * Execution states do not trap to EL2. 630d4582d30SManish V Badarkhe * If PE trace unit System registers are not implemented 631d4582d30SManish V Badarkhe * then this bit is reserved, and must be set to zero. 63218f2efd6SDavid Cunado * 63318f2efd6SDavid Cunado * CPTR_EL2.TFP: Set to zero so that Non-secure accesses 63418f2efd6SDavid Cunado * to SIMD and floating-point functionality from both 63518f2efd6SDavid Cunado * Execution states do not trap to EL2. 63618f2efd6SDavid Cunado */ 63718f2efd6SDavid Cunado write_cptr_el2(CPTR_EL2_RESET_VAL & 63818f2efd6SDavid Cunado ~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT 63918f2efd6SDavid Cunado | CPTR_EL2_TFP_BIT)); 640532ed618SSoby Mathew 64118f2efd6SDavid Cunado /* 6428aabea33SPaul Beesley * Initialise CNTHCTL_EL2. All fields are 64318f2efd6SDavid Cunado * architecturally UNKNOWN on reset and are set to zero 64418f2efd6SDavid Cunado * except for field(s) listed below. 64518f2efd6SDavid Cunado * 646c5ea4f8aSZelalem Aweke * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to 64718f2efd6SDavid Cunado * Hyp mode of Non-secure EL0 and EL1 accesses to the 64818f2efd6SDavid Cunado * physical timer registers. 64918f2efd6SDavid Cunado * 65018f2efd6SDavid Cunado * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to 65118f2efd6SDavid Cunado * Hyp mode of Non-secure EL0 and EL1 accesses to the 65218f2efd6SDavid Cunado * physical counter registers. 65318f2efd6SDavid Cunado */ 65418f2efd6SDavid Cunado write_cnthctl_el2(CNTHCTL_RESET_VAL | 65518f2efd6SDavid Cunado EL1PCEN_BIT | EL1PCTEN_BIT); 656532ed618SSoby Mathew 65718f2efd6SDavid Cunado /* 65818f2efd6SDavid Cunado * Initialise CNTVOFF_EL2 to zero as it resets to an 65918f2efd6SDavid Cunado * architecturally UNKNOWN value. 66018f2efd6SDavid Cunado */ 661532ed618SSoby Mathew write_cntvoff_el2(0); 662532ed618SSoby Mathew 66318f2efd6SDavid Cunado /* 66418f2efd6SDavid Cunado * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and 66518f2efd6SDavid Cunado * MPIDR_EL1 respectively. 66618f2efd6SDavid Cunado */ 667532ed618SSoby Mathew write_vpidr_el2(read_midr_el1()); 668532ed618SSoby Mathew write_vmpidr_el2(read_mpidr_el1()); 669532ed618SSoby Mathew 670532ed618SSoby Mathew /* 67118f2efd6SDavid Cunado * Initialise VTTBR_EL2. All fields are architecturally 67218f2efd6SDavid Cunado * UNKNOWN on reset. 67318f2efd6SDavid Cunado * 67418f2efd6SDavid Cunado * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 67518f2efd6SDavid Cunado * 2 address translation is disabled, cache maintenance 67618f2efd6SDavid Cunado * operations depend on the VMID. 67718f2efd6SDavid Cunado * 67818f2efd6SDavid Cunado * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address 67918f2efd6SDavid Cunado * translation is disabled. 680532ed618SSoby Mathew */ 68118f2efd6SDavid Cunado write_vttbr_el2(VTTBR_RESET_VAL & 68218f2efd6SDavid Cunado ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) 68318f2efd6SDavid Cunado | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); 68418f2efd6SDavid Cunado 685495f3d3cSDavid Cunado /* 68618f2efd6SDavid Cunado * Initialise MDCR_EL2, setting all fields rather than 68718f2efd6SDavid Cunado * relying on hw. Some fields are architecturally 68818f2efd6SDavid Cunado * UNKNOWN on reset. 68918f2efd6SDavid Cunado * 690e290a8fcSAlexei Fedorov * MDCR_EL2.HLP: Set to one so that event counter 691e290a8fcSAlexei Fedorov * overflow, that is recorded in PMOVSCLR_EL0[0-30], 692e290a8fcSAlexei Fedorov * occurs on the increment that changes 693e290a8fcSAlexei Fedorov * PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is 694e290a8fcSAlexei Fedorov * implemented. This bit is RES0 in versions of the 695e290a8fcSAlexei Fedorov * architecture earlier than ARMv8.5, setting it to 1 696e290a8fcSAlexei Fedorov * doesn't have any effect on them. 697e290a8fcSAlexei Fedorov * 698e290a8fcSAlexei Fedorov * MDCR_EL2.TTRF: Set to zero so that access to Trace 699e290a8fcSAlexei Fedorov * Filter Control register TRFCR_EL1 at EL1 is not 700e290a8fcSAlexei Fedorov * trapped to EL2. This bit is RES0 in versions of 701e290a8fcSAlexei Fedorov * the architecture earlier than ARMv8.4. 702e290a8fcSAlexei Fedorov * 703e290a8fcSAlexei Fedorov * MDCR_EL2.HPMD: Set to one so that event counting is 704e290a8fcSAlexei Fedorov * prohibited at EL2. This bit is RES0 in versions of 705e290a8fcSAlexei Fedorov * the architecture earlier than ARMv8.1, setting it 706e290a8fcSAlexei Fedorov * to 1 doesn't have any effect on them. 707e290a8fcSAlexei Fedorov * 708e290a8fcSAlexei Fedorov * MDCR_EL2.TPMS: Set to zero so that accesses to 709e290a8fcSAlexei Fedorov * Statistical Profiling control registers from EL1 710e290a8fcSAlexei Fedorov * do not trap to EL2. This bit is RES0 when SPE is 711e290a8fcSAlexei Fedorov * not implemented. 712e290a8fcSAlexei Fedorov * 71318f2efd6SDavid Cunado * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and 71418f2efd6SDavid Cunado * EL1 System register accesses to the Debug ROM 71518f2efd6SDavid Cunado * registers are not trapped to EL2. 71618f2efd6SDavid Cunado * 71718f2efd6SDavid Cunado * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 71818f2efd6SDavid Cunado * System register accesses to the powerdown debug 71918f2efd6SDavid Cunado * registers are not trapped to EL2. 72018f2efd6SDavid Cunado * 72118f2efd6SDavid Cunado * MDCR_EL2.TDA: Set to zero so that System register 72218f2efd6SDavid Cunado * accesses to the debug registers do not trap to EL2. 72318f2efd6SDavid Cunado * 72418f2efd6SDavid Cunado * MDCR_EL2.TDE: Set to zero so that debug exceptions 72518f2efd6SDavid Cunado * are not routed to EL2. 72618f2efd6SDavid Cunado * 72718f2efd6SDavid Cunado * MDCR_EL2.HPME: Set to zero to disable EL2 Performance 72818f2efd6SDavid Cunado * Monitors. 72918f2efd6SDavid Cunado * 73018f2efd6SDavid Cunado * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and 73118f2efd6SDavid Cunado * EL1 accesses to all Performance Monitors registers 73218f2efd6SDavid Cunado * are not trapped to EL2. 73318f2efd6SDavid Cunado * 73418f2efd6SDavid Cunado * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0 73518f2efd6SDavid Cunado * and EL1 accesses to the PMCR_EL0 or PMCR are not 73618f2efd6SDavid Cunado * trapped to EL2. 73718f2efd6SDavid Cunado * 73818f2efd6SDavid Cunado * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the 73918f2efd6SDavid Cunado * architecturally-defined reset value. 74040ff9074SManish V Badarkhe * 74140ff9074SManish V Badarkhe * MDCR_EL2.E2TB: Set to zero so that the trace Buffer 74240ff9074SManish V Badarkhe * owning exception level is NS-EL1 and, tracing is 74340ff9074SManish V Badarkhe * prohibited at NS-EL2. These bits are RES0 when 74440ff9074SManish V Badarkhe * FEAT_TRBE is not implemented. 745495f3d3cSDavid Cunado */ 746e290a8fcSAlexei Fedorov mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP | 747e290a8fcSAlexei Fedorov MDCR_EL2_HPMD) | 74818f2efd6SDavid Cunado ((read_pmcr_el0() & PMCR_EL0_N_BITS) 74918f2efd6SDavid Cunado >> PMCR_EL0_N_SHIFT)) & 750e290a8fcSAlexei Fedorov ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS | 751e290a8fcSAlexei Fedorov MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | 752e290a8fcSAlexei Fedorov MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT | 753e290a8fcSAlexei Fedorov MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT | 75440ff9074SManish V Badarkhe MDCR_EL2_TPMCR_BIT | 75540ff9074SManish V Badarkhe MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1)); 756d832aee9Sdp-arm 757d832aee9Sdp-arm write_mdcr_el2(mdcr_el2); 758d832aee9Sdp-arm 759939f66d6SDavid Cunado /* 76018f2efd6SDavid Cunado * Initialise HSTR_EL2. All fields are architecturally 76118f2efd6SDavid Cunado * UNKNOWN on reset. 76218f2efd6SDavid Cunado * 76318f2efd6SDavid Cunado * HSTR_EL2.T<n>: Set all these fields to zero so that 76418f2efd6SDavid Cunado * Non-secure EL0 or EL1 accesses to System registers 76518f2efd6SDavid Cunado * do not trap to EL2. 766939f66d6SDavid Cunado */ 76718f2efd6SDavid Cunado write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); 768939f66d6SDavid Cunado /* 76918f2efd6SDavid Cunado * Initialise CNTHP_CTL_EL2. All fields are 77018f2efd6SDavid Cunado * architecturally UNKNOWN on reset. 77118f2efd6SDavid Cunado * 77218f2efd6SDavid Cunado * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 77318f2efd6SDavid Cunado * physical timer and prevent timer interrupts. 774939f66d6SDavid Cunado */ 77518f2efd6SDavid Cunado write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & 77618f2efd6SDavid Cunado ~(CNTHP_CTL_ENABLE_BIT)); 777532ed618SSoby Mathew } 778dc78e62dSjohpow01 manage_extensions_nonsecure(el2_unused, ctx); 779532ed618SSoby Mathew } 780532ed618SSoby Mathew 78117b4c0ddSDimitris Papastamos cm_el1_sysregs_context_restore(security_state); 78217b4c0ddSDimitris Papastamos cm_set_next_eret_context(security_state); 783532ed618SSoby Mathew } 784532ed618SSoby Mathew 78528f39f02SMax Shvetsov #if CTX_INCLUDE_EL2_REGS 78628f39f02SMax Shvetsov /******************************************************************************* 78728f39f02SMax Shvetsov * Save EL2 sysreg context 78828f39f02SMax Shvetsov ******************************************************************************/ 78928f39f02SMax Shvetsov void cm_el2_sysregs_context_save(uint32_t security_state) 79028f39f02SMax Shvetsov { 79128f39f02SMax Shvetsov u_register_t scr_el3 = read_scr(); 79228f39f02SMax Shvetsov 79328f39f02SMax Shvetsov /* 794c5ea4f8aSZelalem Aweke * Always save the non-secure and realm EL2 context, only save the 79528f39f02SMax Shvetsov * S-EL2 context if S-EL2 is enabled. 79628f39f02SMax Shvetsov */ 797c5ea4f8aSZelalem Aweke if ((security_state != SECURE) || 7986b704da3SRuari Phipps ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) { 79928f39f02SMax Shvetsov cpu_context_t *ctx; 800d20052f3SZelalem Aweke el2_sysregs_t *el2_sysregs_ctx; 80128f39f02SMax Shvetsov 80228f39f02SMax Shvetsov ctx = cm_get_context(security_state); 80328f39f02SMax Shvetsov assert(ctx != NULL); 80428f39f02SMax Shvetsov 805d20052f3SZelalem Aweke el2_sysregs_ctx = get_el2_sysregs_ctx(ctx); 806d20052f3SZelalem Aweke 807d20052f3SZelalem Aweke el2_sysregs_context_save_common(el2_sysregs_ctx); 808d20052f3SZelalem Aweke #if ENABLE_SPE_FOR_LOWER_ELS 809d20052f3SZelalem Aweke el2_sysregs_context_save_spe(el2_sysregs_ctx); 810d20052f3SZelalem Aweke #endif 811d20052f3SZelalem Aweke #if CTX_INCLUDE_MTE_REGS 812d20052f3SZelalem Aweke el2_sysregs_context_save_mte(el2_sysregs_ctx); 813d20052f3SZelalem Aweke #endif 814d20052f3SZelalem Aweke #if ENABLE_MPAM_FOR_LOWER_ELS 815d20052f3SZelalem Aweke el2_sysregs_context_save_mpam(el2_sysregs_ctx); 816d20052f3SZelalem Aweke #endif 817d20052f3SZelalem Aweke #if ENABLE_FEAT_FGT 818d20052f3SZelalem Aweke el2_sysregs_context_save_fgt(el2_sysregs_ctx); 819d20052f3SZelalem Aweke #endif 820d20052f3SZelalem Aweke #if ENABLE_FEAT_ECV 821d20052f3SZelalem Aweke el2_sysregs_context_save_ecv(el2_sysregs_ctx); 822d20052f3SZelalem Aweke #endif 823d20052f3SZelalem Aweke #if ENABLE_FEAT_VHE 824d20052f3SZelalem Aweke el2_sysregs_context_save_vhe(el2_sysregs_ctx); 825d20052f3SZelalem Aweke #endif 826d20052f3SZelalem Aweke #if RAS_EXTENSION 827d20052f3SZelalem Aweke el2_sysregs_context_save_ras(el2_sysregs_ctx); 828d20052f3SZelalem Aweke #endif 829d20052f3SZelalem Aweke #if CTX_INCLUDE_NEVE_REGS 830d20052f3SZelalem Aweke el2_sysregs_context_save_nv2(el2_sysregs_ctx); 831d20052f3SZelalem Aweke #endif 832d20052f3SZelalem Aweke #if ENABLE_TRF_FOR_NS 833d20052f3SZelalem Aweke el2_sysregs_context_save_trf(el2_sysregs_ctx); 834d20052f3SZelalem Aweke #endif 835d20052f3SZelalem Aweke #if ENABLE_FEAT_CSV2_2 836d20052f3SZelalem Aweke el2_sysregs_context_save_csv2(el2_sysregs_ctx); 837d20052f3SZelalem Aweke #endif 838d20052f3SZelalem Aweke #if ENABLE_FEAT_HCX 839d20052f3SZelalem Aweke el2_sysregs_context_save_hcx(el2_sysregs_ctx); 840d20052f3SZelalem Aweke #endif 84128f39f02SMax Shvetsov } 84228f39f02SMax Shvetsov } 84328f39f02SMax Shvetsov 84428f39f02SMax Shvetsov /******************************************************************************* 84528f39f02SMax Shvetsov * Restore EL2 sysreg context 84628f39f02SMax Shvetsov ******************************************************************************/ 84728f39f02SMax Shvetsov void cm_el2_sysregs_context_restore(uint32_t security_state) 84828f39f02SMax Shvetsov { 84928f39f02SMax Shvetsov u_register_t scr_el3 = read_scr(); 85028f39f02SMax Shvetsov 85128f39f02SMax Shvetsov /* 852c5ea4f8aSZelalem Aweke * Always restore the non-secure and realm EL2 context, only restore the 85328f39f02SMax Shvetsov * S-EL2 context if S-EL2 is enabled. 85428f39f02SMax Shvetsov */ 855c5ea4f8aSZelalem Aweke if ((security_state != SECURE) || 8566b704da3SRuari Phipps ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) { 85728f39f02SMax Shvetsov cpu_context_t *ctx; 858d20052f3SZelalem Aweke el2_sysregs_t *el2_sysregs_ctx; 85928f39f02SMax Shvetsov 86028f39f02SMax Shvetsov ctx = cm_get_context(security_state); 86128f39f02SMax Shvetsov assert(ctx != NULL); 86228f39f02SMax Shvetsov 863d20052f3SZelalem Aweke el2_sysregs_ctx = get_el2_sysregs_ctx(ctx); 864d20052f3SZelalem Aweke 865d20052f3SZelalem Aweke el2_sysregs_context_restore_common(el2_sysregs_ctx); 866d20052f3SZelalem Aweke #if ENABLE_SPE_FOR_LOWER_ELS 867d20052f3SZelalem Aweke el2_sysregs_context_restore_spe(el2_sysregs_ctx); 868d20052f3SZelalem Aweke #endif 869d20052f3SZelalem Aweke #if CTX_INCLUDE_MTE_REGS 870d20052f3SZelalem Aweke el2_sysregs_context_restore_mte(el2_sysregs_ctx); 871d20052f3SZelalem Aweke #endif 872d20052f3SZelalem Aweke #if ENABLE_MPAM_FOR_LOWER_ELS 873d20052f3SZelalem Aweke el2_sysregs_context_restore_mpam(el2_sysregs_ctx); 874d20052f3SZelalem Aweke #endif 875d20052f3SZelalem Aweke #if ENABLE_FEAT_FGT 876d20052f3SZelalem Aweke el2_sysregs_context_restore_fgt(el2_sysregs_ctx); 877d20052f3SZelalem Aweke #endif 878d20052f3SZelalem Aweke #if ENABLE_FEAT_ECV 879d20052f3SZelalem Aweke el2_sysregs_context_restore_ecv(el2_sysregs_ctx); 880d20052f3SZelalem Aweke #endif 881d20052f3SZelalem Aweke #if ENABLE_FEAT_VHE 882d20052f3SZelalem Aweke el2_sysregs_context_restore_vhe(el2_sysregs_ctx); 883d20052f3SZelalem Aweke #endif 884d20052f3SZelalem Aweke #if RAS_EXTENSION 885d20052f3SZelalem Aweke el2_sysregs_context_restore_ras(el2_sysregs_ctx); 886d20052f3SZelalem Aweke #endif 887d20052f3SZelalem Aweke #if CTX_INCLUDE_NEVE_REGS 888d20052f3SZelalem Aweke el2_sysregs_context_restore_nv2(el2_sysregs_ctx); 889d20052f3SZelalem Aweke #endif 890d20052f3SZelalem Aweke #if ENABLE_TRF_FOR_NS 891d20052f3SZelalem Aweke el2_sysregs_context_restore_trf(el2_sysregs_ctx); 892d20052f3SZelalem Aweke #endif 893d20052f3SZelalem Aweke #if ENABLE_FEAT_CSV2_2 894d20052f3SZelalem Aweke el2_sysregs_context_restore_csv2(el2_sysregs_ctx); 895d20052f3SZelalem Aweke #endif 896d20052f3SZelalem Aweke #if ENABLE_FEAT_HCX 897d20052f3SZelalem Aweke el2_sysregs_context_restore_hcx(el2_sysregs_ctx); 898d20052f3SZelalem Aweke #endif 89928f39f02SMax Shvetsov } 90028f39f02SMax Shvetsov } 90128f39f02SMax Shvetsov #endif /* CTX_INCLUDE_EL2_REGS */ 90228f39f02SMax Shvetsov 903532ed618SSoby Mathew /******************************************************************************* 9048b95e848SZelalem Aweke * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS 9058b95e848SZelalem Aweke * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly 9068b95e848SZelalem Aweke * updating EL1 and EL2 registers. Otherwise, it calls the generic 9078b95e848SZelalem Aweke * cm_prepare_el3_exit function. 9088b95e848SZelalem Aweke ******************************************************************************/ 9098b95e848SZelalem Aweke void cm_prepare_el3_exit_ns(void) 9108b95e848SZelalem Aweke { 9118b95e848SZelalem Aweke #if CTX_INCLUDE_EL2_REGS 9128b95e848SZelalem Aweke cpu_context_t *ctx = cm_get_context(NON_SECURE); 9138b95e848SZelalem Aweke assert(ctx != NULL); 9148b95e848SZelalem Aweke 915b515f541SZelalem Aweke /* Assert that EL2 is used. */ 916b515f541SZelalem Aweke #if ENABLE_ASSERTIONS 917b515f541SZelalem Aweke el3_state_t *state = get_el3state_ctx(ctx); 918b515f541SZelalem Aweke u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 919b515f541SZelalem Aweke #endif 920b515f541SZelalem Aweke assert(((scr_el3 & SCR_HCE_BIT) != 0UL) && 921b515f541SZelalem Aweke (el_implemented(2U) != EL_IMPL_NONE)); 922b515f541SZelalem Aweke 9238b95e848SZelalem Aweke /* 9248b95e848SZelalem Aweke * Currently some extensions are configured using 9258b95e848SZelalem Aweke * direct register updates. Therefore, do this here 9268b95e848SZelalem Aweke * instead of when setting up context. 9278b95e848SZelalem Aweke */ 9288b95e848SZelalem Aweke manage_extensions_nonsecure(0, ctx); 9298b95e848SZelalem Aweke 9308b95e848SZelalem Aweke /* 9318b95e848SZelalem Aweke * Set the NS bit to be able to access the ICC_SRE_EL2 9328b95e848SZelalem Aweke * register when restoring context. 9338b95e848SZelalem Aweke */ 9348b95e848SZelalem Aweke write_scr_el3(read_scr_el3() | SCR_NS_BIT); 9358b95e848SZelalem Aweke 93604825031SOlivier Deprez /* 93704825031SOlivier Deprez * Ensure the NS bit change is committed before the EL2/EL1 93804825031SOlivier Deprez * state restoration. 93904825031SOlivier Deprez */ 94004825031SOlivier Deprez isb(); 94104825031SOlivier Deprez 9428b95e848SZelalem Aweke /* Restore EL2 and EL1 sysreg contexts */ 9438b95e848SZelalem Aweke cm_el2_sysregs_context_restore(NON_SECURE); 9448b95e848SZelalem Aweke cm_el1_sysregs_context_restore(NON_SECURE); 9458b95e848SZelalem Aweke cm_set_next_eret_context(NON_SECURE); 9468b95e848SZelalem Aweke #else 9478b95e848SZelalem Aweke cm_prepare_el3_exit(NON_SECURE); 9488b95e848SZelalem Aweke #endif /* CTX_INCLUDE_EL2_REGS */ 9498b95e848SZelalem Aweke } 9508b95e848SZelalem Aweke 9518b95e848SZelalem Aweke /******************************************************************************* 952532ed618SSoby Mathew * The next four functions are used by runtime services to save and restore 953532ed618SSoby Mathew * EL1 context on the 'cpu_context' structure for the specified security 954532ed618SSoby Mathew * state. 955532ed618SSoby Mathew ******************************************************************************/ 956532ed618SSoby Mathew void cm_el1_sysregs_context_save(uint32_t security_state) 957532ed618SSoby Mathew { 958532ed618SSoby Mathew cpu_context_t *ctx; 959532ed618SSoby Mathew 960532ed618SSoby Mathew ctx = cm_get_context(security_state); 961a0fee747SAntonio Nino Diaz assert(ctx != NULL); 962532ed618SSoby Mathew 9632825946eSMax Shvetsov el1_sysregs_context_save(get_el1_sysregs_ctx(ctx)); 96417b4c0ddSDimitris Papastamos 96517b4c0ddSDimitris Papastamos #if IMAGE_BL31 96617b4c0ddSDimitris Papastamos if (security_state == SECURE) 96717b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_exited_secure_world); 96817b4c0ddSDimitris Papastamos else 96917b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_exited_normal_world); 97017b4c0ddSDimitris Papastamos #endif 971532ed618SSoby Mathew } 972532ed618SSoby Mathew 973532ed618SSoby Mathew void cm_el1_sysregs_context_restore(uint32_t security_state) 974532ed618SSoby Mathew { 975532ed618SSoby Mathew cpu_context_t *ctx; 976532ed618SSoby Mathew 977532ed618SSoby Mathew ctx = cm_get_context(security_state); 978a0fee747SAntonio Nino Diaz assert(ctx != NULL); 979532ed618SSoby Mathew 9802825946eSMax Shvetsov el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx)); 98117b4c0ddSDimitris Papastamos 98217b4c0ddSDimitris Papastamos #if IMAGE_BL31 98317b4c0ddSDimitris Papastamos if (security_state == SECURE) 98417b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_entering_secure_world); 98517b4c0ddSDimitris Papastamos else 98617b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_entering_normal_world); 98717b4c0ddSDimitris Papastamos #endif 988532ed618SSoby Mathew } 989532ed618SSoby Mathew 990532ed618SSoby Mathew /******************************************************************************* 991532ed618SSoby Mathew * This function populates ELR_EL3 member of 'cpu_context' pertaining to the 992532ed618SSoby Mathew * given security state with the given entrypoint 993532ed618SSoby Mathew ******************************************************************************/ 994532ed618SSoby Mathew void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) 995532ed618SSoby Mathew { 996532ed618SSoby Mathew cpu_context_t *ctx; 997532ed618SSoby Mathew el3_state_t *state; 998532ed618SSoby Mathew 999532ed618SSoby Mathew ctx = cm_get_context(security_state); 1000a0fee747SAntonio Nino Diaz assert(ctx != NULL); 1001532ed618SSoby Mathew 1002532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 1003532ed618SSoby Mathew state = get_el3state_ctx(ctx); 1004532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 1005532ed618SSoby Mathew } 1006532ed618SSoby Mathew 1007532ed618SSoby Mathew /******************************************************************************* 1008532ed618SSoby Mathew * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' 1009532ed618SSoby Mathew * pertaining to the given security state 1010532ed618SSoby Mathew ******************************************************************************/ 1011532ed618SSoby Mathew void cm_set_elr_spsr_el3(uint32_t security_state, 1012532ed618SSoby Mathew uintptr_t entrypoint, uint32_t spsr) 1013532ed618SSoby Mathew { 1014532ed618SSoby Mathew cpu_context_t *ctx; 1015532ed618SSoby Mathew el3_state_t *state; 1016532ed618SSoby Mathew 1017532ed618SSoby Mathew ctx = cm_get_context(security_state); 1018a0fee747SAntonio Nino Diaz assert(ctx != NULL); 1019532ed618SSoby Mathew 1020532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 1021532ed618SSoby Mathew state = get_el3state_ctx(ctx); 1022532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 1023532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, spsr); 1024532ed618SSoby Mathew } 1025532ed618SSoby Mathew 1026532ed618SSoby Mathew /******************************************************************************* 1027532ed618SSoby Mathew * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' 1028532ed618SSoby Mathew * pertaining to the given security state using the value and bit position 1029532ed618SSoby Mathew * specified in the parameters. It preserves all other bits. 1030532ed618SSoby Mathew ******************************************************************************/ 1031532ed618SSoby Mathew void cm_write_scr_el3_bit(uint32_t security_state, 1032532ed618SSoby Mathew uint32_t bit_pos, 1033532ed618SSoby Mathew uint32_t value) 1034532ed618SSoby Mathew { 1035532ed618SSoby Mathew cpu_context_t *ctx; 1036532ed618SSoby Mathew el3_state_t *state; 1037f1be00daSLouis Mayencourt u_register_t scr_el3; 1038532ed618SSoby Mathew 1039532ed618SSoby Mathew ctx = cm_get_context(security_state); 1040a0fee747SAntonio Nino Diaz assert(ctx != NULL); 1041532ed618SSoby Mathew 1042532ed618SSoby Mathew /* Ensure that the bit position is a valid one */ 1043d7b5f408SJimmy Brisson assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U); 1044532ed618SSoby Mathew 1045532ed618SSoby Mathew /* Ensure that the 'value' is only a bit wide */ 1046a0fee747SAntonio Nino Diaz assert(value <= 1U); 1047532ed618SSoby Mathew 1048532ed618SSoby Mathew /* 1049532ed618SSoby Mathew * Get the SCR_EL3 value from the cpu context, clear the desired bit 1050532ed618SSoby Mathew * and set it to its new value. 1051532ed618SSoby Mathew */ 1052532ed618SSoby Mathew state = get_el3state_ctx(ctx); 1053f1be00daSLouis Mayencourt scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 1054d7b5f408SJimmy Brisson scr_el3 &= ~(1UL << bit_pos); 1055f1be00daSLouis Mayencourt scr_el3 |= (u_register_t)value << bit_pos; 1056532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 1057532ed618SSoby Mathew } 1058532ed618SSoby Mathew 1059532ed618SSoby Mathew /******************************************************************************* 1060532ed618SSoby Mathew * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the 1061532ed618SSoby Mathew * given security state. 1062532ed618SSoby Mathew ******************************************************************************/ 1063f1be00daSLouis Mayencourt u_register_t cm_get_scr_el3(uint32_t security_state) 1064532ed618SSoby Mathew { 1065532ed618SSoby Mathew cpu_context_t *ctx; 1066532ed618SSoby Mathew el3_state_t *state; 1067532ed618SSoby Mathew 1068532ed618SSoby Mathew ctx = cm_get_context(security_state); 1069a0fee747SAntonio Nino Diaz assert(ctx != NULL); 1070532ed618SSoby Mathew 1071532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 1072532ed618SSoby Mathew state = get_el3state_ctx(ctx); 1073f1be00daSLouis Mayencourt return read_ctx_reg(state, CTX_SCR_EL3); 1074532ed618SSoby Mathew } 1075532ed618SSoby Mathew 1076532ed618SSoby Mathew /******************************************************************************* 1077532ed618SSoby Mathew * This function is used to program the context that's used for exception 1078532ed618SSoby Mathew * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 1079532ed618SSoby Mathew * the required security state 1080532ed618SSoby Mathew ******************************************************************************/ 1081532ed618SSoby Mathew void cm_set_next_eret_context(uint32_t security_state) 1082532ed618SSoby Mathew { 1083532ed618SSoby Mathew cpu_context_t *ctx; 1084532ed618SSoby Mathew 1085532ed618SSoby Mathew ctx = cm_get_context(security_state); 1086a0fee747SAntonio Nino Diaz assert(ctx != NULL); 1087532ed618SSoby Mathew 1088532ed618SSoby Mathew cm_set_next_context(ctx); 1089532ed618SSoby Mathew } 1090