1*532ed618SSoby Mathew /* 2*532ed618SSoby Mathew * Copyright (c) 2013-2016, ARM Limited and Contributors. All rights reserved. 3*532ed618SSoby Mathew * 4*532ed618SSoby Mathew * Redistribution and use in source and binary forms, with or without 5*532ed618SSoby Mathew * modification, are permitted provided that the following conditions are met: 6*532ed618SSoby Mathew * 7*532ed618SSoby Mathew * Redistributions of source code must retain the above copyright notice, this 8*532ed618SSoby Mathew * list of conditions and the following disclaimer. 9*532ed618SSoby Mathew * 10*532ed618SSoby Mathew * Redistributions in binary form must reproduce the above copyright notice, 11*532ed618SSoby Mathew * this list of conditions and the following disclaimer in the documentation 12*532ed618SSoby Mathew * and/or other materials provided with the distribution. 13*532ed618SSoby Mathew * 14*532ed618SSoby Mathew * Neither the name of ARM nor the names of its contributors may be used 15*532ed618SSoby Mathew * to endorse or promote products derived from this software without specific 16*532ed618SSoby Mathew * prior written permission. 17*532ed618SSoby Mathew * 18*532ed618SSoby Mathew * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 19*532ed618SSoby Mathew * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20*532ed618SSoby Mathew * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21*532ed618SSoby Mathew * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 22*532ed618SSoby Mathew * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23*532ed618SSoby Mathew * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24*532ed618SSoby Mathew * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25*532ed618SSoby Mathew * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26*532ed618SSoby Mathew * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27*532ed618SSoby Mathew * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28*532ed618SSoby Mathew * POSSIBILITY OF SUCH DAMAGE. 29*532ed618SSoby Mathew */ 30*532ed618SSoby Mathew 31*532ed618SSoby Mathew #include <arch.h> 32*532ed618SSoby Mathew #include <arch_helpers.h> 33*532ed618SSoby Mathew #include <assert.h> 34*532ed618SSoby Mathew #include <bl_common.h> 35*532ed618SSoby Mathew #include <context.h> 36*532ed618SSoby Mathew #include <context_mgmt.h> 37*532ed618SSoby Mathew #include <interrupt_mgmt.h> 38*532ed618SSoby Mathew #include <platform.h> 39*532ed618SSoby Mathew #include <platform_def.h> 40*532ed618SSoby Mathew #include <smcc_helpers.h> 41*532ed618SSoby Mathew #include <string.h> 42*532ed618SSoby Mathew 43*532ed618SSoby Mathew 44*532ed618SSoby Mathew /******************************************************************************* 45*532ed618SSoby Mathew * Context management library initialisation routine. This library is used by 46*532ed618SSoby Mathew * runtime services to share pointers to 'cpu_context' structures for the secure 47*532ed618SSoby Mathew * and non-secure states. Management of the structures and their associated 48*532ed618SSoby Mathew * memory is not done by the context management library e.g. the PSCI service 49*532ed618SSoby Mathew * manages the cpu context used for entry from and exit to the non-secure state. 50*532ed618SSoby Mathew * The Secure payload dispatcher service manages the context(s) corresponding to 51*532ed618SSoby Mathew * the secure state. It also uses this library to get access to the non-secure 52*532ed618SSoby Mathew * state cpu context pointers. 53*532ed618SSoby Mathew * Lastly, this library provides the api to make SP_EL3 point to the cpu context 54*532ed618SSoby Mathew * which will used for programming an entry into a lower EL. The same context 55*532ed618SSoby Mathew * will used to save state upon exception entry from that EL. 56*532ed618SSoby Mathew ******************************************************************************/ 57*532ed618SSoby Mathew void cm_init(void) 58*532ed618SSoby Mathew { 59*532ed618SSoby Mathew /* 60*532ed618SSoby Mathew * The context management library has only global data to intialize, but 61*532ed618SSoby Mathew * that will be done when the BSS is zeroed out 62*532ed618SSoby Mathew */ 63*532ed618SSoby Mathew } 64*532ed618SSoby Mathew 65*532ed618SSoby Mathew /******************************************************************************* 66*532ed618SSoby Mathew * The following function initializes the cpu_context 'ctx' for 67*532ed618SSoby Mathew * first use, and sets the initial entrypoint state as specified by the 68*532ed618SSoby Mathew * entry_point_info structure. 69*532ed618SSoby Mathew * 70*532ed618SSoby Mathew * The security state to initialize is determined by the SECURE attribute 71*532ed618SSoby Mathew * of the entry_point_info. The function returns a pointer to the initialized 72*532ed618SSoby Mathew * context and sets this as the next context to return to. 73*532ed618SSoby Mathew * 74*532ed618SSoby Mathew * The EE and ST attributes are used to configure the endianess and secure 75*532ed618SSoby Mathew * timer availability for the new execution context. 76*532ed618SSoby Mathew * 77*532ed618SSoby Mathew * To prepare the register state for entry call cm_prepare_el3_exit() and 78*532ed618SSoby Mathew * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to 79*532ed618SSoby Mathew * cm_e1_sysreg_context_restore(). 80*532ed618SSoby Mathew ******************************************************************************/ 81*532ed618SSoby Mathew static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) 82*532ed618SSoby Mathew { 83*532ed618SSoby Mathew unsigned int security_state; 84*532ed618SSoby Mathew uint32_t scr_el3; 85*532ed618SSoby Mathew el3_state_t *state; 86*532ed618SSoby Mathew gp_regs_t *gp_regs; 87*532ed618SSoby Mathew unsigned long sctlr_elx; 88*532ed618SSoby Mathew 89*532ed618SSoby Mathew assert(ctx); 90*532ed618SSoby Mathew 91*532ed618SSoby Mathew security_state = GET_SECURITY_STATE(ep->h.attr); 92*532ed618SSoby Mathew 93*532ed618SSoby Mathew /* Clear any residual register values from the context */ 94*532ed618SSoby Mathew memset(ctx, 0, sizeof(*ctx)); 95*532ed618SSoby Mathew 96*532ed618SSoby Mathew /* 97*532ed618SSoby Mathew * Base the context SCR on the current value, adjust for entry point 98*532ed618SSoby Mathew * specific requirements and set trap bits from the IMF 99*532ed618SSoby Mathew * TODO: provide the base/global SCR bits using another mechanism? 100*532ed618SSoby Mathew */ 101*532ed618SSoby Mathew scr_el3 = read_scr(); 102*532ed618SSoby Mathew scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | 103*532ed618SSoby Mathew SCR_ST_BIT | SCR_HCE_BIT); 104*532ed618SSoby Mathew 105*532ed618SSoby Mathew if (security_state != SECURE) 106*532ed618SSoby Mathew scr_el3 |= SCR_NS_BIT; 107*532ed618SSoby Mathew 108*532ed618SSoby Mathew if (GET_RW(ep->spsr) == MODE_RW_64) 109*532ed618SSoby Mathew scr_el3 |= SCR_RW_BIT; 110*532ed618SSoby Mathew 111*532ed618SSoby Mathew if (EP_GET_ST(ep->h.attr)) 112*532ed618SSoby Mathew scr_el3 |= SCR_ST_BIT; 113*532ed618SSoby Mathew 114*532ed618SSoby Mathew #ifndef HANDLE_EA_EL3_FIRST 115*532ed618SSoby Mathew /* Explicitly stop to trap aborts from lower exception levels. */ 116*532ed618SSoby Mathew scr_el3 &= ~SCR_EA_BIT; 117*532ed618SSoby Mathew #endif 118*532ed618SSoby Mathew 119*532ed618SSoby Mathew #if IMAGE_BL31 120*532ed618SSoby Mathew /* 121*532ed618SSoby Mathew * IRQ/FIQ bits only need setting if interrupt routing 122*532ed618SSoby Mathew * model has been set up for BL31. 123*532ed618SSoby Mathew */ 124*532ed618SSoby Mathew scr_el3 |= get_scr_el3_from_routing_model(security_state); 125*532ed618SSoby Mathew #endif 126*532ed618SSoby Mathew 127*532ed618SSoby Mathew /* 128*532ed618SSoby Mathew * Set up SCTLR_ELx for the target exception level: 129*532ed618SSoby Mathew * EE bit is taken from the entrypoint attributes 130*532ed618SSoby Mathew * M, C and I bits must be zero (as required by PSCI specification) 131*532ed618SSoby Mathew * 132*532ed618SSoby Mathew * The target exception level is based on the spsr mode requested. 133*532ed618SSoby Mathew * If execution is requested to EL2 or hyp mode, HVC is enabled 134*532ed618SSoby Mathew * via SCR_EL3.HCE. 135*532ed618SSoby Mathew * 136*532ed618SSoby Mathew * Always compute the SCTLR_EL1 value and save in the cpu_context 137*532ed618SSoby Mathew * - the EL2 registers are set up by cm_preapre_ns_entry() as they 138*532ed618SSoby Mathew * are not part of the stored cpu_context 139*532ed618SSoby Mathew * 140*532ed618SSoby Mathew * TODO: In debug builds the spsr should be validated and checked 141*532ed618SSoby Mathew * against the CPU support, security state, endianess and pc 142*532ed618SSoby Mathew */ 143*532ed618SSoby Mathew sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; 144*532ed618SSoby Mathew if (GET_RW(ep->spsr) == MODE_RW_64) 145*532ed618SSoby Mathew sctlr_elx |= SCTLR_EL1_RES1; 146*532ed618SSoby Mathew else 147*532ed618SSoby Mathew sctlr_elx |= SCTLR_AARCH32_EL1_RES1; 148*532ed618SSoby Mathew write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); 149*532ed618SSoby Mathew 150*532ed618SSoby Mathew if ((GET_RW(ep->spsr) == MODE_RW_64 151*532ed618SSoby Mathew && GET_EL(ep->spsr) == MODE_EL2) 152*532ed618SSoby Mathew || (GET_RW(ep->spsr) != MODE_RW_64 153*532ed618SSoby Mathew && GET_M32(ep->spsr) == MODE32_hyp)) { 154*532ed618SSoby Mathew scr_el3 |= SCR_HCE_BIT; 155*532ed618SSoby Mathew } 156*532ed618SSoby Mathew 157*532ed618SSoby Mathew /* Populate EL3 state so that we've the right context before doing ERET */ 158*532ed618SSoby Mathew state = get_el3state_ctx(ctx); 159*532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 160*532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, ep->pc); 161*532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); 162*532ed618SSoby Mathew 163*532ed618SSoby Mathew /* 164*532ed618SSoby Mathew * Store the X0-X7 value from the entrypoint into the context 165*532ed618SSoby Mathew * Use memcpy as we are in control of the layout of the structures 166*532ed618SSoby Mathew */ 167*532ed618SSoby Mathew gp_regs = get_gpregs_ctx(ctx); 168*532ed618SSoby Mathew memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); 169*532ed618SSoby Mathew } 170*532ed618SSoby Mathew 171*532ed618SSoby Mathew /******************************************************************************* 172*532ed618SSoby Mathew * The following function initializes the cpu_context for a CPU specified by 173*532ed618SSoby Mathew * its `cpu_idx` for first use, and sets the initial entrypoint state as 174*532ed618SSoby Mathew * specified by the entry_point_info structure. 175*532ed618SSoby Mathew ******************************************************************************/ 176*532ed618SSoby Mathew void cm_init_context_by_index(unsigned int cpu_idx, 177*532ed618SSoby Mathew const entry_point_info_t *ep) 178*532ed618SSoby Mathew { 179*532ed618SSoby Mathew cpu_context_t *ctx; 180*532ed618SSoby Mathew ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 181*532ed618SSoby Mathew cm_init_context_common(ctx, ep); 182*532ed618SSoby Mathew } 183*532ed618SSoby Mathew 184*532ed618SSoby Mathew /******************************************************************************* 185*532ed618SSoby Mathew * The following function initializes the cpu_context for the current CPU 186*532ed618SSoby Mathew * for first use, and sets the initial entrypoint state as specified by the 187*532ed618SSoby Mathew * entry_point_info structure. 188*532ed618SSoby Mathew ******************************************************************************/ 189*532ed618SSoby Mathew void cm_init_my_context(const entry_point_info_t *ep) 190*532ed618SSoby Mathew { 191*532ed618SSoby Mathew cpu_context_t *ctx; 192*532ed618SSoby Mathew ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 193*532ed618SSoby Mathew cm_init_context_common(ctx, ep); 194*532ed618SSoby Mathew } 195*532ed618SSoby Mathew 196*532ed618SSoby Mathew /******************************************************************************* 197*532ed618SSoby Mathew * Prepare the CPU system registers for first entry into secure or normal world 198*532ed618SSoby Mathew * 199*532ed618SSoby Mathew * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized 200*532ed618SSoby Mathew * If execution is requested to non-secure EL1 or svc mode, and the CPU supports 201*532ed618SSoby Mathew * EL2 then EL2 is disabled by configuring all necessary EL2 registers. 202*532ed618SSoby Mathew * For all entries, the EL1 registers are initialized from the cpu_context 203*532ed618SSoby Mathew ******************************************************************************/ 204*532ed618SSoby Mathew void cm_prepare_el3_exit(uint32_t security_state) 205*532ed618SSoby Mathew { 206*532ed618SSoby Mathew uint32_t sctlr_elx, scr_el3, cptr_el2; 207*532ed618SSoby Mathew cpu_context_t *ctx = cm_get_context(security_state); 208*532ed618SSoby Mathew 209*532ed618SSoby Mathew assert(ctx); 210*532ed618SSoby Mathew 211*532ed618SSoby Mathew if (security_state == NON_SECURE) { 212*532ed618SSoby Mathew scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); 213*532ed618SSoby Mathew if (scr_el3 & SCR_HCE_BIT) { 214*532ed618SSoby Mathew /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ 215*532ed618SSoby Mathew sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx), 216*532ed618SSoby Mathew CTX_SCTLR_EL1); 217*532ed618SSoby Mathew sctlr_elx &= ~SCTLR_EE_BIT; 218*532ed618SSoby Mathew sctlr_elx |= SCTLR_EL2_RES1; 219*532ed618SSoby Mathew write_sctlr_el2(sctlr_elx); 220*532ed618SSoby Mathew } else if (read_id_aa64pfr0_el1() & 221*532ed618SSoby Mathew (ID_AA64PFR0_ELX_MASK << ID_AA64PFR0_EL2_SHIFT)) { 222*532ed618SSoby Mathew /* EL2 present but unused, need to disable safely */ 223*532ed618SSoby Mathew 224*532ed618SSoby Mathew /* HCR_EL2 = 0, except RW bit set to match SCR_EL3 */ 225*532ed618SSoby Mathew write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0); 226*532ed618SSoby Mathew 227*532ed618SSoby Mathew /* SCTLR_EL2 : can be ignored when bypassing */ 228*532ed618SSoby Mathew 229*532ed618SSoby Mathew /* CPTR_EL2 : disable all traps TCPAC, TTA, TFP */ 230*532ed618SSoby Mathew cptr_el2 = read_cptr_el2(); 231*532ed618SSoby Mathew cptr_el2 &= ~(TCPAC_BIT | TTA_BIT | TFP_BIT); 232*532ed618SSoby Mathew write_cptr_el2(cptr_el2); 233*532ed618SSoby Mathew 234*532ed618SSoby Mathew /* Enable EL1 access to timer */ 235*532ed618SSoby Mathew write_cnthctl_el2(EL1PCEN_BIT | EL1PCTEN_BIT); 236*532ed618SSoby Mathew 237*532ed618SSoby Mathew /* Reset CNTVOFF_EL2 */ 238*532ed618SSoby Mathew write_cntvoff_el2(0); 239*532ed618SSoby Mathew 240*532ed618SSoby Mathew /* Set VPIDR, VMPIDR to match MIDR, MPIDR */ 241*532ed618SSoby Mathew write_vpidr_el2(read_midr_el1()); 242*532ed618SSoby Mathew write_vmpidr_el2(read_mpidr_el1()); 243*532ed618SSoby Mathew 244*532ed618SSoby Mathew /* 245*532ed618SSoby Mathew * Reset VTTBR_EL2. 246*532ed618SSoby Mathew * Needed because cache maintenance operations depend on 247*532ed618SSoby Mathew * the VMID even when non-secure EL1&0 stage 2 address 248*532ed618SSoby Mathew * translation are disabled. 249*532ed618SSoby Mathew */ 250*532ed618SSoby Mathew write_vttbr_el2(0); 251*532ed618SSoby Mathew } 252*532ed618SSoby Mathew } 253*532ed618SSoby Mathew 254*532ed618SSoby Mathew el1_sysregs_context_restore(get_sysregs_ctx(ctx)); 255*532ed618SSoby Mathew 256*532ed618SSoby Mathew cm_set_next_context(ctx); 257*532ed618SSoby Mathew } 258*532ed618SSoby Mathew 259*532ed618SSoby Mathew /******************************************************************************* 260*532ed618SSoby Mathew * The next four functions are used by runtime services to save and restore 261*532ed618SSoby Mathew * EL1 context on the 'cpu_context' structure for the specified security 262*532ed618SSoby Mathew * state. 263*532ed618SSoby Mathew ******************************************************************************/ 264*532ed618SSoby Mathew void cm_el1_sysregs_context_save(uint32_t security_state) 265*532ed618SSoby Mathew { 266*532ed618SSoby Mathew cpu_context_t *ctx; 267*532ed618SSoby Mathew 268*532ed618SSoby Mathew ctx = cm_get_context(security_state); 269*532ed618SSoby Mathew assert(ctx); 270*532ed618SSoby Mathew 271*532ed618SSoby Mathew el1_sysregs_context_save(get_sysregs_ctx(ctx)); 272*532ed618SSoby Mathew } 273*532ed618SSoby Mathew 274*532ed618SSoby Mathew void cm_el1_sysregs_context_restore(uint32_t security_state) 275*532ed618SSoby Mathew { 276*532ed618SSoby Mathew cpu_context_t *ctx; 277*532ed618SSoby Mathew 278*532ed618SSoby Mathew ctx = cm_get_context(security_state); 279*532ed618SSoby Mathew assert(ctx); 280*532ed618SSoby Mathew 281*532ed618SSoby Mathew el1_sysregs_context_restore(get_sysregs_ctx(ctx)); 282*532ed618SSoby Mathew } 283*532ed618SSoby Mathew 284*532ed618SSoby Mathew /******************************************************************************* 285*532ed618SSoby Mathew * This function populates ELR_EL3 member of 'cpu_context' pertaining to the 286*532ed618SSoby Mathew * given security state with the given entrypoint 287*532ed618SSoby Mathew ******************************************************************************/ 288*532ed618SSoby Mathew void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) 289*532ed618SSoby Mathew { 290*532ed618SSoby Mathew cpu_context_t *ctx; 291*532ed618SSoby Mathew el3_state_t *state; 292*532ed618SSoby Mathew 293*532ed618SSoby Mathew ctx = cm_get_context(security_state); 294*532ed618SSoby Mathew assert(ctx); 295*532ed618SSoby Mathew 296*532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 297*532ed618SSoby Mathew state = get_el3state_ctx(ctx); 298*532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 299*532ed618SSoby Mathew } 300*532ed618SSoby Mathew 301*532ed618SSoby Mathew /******************************************************************************* 302*532ed618SSoby Mathew * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' 303*532ed618SSoby Mathew * pertaining to the given security state 304*532ed618SSoby Mathew ******************************************************************************/ 305*532ed618SSoby Mathew void cm_set_elr_spsr_el3(uint32_t security_state, 306*532ed618SSoby Mathew uintptr_t entrypoint, uint32_t spsr) 307*532ed618SSoby Mathew { 308*532ed618SSoby Mathew cpu_context_t *ctx; 309*532ed618SSoby Mathew el3_state_t *state; 310*532ed618SSoby Mathew 311*532ed618SSoby Mathew ctx = cm_get_context(security_state); 312*532ed618SSoby Mathew assert(ctx); 313*532ed618SSoby Mathew 314*532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 315*532ed618SSoby Mathew state = get_el3state_ctx(ctx); 316*532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 317*532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, spsr); 318*532ed618SSoby Mathew } 319*532ed618SSoby Mathew 320*532ed618SSoby Mathew /******************************************************************************* 321*532ed618SSoby Mathew * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' 322*532ed618SSoby Mathew * pertaining to the given security state using the value and bit position 323*532ed618SSoby Mathew * specified in the parameters. It preserves all other bits. 324*532ed618SSoby Mathew ******************************************************************************/ 325*532ed618SSoby Mathew void cm_write_scr_el3_bit(uint32_t security_state, 326*532ed618SSoby Mathew uint32_t bit_pos, 327*532ed618SSoby Mathew uint32_t value) 328*532ed618SSoby Mathew { 329*532ed618SSoby Mathew cpu_context_t *ctx; 330*532ed618SSoby Mathew el3_state_t *state; 331*532ed618SSoby Mathew uint32_t scr_el3; 332*532ed618SSoby Mathew 333*532ed618SSoby Mathew ctx = cm_get_context(security_state); 334*532ed618SSoby Mathew assert(ctx); 335*532ed618SSoby Mathew 336*532ed618SSoby Mathew /* Ensure that the bit position is a valid one */ 337*532ed618SSoby Mathew assert((1 << bit_pos) & SCR_VALID_BIT_MASK); 338*532ed618SSoby Mathew 339*532ed618SSoby Mathew /* Ensure that the 'value' is only a bit wide */ 340*532ed618SSoby Mathew assert(value <= 1); 341*532ed618SSoby Mathew 342*532ed618SSoby Mathew /* 343*532ed618SSoby Mathew * Get the SCR_EL3 value from the cpu context, clear the desired bit 344*532ed618SSoby Mathew * and set it to its new value. 345*532ed618SSoby Mathew */ 346*532ed618SSoby Mathew state = get_el3state_ctx(ctx); 347*532ed618SSoby Mathew scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 348*532ed618SSoby Mathew scr_el3 &= ~(1 << bit_pos); 349*532ed618SSoby Mathew scr_el3 |= value << bit_pos; 350*532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 351*532ed618SSoby Mathew } 352*532ed618SSoby Mathew 353*532ed618SSoby Mathew /******************************************************************************* 354*532ed618SSoby Mathew * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the 355*532ed618SSoby Mathew * given security state. 356*532ed618SSoby Mathew ******************************************************************************/ 357*532ed618SSoby Mathew uint32_t cm_get_scr_el3(uint32_t security_state) 358*532ed618SSoby Mathew { 359*532ed618SSoby Mathew cpu_context_t *ctx; 360*532ed618SSoby Mathew el3_state_t *state; 361*532ed618SSoby Mathew 362*532ed618SSoby Mathew ctx = cm_get_context(security_state); 363*532ed618SSoby Mathew assert(ctx); 364*532ed618SSoby Mathew 365*532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 366*532ed618SSoby Mathew state = get_el3state_ctx(ctx); 367*532ed618SSoby Mathew return read_ctx_reg(state, CTX_SCR_EL3); 368*532ed618SSoby Mathew } 369*532ed618SSoby Mathew 370*532ed618SSoby Mathew /******************************************************************************* 371*532ed618SSoby Mathew * This function is used to program the context that's used for exception 372*532ed618SSoby Mathew * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 373*532ed618SSoby Mathew * the required security state 374*532ed618SSoby Mathew ******************************************************************************/ 375*532ed618SSoby Mathew void cm_set_next_eret_context(uint32_t security_state) 376*532ed618SSoby Mathew { 377*532ed618SSoby Mathew cpu_context_t *ctx; 378*532ed618SSoby Mathew 379*532ed618SSoby Mathew ctx = cm_get_context(security_state); 380*532ed618SSoby Mathew assert(ctx); 381*532ed618SSoby Mathew 382*532ed618SSoby Mathew cm_set_next_context(ctx); 383*532ed618SSoby Mathew } 384