1532ed618SSoby Mathew /* 2*32f0d3c6SDouglas Raillard * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved. 3532ed618SSoby Mathew * 4532ed618SSoby Mathew * Redistribution and use in source and binary forms, with or without 5532ed618SSoby Mathew * modification, are permitted provided that the following conditions are met: 6532ed618SSoby Mathew * 7532ed618SSoby Mathew * Redistributions of source code must retain the above copyright notice, this 8532ed618SSoby Mathew * list of conditions and the following disclaimer. 9532ed618SSoby Mathew * 10532ed618SSoby Mathew * Redistributions in binary form must reproduce the above copyright notice, 11532ed618SSoby Mathew * this list of conditions and the following disclaimer in the documentation 12532ed618SSoby Mathew * and/or other materials provided with the distribution. 13532ed618SSoby Mathew * 14532ed618SSoby Mathew * Neither the name of ARM nor the names of its contributors may be used 15532ed618SSoby Mathew * to endorse or promote products derived from this software without specific 16532ed618SSoby Mathew * prior written permission. 17532ed618SSoby Mathew * 18532ed618SSoby Mathew * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 19532ed618SSoby Mathew * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20532ed618SSoby Mathew * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21532ed618SSoby Mathew * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 22532ed618SSoby Mathew * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23532ed618SSoby Mathew * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24532ed618SSoby Mathew * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25532ed618SSoby Mathew * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26532ed618SSoby Mathew * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27532ed618SSoby Mathew * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28532ed618SSoby Mathew * POSSIBILITY OF SUCH DAMAGE. 29532ed618SSoby Mathew */ 30532ed618SSoby Mathew 31532ed618SSoby Mathew #include <arch.h> 32532ed618SSoby Mathew #include <arch_helpers.h> 33532ed618SSoby Mathew #include <assert.h> 34532ed618SSoby Mathew #include <bl_common.h> 35532ed618SSoby Mathew #include <context.h> 36532ed618SSoby Mathew #include <context_mgmt.h> 37532ed618SSoby Mathew #include <interrupt_mgmt.h> 38532ed618SSoby Mathew #include <platform.h> 39532ed618SSoby Mathew #include <platform_def.h> 40532ed618SSoby Mathew #include <smcc_helpers.h> 41532ed618SSoby Mathew #include <string.h> 42*32f0d3c6SDouglas Raillard #include <utils.h> 43532ed618SSoby Mathew 44532ed618SSoby Mathew 45532ed618SSoby Mathew /******************************************************************************* 46532ed618SSoby Mathew * Context management library initialisation routine. This library is used by 47532ed618SSoby Mathew * runtime services to share pointers to 'cpu_context' structures for the secure 48532ed618SSoby Mathew * and non-secure states. Management of the structures and their associated 49532ed618SSoby Mathew * memory is not done by the context management library e.g. the PSCI service 50532ed618SSoby Mathew * manages the cpu context used for entry from and exit to the non-secure state. 51532ed618SSoby Mathew * The Secure payload dispatcher service manages the context(s) corresponding to 52532ed618SSoby Mathew * the secure state. It also uses this library to get access to the non-secure 53532ed618SSoby Mathew * state cpu context pointers. 54532ed618SSoby Mathew * Lastly, this library provides the api to make SP_EL3 point to the cpu context 55532ed618SSoby Mathew * which will used for programming an entry into a lower EL. The same context 56532ed618SSoby Mathew * will used to save state upon exception entry from that EL. 57532ed618SSoby Mathew ******************************************************************************/ 58532ed618SSoby Mathew void cm_init(void) 59532ed618SSoby Mathew { 60532ed618SSoby Mathew /* 61532ed618SSoby Mathew * The context management library has only global data to intialize, but 62532ed618SSoby Mathew * that will be done when the BSS is zeroed out 63532ed618SSoby Mathew */ 64532ed618SSoby Mathew } 65532ed618SSoby Mathew 66532ed618SSoby Mathew /******************************************************************************* 67532ed618SSoby Mathew * The following function initializes the cpu_context 'ctx' for 68532ed618SSoby Mathew * first use, and sets the initial entrypoint state as specified by the 69532ed618SSoby Mathew * entry_point_info structure. 70532ed618SSoby Mathew * 71532ed618SSoby Mathew * The security state to initialize is determined by the SECURE attribute 72532ed618SSoby Mathew * of the entry_point_info. The function returns a pointer to the initialized 73532ed618SSoby Mathew * context and sets this as the next context to return to. 74532ed618SSoby Mathew * 75532ed618SSoby Mathew * The EE and ST attributes are used to configure the endianess and secure 76532ed618SSoby Mathew * timer availability for the new execution context. 77532ed618SSoby Mathew * 78532ed618SSoby Mathew * To prepare the register state for entry call cm_prepare_el3_exit() and 79532ed618SSoby Mathew * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to 80532ed618SSoby Mathew * cm_e1_sysreg_context_restore(). 81532ed618SSoby Mathew ******************************************************************************/ 82532ed618SSoby Mathew static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) 83532ed618SSoby Mathew { 84532ed618SSoby Mathew unsigned int security_state; 85532ed618SSoby Mathew uint32_t scr_el3; 86532ed618SSoby Mathew el3_state_t *state; 87532ed618SSoby Mathew gp_regs_t *gp_regs; 88532ed618SSoby Mathew unsigned long sctlr_elx; 89532ed618SSoby Mathew 90532ed618SSoby Mathew assert(ctx); 91532ed618SSoby Mathew 92532ed618SSoby Mathew security_state = GET_SECURITY_STATE(ep->h.attr); 93532ed618SSoby Mathew 94532ed618SSoby Mathew /* Clear any residual register values from the context */ 95*32f0d3c6SDouglas Raillard zeromem(ctx, sizeof(*ctx)); 96532ed618SSoby Mathew 97532ed618SSoby Mathew /* 98532ed618SSoby Mathew * Base the context SCR on the current value, adjust for entry point 99532ed618SSoby Mathew * specific requirements and set trap bits from the IMF 100532ed618SSoby Mathew * TODO: provide the base/global SCR bits using another mechanism? 101532ed618SSoby Mathew */ 102532ed618SSoby Mathew scr_el3 = read_scr(); 103532ed618SSoby Mathew scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | 104532ed618SSoby Mathew SCR_ST_BIT | SCR_HCE_BIT); 105532ed618SSoby Mathew 106532ed618SSoby Mathew if (security_state != SECURE) 107532ed618SSoby Mathew scr_el3 |= SCR_NS_BIT; 108532ed618SSoby Mathew 109532ed618SSoby Mathew if (GET_RW(ep->spsr) == MODE_RW_64) 110532ed618SSoby Mathew scr_el3 |= SCR_RW_BIT; 111532ed618SSoby Mathew 112532ed618SSoby Mathew if (EP_GET_ST(ep->h.attr)) 113532ed618SSoby Mathew scr_el3 |= SCR_ST_BIT; 114532ed618SSoby Mathew 115532ed618SSoby Mathew #ifndef HANDLE_EA_EL3_FIRST 116532ed618SSoby Mathew /* Explicitly stop to trap aborts from lower exception levels. */ 117532ed618SSoby Mathew scr_el3 &= ~SCR_EA_BIT; 118532ed618SSoby Mathew #endif 119532ed618SSoby Mathew 1203d8256b2SMasahiro Yamada #ifdef IMAGE_BL31 121532ed618SSoby Mathew /* 122532ed618SSoby Mathew * IRQ/FIQ bits only need setting if interrupt routing 123532ed618SSoby Mathew * model has been set up for BL31. 124532ed618SSoby Mathew */ 125532ed618SSoby Mathew scr_el3 |= get_scr_el3_from_routing_model(security_state); 126532ed618SSoby Mathew #endif 127532ed618SSoby Mathew 128532ed618SSoby Mathew /* 129532ed618SSoby Mathew * Set up SCTLR_ELx for the target exception level: 130532ed618SSoby Mathew * EE bit is taken from the entrypoint attributes 131532ed618SSoby Mathew * M, C and I bits must be zero (as required by PSCI specification) 132532ed618SSoby Mathew * 133532ed618SSoby Mathew * The target exception level is based on the spsr mode requested. 134532ed618SSoby Mathew * If execution is requested to EL2 or hyp mode, HVC is enabled 135532ed618SSoby Mathew * via SCR_EL3.HCE. 136532ed618SSoby Mathew * 137532ed618SSoby Mathew * Always compute the SCTLR_EL1 value and save in the cpu_context 138532ed618SSoby Mathew * - the EL2 registers are set up by cm_preapre_ns_entry() as they 139532ed618SSoby Mathew * are not part of the stored cpu_context 140532ed618SSoby Mathew * 141532ed618SSoby Mathew * TODO: In debug builds the spsr should be validated and checked 142532ed618SSoby Mathew * against the CPU support, security state, endianess and pc 143532ed618SSoby Mathew */ 144532ed618SSoby Mathew sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; 145532ed618SSoby Mathew if (GET_RW(ep->spsr) == MODE_RW_64) 146532ed618SSoby Mathew sctlr_elx |= SCTLR_EL1_RES1; 147b7b0787dSSoby Mathew else { 148532ed618SSoby Mathew sctlr_elx |= SCTLR_AARCH32_EL1_RES1; 149b7b0787dSSoby Mathew /* 150b7b0787dSSoby Mathew * If lower non-secure EL is AArch32, enable the CP15BEN, nTWI 151b7b0787dSSoby Mathew * & nTWI bits. This aligns with SCTLR initialization on 152b7b0787dSSoby Mathew * systems with an AArch32 EL3, where these bits 153b7b0787dSSoby Mathew * architecturally reset to 1. 154b7b0787dSSoby Mathew */ 155b7b0787dSSoby Mathew if (security_state != SECURE) 156b7b0787dSSoby Mathew sctlr_elx |= SCTLR_CP15BEN_BIT | SCTLR_NTWI_BIT 157b7b0787dSSoby Mathew | SCTLR_NTWE_BIT; 158b7b0787dSSoby Mathew } 159b7b0787dSSoby Mathew 160532ed618SSoby Mathew write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); 161532ed618SSoby Mathew 162532ed618SSoby Mathew if ((GET_RW(ep->spsr) == MODE_RW_64 163532ed618SSoby Mathew && GET_EL(ep->spsr) == MODE_EL2) 164532ed618SSoby Mathew || (GET_RW(ep->spsr) != MODE_RW_64 165532ed618SSoby Mathew && GET_M32(ep->spsr) == MODE32_hyp)) { 166532ed618SSoby Mathew scr_el3 |= SCR_HCE_BIT; 167532ed618SSoby Mathew } 168532ed618SSoby Mathew 169532ed618SSoby Mathew /* Populate EL3 state so that we've the right context before doing ERET */ 170532ed618SSoby Mathew state = get_el3state_ctx(ctx); 171532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 172532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, ep->pc); 173532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); 174532ed618SSoby Mathew 175532ed618SSoby Mathew /* 176532ed618SSoby Mathew * Store the X0-X7 value from the entrypoint into the context 177532ed618SSoby Mathew * Use memcpy as we are in control of the layout of the structures 178532ed618SSoby Mathew */ 179532ed618SSoby Mathew gp_regs = get_gpregs_ctx(ctx); 180532ed618SSoby Mathew memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); 181532ed618SSoby Mathew } 182532ed618SSoby Mathew 183532ed618SSoby Mathew /******************************************************************************* 184532ed618SSoby Mathew * The following function initializes the cpu_context for a CPU specified by 185532ed618SSoby Mathew * its `cpu_idx` for first use, and sets the initial entrypoint state as 186532ed618SSoby Mathew * specified by the entry_point_info structure. 187532ed618SSoby Mathew ******************************************************************************/ 188532ed618SSoby Mathew void cm_init_context_by_index(unsigned int cpu_idx, 189532ed618SSoby Mathew const entry_point_info_t *ep) 190532ed618SSoby Mathew { 191532ed618SSoby Mathew cpu_context_t *ctx; 192532ed618SSoby Mathew ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 193532ed618SSoby Mathew cm_init_context_common(ctx, ep); 194532ed618SSoby Mathew } 195532ed618SSoby Mathew 196532ed618SSoby Mathew /******************************************************************************* 197532ed618SSoby Mathew * The following function initializes the cpu_context for the current CPU 198532ed618SSoby Mathew * for first use, and sets the initial entrypoint state as specified by the 199532ed618SSoby Mathew * entry_point_info structure. 200532ed618SSoby Mathew ******************************************************************************/ 201532ed618SSoby Mathew void cm_init_my_context(const entry_point_info_t *ep) 202532ed618SSoby Mathew { 203532ed618SSoby Mathew cpu_context_t *ctx; 204532ed618SSoby Mathew ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 205532ed618SSoby Mathew cm_init_context_common(ctx, ep); 206532ed618SSoby Mathew } 207532ed618SSoby Mathew 208532ed618SSoby Mathew /******************************************************************************* 209532ed618SSoby Mathew * Prepare the CPU system registers for first entry into secure or normal world 210532ed618SSoby Mathew * 211532ed618SSoby Mathew * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized 212532ed618SSoby Mathew * If execution is requested to non-secure EL1 or svc mode, and the CPU supports 213532ed618SSoby Mathew * EL2 then EL2 is disabled by configuring all necessary EL2 registers. 214532ed618SSoby Mathew * For all entries, the EL1 registers are initialized from the cpu_context 215532ed618SSoby Mathew ******************************************************************************/ 216532ed618SSoby Mathew void cm_prepare_el3_exit(uint32_t security_state) 217532ed618SSoby Mathew { 218532ed618SSoby Mathew uint32_t sctlr_elx, scr_el3, cptr_el2; 219532ed618SSoby Mathew cpu_context_t *ctx = cm_get_context(security_state); 220532ed618SSoby Mathew 221532ed618SSoby Mathew assert(ctx); 222532ed618SSoby Mathew 223532ed618SSoby Mathew if (security_state == NON_SECURE) { 224532ed618SSoby Mathew scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); 225532ed618SSoby Mathew if (scr_el3 & SCR_HCE_BIT) { 226532ed618SSoby Mathew /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ 227532ed618SSoby Mathew sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx), 228532ed618SSoby Mathew CTX_SCTLR_EL1); 229532ed618SSoby Mathew sctlr_elx &= ~SCTLR_EE_BIT; 230532ed618SSoby Mathew sctlr_elx |= SCTLR_EL2_RES1; 231532ed618SSoby Mathew write_sctlr_el2(sctlr_elx); 232532ed618SSoby Mathew } else if (read_id_aa64pfr0_el1() & 233532ed618SSoby Mathew (ID_AA64PFR0_ELX_MASK << ID_AA64PFR0_EL2_SHIFT)) { 234532ed618SSoby Mathew /* EL2 present but unused, need to disable safely */ 235532ed618SSoby Mathew 236532ed618SSoby Mathew /* HCR_EL2 = 0, except RW bit set to match SCR_EL3 */ 237532ed618SSoby Mathew write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0); 238532ed618SSoby Mathew 239532ed618SSoby Mathew /* SCTLR_EL2 : can be ignored when bypassing */ 240532ed618SSoby Mathew 241532ed618SSoby Mathew /* CPTR_EL2 : disable all traps TCPAC, TTA, TFP */ 242532ed618SSoby Mathew cptr_el2 = read_cptr_el2(); 243532ed618SSoby Mathew cptr_el2 &= ~(TCPAC_BIT | TTA_BIT | TFP_BIT); 244532ed618SSoby Mathew write_cptr_el2(cptr_el2); 245532ed618SSoby Mathew 246532ed618SSoby Mathew /* Enable EL1 access to timer */ 247532ed618SSoby Mathew write_cnthctl_el2(EL1PCEN_BIT | EL1PCTEN_BIT); 248532ed618SSoby Mathew 249532ed618SSoby Mathew /* Reset CNTVOFF_EL2 */ 250532ed618SSoby Mathew write_cntvoff_el2(0); 251532ed618SSoby Mathew 252532ed618SSoby Mathew /* Set VPIDR, VMPIDR to match MIDR, MPIDR */ 253532ed618SSoby Mathew write_vpidr_el2(read_midr_el1()); 254532ed618SSoby Mathew write_vmpidr_el2(read_mpidr_el1()); 255532ed618SSoby Mathew 256532ed618SSoby Mathew /* 257532ed618SSoby Mathew * Reset VTTBR_EL2. 258532ed618SSoby Mathew * Needed because cache maintenance operations depend on 259532ed618SSoby Mathew * the VMID even when non-secure EL1&0 stage 2 address 260532ed618SSoby Mathew * translation are disabled. 261532ed618SSoby Mathew */ 262532ed618SSoby Mathew write_vttbr_el2(0); 263495f3d3cSDavid Cunado /* 264495f3d3cSDavid Cunado * Avoid unexpected debug traps in case where MDCR_EL2 265495f3d3cSDavid Cunado * is not completely reset by the hardware - set 266495f3d3cSDavid Cunado * MDCR_EL2.HPMN to PMCR_EL0.N and zero the remaining 267495f3d3cSDavid Cunado * bits. 268495f3d3cSDavid Cunado * MDCR_EL2.HPMN and PMCR_EL0.N fields are the same size 269495f3d3cSDavid Cunado * (5 bits) and HPMN is at offset zero within MDCR_EL2. 270495f3d3cSDavid Cunado */ 271495f3d3cSDavid Cunado write_mdcr_el2((read_pmcr_el0() & PMCR_EL0_N_BITS) 272495f3d3cSDavid Cunado >> PMCR_EL0_N_SHIFT); 273939f66d6SDavid Cunado /* 274939f66d6SDavid Cunado * Avoid unexpected traps of non-secure access to 275939f66d6SDavid Cunado * certain system registers at EL1 or lower where 276939f66d6SDavid Cunado * HSTR_EL2 is not completely reset to zero by the 277939f66d6SDavid Cunado * hardware - zero the entire register. 278939f66d6SDavid Cunado */ 279939f66d6SDavid Cunado write_hstr_el2(0); 280939f66d6SDavid Cunado /* 281939f66d6SDavid Cunado * Reset CNTHP_CTL_EL2 to disable the EL2 physical timer 282939f66d6SDavid Cunado * and therefore prevent timer interrupts. 283939f66d6SDavid Cunado */ 284939f66d6SDavid Cunado write_cnthp_ctl_el2(0); 285532ed618SSoby Mathew } 286532ed618SSoby Mathew } 287532ed618SSoby Mathew 288532ed618SSoby Mathew el1_sysregs_context_restore(get_sysregs_ctx(ctx)); 289532ed618SSoby Mathew 290532ed618SSoby Mathew cm_set_next_context(ctx); 291532ed618SSoby Mathew } 292532ed618SSoby Mathew 293532ed618SSoby Mathew /******************************************************************************* 294532ed618SSoby Mathew * The next four functions are used by runtime services to save and restore 295532ed618SSoby Mathew * EL1 context on the 'cpu_context' structure for the specified security 296532ed618SSoby Mathew * state. 297532ed618SSoby Mathew ******************************************************************************/ 298532ed618SSoby Mathew void cm_el1_sysregs_context_save(uint32_t security_state) 299532ed618SSoby Mathew { 300532ed618SSoby Mathew cpu_context_t *ctx; 301532ed618SSoby Mathew 302532ed618SSoby Mathew ctx = cm_get_context(security_state); 303532ed618SSoby Mathew assert(ctx); 304532ed618SSoby Mathew 305532ed618SSoby Mathew el1_sysregs_context_save(get_sysregs_ctx(ctx)); 306532ed618SSoby Mathew } 307532ed618SSoby Mathew 308532ed618SSoby Mathew void cm_el1_sysregs_context_restore(uint32_t security_state) 309532ed618SSoby Mathew { 310532ed618SSoby Mathew cpu_context_t *ctx; 311532ed618SSoby Mathew 312532ed618SSoby Mathew ctx = cm_get_context(security_state); 313532ed618SSoby Mathew assert(ctx); 314532ed618SSoby Mathew 315532ed618SSoby Mathew el1_sysregs_context_restore(get_sysregs_ctx(ctx)); 316532ed618SSoby Mathew } 317532ed618SSoby Mathew 318532ed618SSoby Mathew /******************************************************************************* 319532ed618SSoby Mathew * This function populates ELR_EL3 member of 'cpu_context' pertaining to the 320532ed618SSoby Mathew * given security state with the given entrypoint 321532ed618SSoby Mathew ******************************************************************************/ 322532ed618SSoby Mathew void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) 323532ed618SSoby Mathew { 324532ed618SSoby Mathew cpu_context_t *ctx; 325532ed618SSoby Mathew el3_state_t *state; 326532ed618SSoby Mathew 327532ed618SSoby Mathew ctx = cm_get_context(security_state); 328532ed618SSoby Mathew assert(ctx); 329532ed618SSoby Mathew 330532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 331532ed618SSoby Mathew state = get_el3state_ctx(ctx); 332532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 333532ed618SSoby Mathew } 334532ed618SSoby Mathew 335532ed618SSoby Mathew /******************************************************************************* 336532ed618SSoby Mathew * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' 337532ed618SSoby Mathew * pertaining to the given security state 338532ed618SSoby Mathew ******************************************************************************/ 339532ed618SSoby Mathew void cm_set_elr_spsr_el3(uint32_t security_state, 340532ed618SSoby Mathew uintptr_t entrypoint, uint32_t spsr) 341532ed618SSoby Mathew { 342532ed618SSoby Mathew cpu_context_t *ctx; 343532ed618SSoby Mathew el3_state_t *state; 344532ed618SSoby Mathew 345532ed618SSoby Mathew ctx = cm_get_context(security_state); 346532ed618SSoby Mathew assert(ctx); 347532ed618SSoby Mathew 348532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 349532ed618SSoby Mathew state = get_el3state_ctx(ctx); 350532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 351532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, spsr); 352532ed618SSoby Mathew } 353532ed618SSoby Mathew 354532ed618SSoby Mathew /******************************************************************************* 355532ed618SSoby Mathew * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' 356532ed618SSoby Mathew * pertaining to the given security state using the value and bit position 357532ed618SSoby Mathew * specified in the parameters. It preserves all other bits. 358532ed618SSoby Mathew ******************************************************************************/ 359532ed618SSoby Mathew void cm_write_scr_el3_bit(uint32_t security_state, 360532ed618SSoby Mathew uint32_t bit_pos, 361532ed618SSoby Mathew uint32_t value) 362532ed618SSoby Mathew { 363532ed618SSoby Mathew cpu_context_t *ctx; 364532ed618SSoby Mathew el3_state_t *state; 365532ed618SSoby Mathew uint32_t scr_el3; 366532ed618SSoby Mathew 367532ed618SSoby Mathew ctx = cm_get_context(security_state); 368532ed618SSoby Mathew assert(ctx); 369532ed618SSoby Mathew 370532ed618SSoby Mathew /* Ensure that the bit position is a valid one */ 371532ed618SSoby Mathew assert((1 << bit_pos) & SCR_VALID_BIT_MASK); 372532ed618SSoby Mathew 373532ed618SSoby Mathew /* Ensure that the 'value' is only a bit wide */ 374532ed618SSoby Mathew assert(value <= 1); 375532ed618SSoby Mathew 376532ed618SSoby Mathew /* 377532ed618SSoby Mathew * Get the SCR_EL3 value from the cpu context, clear the desired bit 378532ed618SSoby Mathew * and set it to its new value. 379532ed618SSoby Mathew */ 380532ed618SSoby Mathew state = get_el3state_ctx(ctx); 381532ed618SSoby Mathew scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 382532ed618SSoby Mathew scr_el3 &= ~(1 << bit_pos); 383532ed618SSoby Mathew scr_el3 |= value << bit_pos; 384532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 385532ed618SSoby Mathew } 386532ed618SSoby Mathew 387532ed618SSoby Mathew /******************************************************************************* 388532ed618SSoby Mathew * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the 389532ed618SSoby Mathew * given security state. 390532ed618SSoby Mathew ******************************************************************************/ 391532ed618SSoby Mathew uint32_t cm_get_scr_el3(uint32_t security_state) 392532ed618SSoby Mathew { 393532ed618SSoby Mathew cpu_context_t *ctx; 394532ed618SSoby Mathew el3_state_t *state; 395532ed618SSoby Mathew 396532ed618SSoby Mathew ctx = cm_get_context(security_state); 397532ed618SSoby Mathew assert(ctx); 398532ed618SSoby Mathew 399532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 400532ed618SSoby Mathew state = get_el3state_ctx(ctx); 401532ed618SSoby Mathew return read_ctx_reg(state, CTX_SCR_EL3); 402532ed618SSoby Mathew } 403532ed618SSoby Mathew 404532ed618SSoby Mathew /******************************************************************************* 405532ed618SSoby Mathew * This function is used to program the context that's used for exception 406532ed618SSoby Mathew * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 407532ed618SSoby Mathew * the required security state 408532ed618SSoby Mathew ******************************************************************************/ 409532ed618SSoby Mathew void cm_set_next_eret_context(uint32_t security_state) 410532ed618SSoby Mathew { 411532ed618SSoby Mathew cpu_context_t *ctx; 412532ed618SSoby Mathew 413532ed618SSoby Mathew ctx = cm_get_context(security_state); 414532ed618SSoby Mathew assert(ctx); 415532ed618SSoby Mathew 416532ed618SSoby Mathew cm_set_next_context(ctx); 417532ed618SSoby Mathew } 418