1532ed618SSoby Mathew /* 232f0d3c6SDouglas Raillard * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved. 3532ed618SSoby Mathew * 482cb2c1aSdp-arm * SPDX-License-Identifier: BSD-3-Clause 5532ed618SSoby Mathew */ 6532ed618SSoby Mathew 7380559c1SDimitris Papastamos #include <amu.h> 8532ed618SSoby Mathew #include <arch.h> 9532ed618SSoby Mathew #include <arch_helpers.h> 10532ed618SSoby Mathew #include <assert.h> 11532ed618SSoby Mathew #include <bl_common.h> 12532ed618SSoby Mathew #include <context.h> 13532ed618SSoby Mathew #include <context_mgmt.h> 14532ed618SSoby Mathew #include <interrupt_mgmt.h> 15532ed618SSoby Mathew #include <platform.h> 16532ed618SSoby Mathew #include <platform_def.h> 1717b4c0ddSDimitris Papastamos #include <pubsub_events.h> 18532ed618SSoby Mathew #include <smcc_helpers.h> 19281a08ccSDimitris Papastamos #include <spe.h> 20532ed618SSoby Mathew #include <string.h> 21*1a853370SDavid Cunado #include <sve.h> 2232f0d3c6SDouglas Raillard #include <utils.h> 23532ed618SSoby Mathew 24532ed618SSoby Mathew 25532ed618SSoby Mathew /******************************************************************************* 26532ed618SSoby Mathew * Context management library initialisation routine. This library is used by 27532ed618SSoby Mathew * runtime services to share pointers to 'cpu_context' structures for the secure 28532ed618SSoby Mathew * and non-secure states. Management of the structures and their associated 29532ed618SSoby Mathew * memory is not done by the context management library e.g. the PSCI service 30532ed618SSoby Mathew * manages the cpu context used for entry from and exit to the non-secure state. 31532ed618SSoby Mathew * The Secure payload dispatcher service manages the context(s) corresponding to 32532ed618SSoby Mathew * the secure state. It also uses this library to get access to the non-secure 33532ed618SSoby Mathew * state cpu context pointers. 34532ed618SSoby Mathew * Lastly, this library provides the api to make SP_EL3 point to the cpu context 35532ed618SSoby Mathew * which will used for programming an entry into a lower EL. The same context 36532ed618SSoby Mathew * will used to save state upon exception entry from that EL. 37532ed618SSoby Mathew ******************************************************************************/ 38532ed618SSoby Mathew void cm_init(void) 39532ed618SSoby Mathew { 40532ed618SSoby Mathew /* 41532ed618SSoby Mathew * The context management library has only global data to intialize, but 42532ed618SSoby Mathew * that will be done when the BSS is zeroed out 43532ed618SSoby Mathew */ 44532ed618SSoby Mathew } 45532ed618SSoby Mathew 46532ed618SSoby Mathew /******************************************************************************* 47532ed618SSoby Mathew * The following function initializes the cpu_context 'ctx' for 48532ed618SSoby Mathew * first use, and sets the initial entrypoint state as specified by the 49532ed618SSoby Mathew * entry_point_info structure. 50532ed618SSoby Mathew * 51532ed618SSoby Mathew * The security state to initialize is determined by the SECURE attribute 52532ed618SSoby Mathew * of the entry_point_info. The function returns a pointer to the initialized 53532ed618SSoby Mathew * context and sets this as the next context to return to. 54532ed618SSoby Mathew * 55532ed618SSoby Mathew * The EE and ST attributes are used to configure the endianess and secure 56532ed618SSoby Mathew * timer availability for the new execution context. 57532ed618SSoby Mathew * 58532ed618SSoby Mathew * To prepare the register state for entry call cm_prepare_el3_exit() and 59532ed618SSoby Mathew * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to 60532ed618SSoby Mathew * cm_e1_sysreg_context_restore(). 61532ed618SSoby Mathew ******************************************************************************/ 62532ed618SSoby Mathew static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) 63532ed618SSoby Mathew { 64532ed618SSoby Mathew unsigned int security_state; 653e61b2b5SDavid Cunado uint32_t scr_el3, pmcr_el0; 66532ed618SSoby Mathew el3_state_t *state; 67532ed618SSoby Mathew gp_regs_t *gp_regs; 68532ed618SSoby Mathew unsigned long sctlr_elx; 69532ed618SSoby Mathew 70532ed618SSoby Mathew assert(ctx); 71532ed618SSoby Mathew 72532ed618SSoby Mathew security_state = GET_SECURITY_STATE(ep->h.attr); 73532ed618SSoby Mathew 74532ed618SSoby Mathew /* Clear any residual register values from the context */ 7532f0d3c6SDouglas Raillard zeromem(ctx, sizeof(*ctx)); 76532ed618SSoby Mathew 77532ed618SSoby Mathew /* 7818f2efd6SDavid Cunado * SCR_EL3 was initialised during reset sequence in macro 7918f2efd6SDavid Cunado * el3_arch_init_common. This code modifies the SCR_EL3 fields that 8018f2efd6SDavid Cunado * affect the next EL. 8118f2efd6SDavid Cunado * 8218f2efd6SDavid Cunado * The following fields are initially set to zero and then updated to 8318f2efd6SDavid Cunado * the required value depending on the state of the SPSR_EL3 and the 8418f2efd6SDavid Cunado * Security state and entrypoint attributes of the next EL. 85532ed618SSoby Mathew */ 86532ed618SSoby Mathew scr_el3 = read_scr(); 87532ed618SSoby Mathew scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | 88532ed618SSoby Mathew SCR_ST_BIT | SCR_HCE_BIT); 8918f2efd6SDavid Cunado /* 9018f2efd6SDavid Cunado * SCR_NS: Set the security state of the next EL. 9118f2efd6SDavid Cunado */ 92532ed618SSoby Mathew if (security_state != SECURE) 93532ed618SSoby Mathew scr_el3 |= SCR_NS_BIT; 9418f2efd6SDavid Cunado /* 9518f2efd6SDavid Cunado * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next 9618f2efd6SDavid Cunado * Exception level as specified by SPSR. 9718f2efd6SDavid Cunado */ 98532ed618SSoby Mathew if (GET_RW(ep->spsr) == MODE_RW_64) 99532ed618SSoby Mathew scr_el3 |= SCR_RW_BIT; 10018f2efd6SDavid Cunado /* 10118f2efd6SDavid Cunado * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical 10218f2efd6SDavid Cunado * Secure timer registers to EL3, from AArch64 state only, if specified 10318f2efd6SDavid Cunado * by the entrypoint attributes. 10418f2efd6SDavid Cunado */ 105532ed618SSoby Mathew if (EP_GET_ST(ep->h.attr)) 106532ed618SSoby Mathew scr_el3 |= SCR_ST_BIT; 107532ed618SSoby Mathew 108532ed618SSoby Mathew #ifndef HANDLE_EA_EL3_FIRST 10918f2efd6SDavid Cunado /* 11018f2efd6SDavid Cunado * SCR_EL3.EA: Do not route External Abort and SError Interrupt External 11118f2efd6SDavid Cunado * to EL3 when executing at a lower EL. When executing at EL3, External 11218f2efd6SDavid Cunado * Aborts are taken to EL3. 11318f2efd6SDavid Cunado */ 114532ed618SSoby Mathew scr_el3 &= ~SCR_EA_BIT; 115532ed618SSoby Mathew #endif 116532ed618SSoby Mathew 1173d8256b2SMasahiro Yamada #ifdef IMAGE_BL31 118532ed618SSoby Mathew /* 11918f2efd6SDavid Cunado * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as 12018f2efd6SDavid Cunado * indicated by the interrupt routing model for BL31. 121532ed618SSoby Mathew */ 122532ed618SSoby Mathew scr_el3 |= get_scr_el3_from_routing_model(security_state); 123532ed618SSoby Mathew #endif 124532ed618SSoby Mathew 125532ed618SSoby Mathew /* 12618f2efd6SDavid Cunado * SCR_EL3.HCE: Enable HVC instructions if next execution state is 12718f2efd6SDavid Cunado * AArch64 and next EL is EL2, or if next execution state is AArch32 and 12818f2efd6SDavid Cunado * next mode is Hyp. 129532ed618SSoby Mathew */ 130532ed618SSoby Mathew if ((GET_RW(ep->spsr) == MODE_RW_64 131532ed618SSoby Mathew && GET_EL(ep->spsr) == MODE_EL2) 132532ed618SSoby Mathew || (GET_RW(ep->spsr) != MODE_RW_64 133532ed618SSoby Mathew && GET_M32(ep->spsr) == MODE32_hyp)) { 134532ed618SSoby Mathew scr_el3 |= SCR_HCE_BIT; 135532ed618SSoby Mathew } 136532ed618SSoby Mathew 13718f2efd6SDavid Cunado /* 13818f2efd6SDavid Cunado * Initialise SCTLR_EL1 to the reset value corresponding to the target 13918f2efd6SDavid Cunado * execution state setting all fields rather than relying of the hw. 14018f2efd6SDavid Cunado * Some fields have architecturally UNKNOWN reset values and these are 14118f2efd6SDavid Cunado * set to zero. 14218f2efd6SDavid Cunado * 14318f2efd6SDavid Cunado * SCTLR.EE: Endianness is taken from the entrypoint attributes. 14418f2efd6SDavid Cunado * 14518f2efd6SDavid Cunado * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as 14618f2efd6SDavid Cunado * required by PSCI specification) 14718f2efd6SDavid Cunado */ 14818f2efd6SDavid Cunado sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; 14918f2efd6SDavid Cunado if (GET_RW(ep->spsr) == MODE_RW_64) 15018f2efd6SDavid Cunado sctlr_elx |= SCTLR_EL1_RES1; 15118f2efd6SDavid Cunado else { 15218f2efd6SDavid Cunado /* 15318f2efd6SDavid Cunado * If the target execution state is AArch32 then the following 15418f2efd6SDavid Cunado * fields need to be set. 15518f2efd6SDavid Cunado * 15618f2efd6SDavid Cunado * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE 15718f2efd6SDavid Cunado * instructions are not trapped to EL1. 15818f2efd6SDavid Cunado * 15918f2efd6SDavid Cunado * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI 16018f2efd6SDavid Cunado * instructions are not trapped to EL1. 16118f2efd6SDavid Cunado * 16218f2efd6SDavid Cunado * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the 16318f2efd6SDavid Cunado * CP15DMB, CP15DSB, and CP15ISB instructions. 16418f2efd6SDavid Cunado */ 16518f2efd6SDavid Cunado sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT 16618f2efd6SDavid Cunado | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; 16718f2efd6SDavid Cunado } 16818f2efd6SDavid Cunado 16918f2efd6SDavid Cunado /* 17018f2efd6SDavid Cunado * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2 1713e61b2b5SDavid Cunado * and other EL2 registers are set up by cm_preapre_ns_entry() as they 17218f2efd6SDavid Cunado * are not part of the stored cpu_context. 17318f2efd6SDavid Cunado */ 17418f2efd6SDavid Cunado write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); 17518f2efd6SDavid Cunado 1763e61b2b5SDavid Cunado if (security_state == SECURE) { 1773e61b2b5SDavid Cunado /* 1783e61b2b5SDavid Cunado * Initialise PMCR_EL0 for secure context only, setting all 1793e61b2b5SDavid Cunado * fields rather than relying on hw. Some fields are 1803e61b2b5SDavid Cunado * architecturally UNKNOWN on reset. 1813e61b2b5SDavid Cunado * 1823e61b2b5SDavid Cunado * PMCR_EL0.LC: Set to one so that cycle counter overflow, that 1833e61b2b5SDavid Cunado * is recorded in PMOVSCLR_EL0[31], occurs on the increment 1843e61b2b5SDavid Cunado * that changes PMCCNTR_EL0[63] from 1 to 0. 1853e61b2b5SDavid Cunado * 1863e61b2b5SDavid Cunado * PMCR_EL0.DP: Set to one so that the cycle counter, 1873e61b2b5SDavid Cunado * PMCCNTR_EL0 does not count when event counting is prohibited. 1883e61b2b5SDavid Cunado * 1893e61b2b5SDavid Cunado * PMCR_EL0.X: Set to zero to disable export of events. 1903e61b2b5SDavid Cunado * 1913e61b2b5SDavid Cunado * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0 1923e61b2b5SDavid Cunado * counts on every clock cycle. 1933e61b2b5SDavid Cunado */ 1943e61b2b5SDavid Cunado pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT 1953e61b2b5SDavid Cunado | PMCR_EL0_DP_BIT) 1963e61b2b5SDavid Cunado & ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT)); 1973e61b2b5SDavid Cunado write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0); 1983e61b2b5SDavid Cunado } 1993e61b2b5SDavid Cunado 200532ed618SSoby Mathew /* Populate EL3 state so that we've the right context before doing ERET */ 201532ed618SSoby Mathew state = get_el3state_ctx(ctx); 202532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 203532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, ep->pc); 204532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); 205532ed618SSoby Mathew 206532ed618SSoby Mathew /* 207532ed618SSoby Mathew * Store the X0-X7 value from the entrypoint into the context 208532ed618SSoby Mathew * Use memcpy as we are in control of the layout of the structures 209532ed618SSoby Mathew */ 210532ed618SSoby Mathew gp_regs = get_gpregs_ctx(ctx); 211532ed618SSoby Mathew memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); 212532ed618SSoby Mathew } 213532ed618SSoby Mathew 214532ed618SSoby Mathew /******************************************************************************* 2150fd0f222SDimitris Papastamos * Enable architecture extensions on first entry to Non-secure world. 2160fd0f222SDimitris Papastamos * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise 2170fd0f222SDimitris Papastamos * it is zero. 2180fd0f222SDimitris Papastamos ******************************************************************************/ 2190fd0f222SDimitris Papastamos static void enable_extensions_nonsecure(int el2_unused) 2200fd0f222SDimitris Papastamos { 2210fd0f222SDimitris Papastamos #if IMAGE_BL31 222281a08ccSDimitris Papastamos #if ENABLE_SPE_FOR_LOWER_ELS 223281a08ccSDimitris Papastamos spe_enable(el2_unused); 224281a08ccSDimitris Papastamos #endif 225380559c1SDimitris Papastamos 226380559c1SDimitris Papastamos #if ENABLE_AMU 227380559c1SDimitris Papastamos amu_enable(el2_unused); 228380559c1SDimitris Papastamos #endif 229*1a853370SDavid Cunado 230*1a853370SDavid Cunado #if ENABLE_SVE_FOR_NS 231*1a853370SDavid Cunado sve_enable(el2_unused); 232*1a853370SDavid Cunado #endif 2330fd0f222SDimitris Papastamos #endif 2340fd0f222SDimitris Papastamos } 2350fd0f222SDimitris Papastamos 2360fd0f222SDimitris Papastamos /******************************************************************************* 237532ed618SSoby Mathew * The following function initializes the cpu_context for a CPU specified by 238532ed618SSoby Mathew * its `cpu_idx` for first use, and sets the initial entrypoint state as 239532ed618SSoby Mathew * specified by the entry_point_info structure. 240532ed618SSoby Mathew ******************************************************************************/ 241532ed618SSoby Mathew void cm_init_context_by_index(unsigned int cpu_idx, 242532ed618SSoby Mathew const entry_point_info_t *ep) 243532ed618SSoby Mathew { 244532ed618SSoby Mathew cpu_context_t *ctx; 245532ed618SSoby Mathew ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 246532ed618SSoby Mathew cm_init_context_common(ctx, ep); 247532ed618SSoby Mathew } 248532ed618SSoby Mathew 249532ed618SSoby Mathew /******************************************************************************* 250532ed618SSoby Mathew * The following function initializes the cpu_context for the current CPU 251532ed618SSoby Mathew * for first use, and sets the initial entrypoint state as specified by the 252532ed618SSoby Mathew * entry_point_info structure. 253532ed618SSoby Mathew ******************************************************************************/ 254532ed618SSoby Mathew void cm_init_my_context(const entry_point_info_t *ep) 255532ed618SSoby Mathew { 256532ed618SSoby Mathew cpu_context_t *ctx; 257532ed618SSoby Mathew ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 258532ed618SSoby Mathew cm_init_context_common(ctx, ep); 259532ed618SSoby Mathew } 260532ed618SSoby Mathew 261532ed618SSoby Mathew /******************************************************************************* 262532ed618SSoby Mathew * Prepare the CPU system registers for first entry into secure or normal world 263532ed618SSoby Mathew * 264532ed618SSoby Mathew * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized 265532ed618SSoby Mathew * If execution is requested to non-secure EL1 or svc mode, and the CPU supports 266532ed618SSoby Mathew * EL2 then EL2 is disabled by configuring all necessary EL2 registers. 267532ed618SSoby Mathew * For all entries, the EL1 registers are initialized from the cpu_context 268532ed618SSoby Mathew ******************************************************************************/ 269532ed618SSoby Mathew void cm_prepare_el3_exit(uint32_t security_state) 270532ed618SSoby Mathew { 271d832aee9Sdp-arm uint32_t sctlr_elx, scr_el3, mdcr_el2; 272532ed618SSoby Mathew cpu_context_t *ctx = cm_get_context(security_state); 2730fd0f222SDimitris Papastamos int el2_unused = 0; 274532ed618SSoby Mathew 275532ed618SSoby Mathew assert(ctx); 276532ed618SSoby Mathew 277532ed618SSoby Mathew if (security_state == NON_SECURE) { 278532ed618SSoby Mathew scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); 279532ed618SSoby Mathew if (scr_el3 & SCR_HCE_BIT) { 280532ed618SSoby Mathew /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ 281532ed618SSoby Mathew sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx), 282532ed618SSoby Mathew CTX_SCTLR_EL1); 2832e09d4f8SKen Kuang sctlr_elx &= SCTLR_EE_BIT; 284532ed618SSoby Mathew sctlr_elx |= SCTLR_EL2_RES1; 285532ed618SSoby Mathew write_sctlr_el2(sctlr_elx); 286f4c8aa90SJeenu Viswambharan } else if (EL_IMPLEMENTED(2)) { 2870fd0f222SDimitris Papastamos el2_unused = 1; 2880fd0f222SDimitris Papastamos 28918f2efd6SDavid Cunado /* 29018f2efd6SDavid Cunado * EL2 present but unused, need to disable safely. 29118f2efd6SDavid Cunado * SCTLR_EL2 can be ignored in this case. 29218f2efd6SDavid Cunado * 29318f2efd6SDavid Cunado * Initialise all fields in HCR_EL2, except HCR_EL2.RW, 29418f2efd6SDavid Cunado * to zero so that Non-secure operations do not trap to 29518f2efd6SDavid Cunado * EL2. 29618f2efd6SDavid Cunado * 29718f2efd6SDavid Cunado * HCR_EL2.RW: Set this field to match SCR_EL3.RW 29818f2efd6SDavid Cunado */ 299532ed618SSoby Mathew write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0); 300532ed618SSoby Mathew 30118f2efd6SDavid Cunado /* 30218f2efd6SDavid Cunado * Initialise CPTR_EL2 setting all fields rather than 30318f2efd6SDavid Cunado * relying on the hw. All fields have architecturally 30418f2efd6SDavid Cunado * UNKNOWN reset values. 30518f2efd6SDavid Cunado * 30618f2efd6SDavid Cunado * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1 30718f2efd6SDavid Cunado * accesses to the CPACR_EL1 or CPACR from both 30818f2efd6SDavid Cunado * Execution states do not trap to EL2. 30918f2efd6SDavid Cunado * 31018f2efd6SDavid Cunado * CPTR_EL2.TTA: Set to zero so that Non-secure System 31118f2efd6SDavid Cunado * register accesses to the trace registers from both 31218f2efd6SDavid Cunado * Execution states do not trap to EL2. 31318f2efd6SDavid Cunado * 31418f2efd6SDavid Cunado * CPTR_EL2.TFP: Set to zero so that Non-secure accesses 31518f2efd6SDavid Cunado * to SIMD and floating-point functionality from both 31618f2efd6SDavid Cunado * Execution states do not trap to EL2. 31718f2efd6SDavid Cunado */ 31818f2efd6SDavid Cunado write_cptr_el2(CPTR_EL2_RESET_VAL & 31918f2efd6SDavid Cunado ~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT 32018f2efd6SDavid Cunado | CPTR_EL2_TFP_BIT)); 321532ed618SSoby Mathew 32218f2efd6SDavid Cunado /* 32318f2efd6SDavid Cunado * Initiliase CNTHCTL_EL2. All fields are 32418f2efd6SDavid Cunado * architecturally UNKNOWN on reset and are set to zero 32518f2efd6SDavid Cunado * except for field(s) listed below. 32618f2efd6SDavid Cunado * 32718f2efd6SDavid Cunado * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to 32818f2efd6SDavid Cunado * Hyp mode of Non-secure EL0 and EL1 accesses to the 32918f2efd6SDavid Cunado * physical timer registers. 33018f2efd6SDavid Cunado * 33118f2efd6SDavid Cunado * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to 33218f2efd6SDavid Cunado * Hyp mode of Non-secure EL0 and EL1 accesses to the 33318f2efd6SDavid Cunado * physical counter registers. 33418f2efd6SDavid Cunado */ 33518f2efd6SDavid Cunado write_cnthctl_el2(CNTHCTL_RESET_VAL | 33618f2efd6SDavid Cunado EL1PCEN_BIT | EL1PCTEN_BIT); 337532ed618SSoby Mathew 33818f2efd6SDavid Cunado /* 33918f2efd6SDavid Cunado * Initialise CNTVOFF_EL2 to zero as it resets to an 34018f2efd6SDavid Cunado * architecturally UNKNOWN value. 34118f2efd6SDavid Cunado */ 342532ed618SSoby Mathew write_cntvoff_el2(0); 343532ed618SSoby Mathew 34418f2efd6SDavid Cunado /* 34518f2efd6SDavid Cunado * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and 34618f2efd6SDavid Cunado * MPIDR_EL1 respectively. 34718f2efd6SDavid Cunado */ 348532ed618SSoby Mathew write_vpidr_el2(read_midr_el1()); 349532ed618SSoby Mathew write_vmpidr_el2(read_mpidr_el1()); 350532ed618SSoby Mathew 351532ed618SSoby Mathew /* 35218f2efd6SDavid Cunado * Initialise VTTBR_EL2. All fields are architecturally 35318f2efd6SDavid Cunado * UNKNOWN on reset. 35418f2efd6SDavid Cunado * 35518f2efd6SDavid Cunado * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 35618f2efd6SDavid Cunado * 2 address translation is disabled, cache maintenance 35718f2efd6SDavid Cunado * operations depend on the VMID. 35818f2efd6SDavid Cunado * 35918f2efd6SDavid Cunado * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address 36018f2efd6SDavid Cunado * translation is disabled. 361532ed618SSoby Mathew */ 36218f2efd6SDavid Cunado write_vttbr_el2(VTTBR_RESET_VAL & 36318f2efd6SDavid Cunado ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) 36418f2efd6SDavid Cunado | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); 36518f2efd6SDavid Cunado 366495f3d3cSDavid Cunado /* 36718f2efd6SDavid Cunado * Initialise MDCR_EL2, setting all fields rather than 36818f2efd6SDavid Cunado * relying on hw. Some fields are architecturally 36918f2efd6SDavid Cunado * UNKNOWN on reset. 37018f2efd6SDavid Cunado * 37118f2efd6SDavid Cunado * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and 37218f2efd6SDavid Cunado * EL1 System register accesses to the Debug ROM 37318f2efd6SDavid Cunado * registers are not trapped to EL2. 37418f2efd6SDavid Cunado * 37518f2efd6SDavid Cunado * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 37618f2efd6SDavid Cunado * System register accesses to the powerdown debug 37718f2efd6SDavid Cunado * registers are not trapped to EL2. 37818f2efd6SDavid Cunado * 37918f2efd6SDavid Cunado * MDCR_EL2.TDA: Set to zero so that System register 38018f2efd6SDavid Cunado * accesses to the debug registers do not trap to EL2. 38118f2efd6SDavid Cunado * 38218f2efd6SDavid Cunado * MDCR_EL2.TDE: Set to zero so that debug exceptions 38318f2efd6SDavid Cunado * are not routed to EL2. 38418f2efd6SDavid Cunado * 38518f2efd6SDavid Cunado * MDCR_EL2.HPME: Set to zero to disable EL2 Performance 38618f2efd6SDavid Cunado * Monitors. 38718f2efd6SDavid Cunado * 38818f2efd6SDavid Cunado * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and 38918f2efd6SDavid Cunado * EL1 accesses to all Performance Monitors registers 39018f2efd6SDavid Cunado * are not trapped to EL2. 39118f2efd6SDavid Cunado * 39218f2efd6SDavid Cunado * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0 39318f2efd6SDavid Cunado * and EL1 accesses to the PMCR_EL0 or PMCR are not 39418f2efd6SDavid Cunado * trapped to EL2. 39518f2efd6SDavid Cunado * 39618f2efd6SDavid Cunado * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the 39718f2efd6SDavid Cunado * architecturally-defined reset value. 398495f3d3cSDavid Cunado */ 399d832aee9Sdp-arm mdcr_el2 = ((MDCR_EL2_RESET_VAL | 40018f2efd6SDavid Cunado ((read_pmcr_el0() & PMCR_EL0_N_BITS) 40118f2efd6SDavid Cunado >> PMCR_EL0_N_SHIFT)) & 40218f2efd6SDavid Cunado ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT 40318f2efd6SDavid Cunado | MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT 40418f2efd6SDavid Cunado | MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT 40518f2efd6SDavid Cunado | MDCR_EL2_TPMCR_BIT)); 406d832aee9Sdp-arm 407d832aee9Sdp-arm write_mdcr_el2(mdcr_el2); 408d832aee9Sdp-arm 409939f66d6SDavid Cunado /* 41018f2efd6SDavid Cunado * Initialise HSTR_EL2. All fields are architecturally 41118f2efd6SDavid Cunado * UNKNOWN on reset. 41218f2efd6SDavid Cunado * 41318f2efd6SDavid Cunado * HSTR_EL2.T<n>: Set all these fields to zero so that 41418f2efd6SDavid Cunado * Non-secure EL0 or EL1 accesses to System registers 41518f2efd6SDavid Cunado * do not trap to EL2. 416939f66d6SDavid Cunado */ 41718f2efd6SDavid Cunado write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); 418939f66d6SDavid Cunado /* 41918f2efd6SDavid Cunado * Initialise CNTHP_CTL_EL2. All fields are 42018f2efd6SDavid Cunado * architecturally UNKNOWN on reset. 42118f2efd6SDavid Cunado * 42218f2efd6SDavid Cunado * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 42318f2efd6SDavid Cunado * physical timer and prevent timer interrupts. 424939f66d6SDavid Cunado */ 42518f2efd6SDavid Cunado write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & 42618f2efd6SDavid Cunado ~(CNTHP_CTL_ENABLE_BIT)); 427532ed618SSoby Mathew } 4280fd0f222SDimitris Papastamos enable_extensions_nonsecure(el2_unused); 429532ed618SSoby Mathew } 430532ed618SSoby Mathew 43117b4c0ddSDimitris Papastamos cm_el1_sysregs_context_restore(security_state); 43217b4c0ddSDimitris Papastamos cm_set_next_eret_context(security_state); 433532ed618SSoby Mathew } 434532ed618SSoby Mathew 435532ed618SSoby Mathew /******************************************************************************* 436532ed618SSoby Mathew * The next four functions are used by runtime services to save and restore 437532ed618SSoby Mathew * EL1 context on the 'cpu_context' structure for the specified security 438532ed618SSoby Mathew * state. 439532ed618SSoby Mathew ******************************************************************************/ 440532ed618SSoby Mathew void cm_el1_sysregs_context_save(uint32_t security_state) 441532ed618SSoby Mathew { 442532ed618SSoby Mathew cpu_context_t *ctx; 443532ed618SSoby Mathew 444532ed618SSoby Mathew ctx = cm_get_context(security_state); 445532ed618SSoby Mathew assert(ctx); 446532ed618SSoby Mathew 447532ed618SSoby Mathew el1_sysregs_context_save(get_sysregs_ctx(ctx)); 44817b4c0ddSDimitris Papastamos 44917b4c0ddSDimitris Papastamos #if IMAGE_BL31 45017b4c0ddSDimitris Papastamos if (security_state == SECURE) 45117b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_exited_secure_world); 45217b4c0ddSDimitris Papastamos else 45317b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_exited_normal_world); 45417b4c0ddSDimitris Papastamos #endif 455532ed618SSoby Mathew } 456532ed618SSoby Mathew 457532ed618SSoby Mathew void cm_el1_sysregs_context_restore(uint32_t security_state) 458532ed618SSoby Mathew { 459532ed618SSoby Mathew cpu_context_t *ctx; 460532ed618SSoby Mathew 461532ed618SSoby Mathew ctx = cm_get_context(security_state); 462532ed618SSoby Mathew assert(ctx); 463532ed618SSoby Mathew 464532ed618SSoby Mathew el1_sysregs_context_restore(get_sysregs_ctx(ctx)); 46517b4c0ddSDimitris Papastamos 46617b4c0ddSDimitris Papastamos #if IMAGE_BL31 46717b4c0ddSDimitris Papastamos if (security_state == SECURE) 46817b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_entering_secure_world); 46917b4c0ddSDimitris Papastamos else 47017b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_entering_normal_world); 47117b4c0ddSDimitris Papastamos #endif 472532ed618SSoby Mathew } 473532ed618SSoby Mathew 474532ed618SSoby Mathew /******************************************************************************* 475532ed618SSoby Mathew * This function populates ELR_EL3 member of 'cpu_context' pertaining to the 476532ed618SSoby Mathew * given security state with the given entrypoint 477532ed618SSoby Mathew ******************************************************************************/ 478532ed618SSoby Mathew void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) 479532ed618SSoby Mathew { 480532ed618SSoby Mathew cpu_context_t *ctx; 481532ed618SSoby Mathew el3_state_t *state; 482532ed618SSoby Mathew 483532ed618SSoby Mathew ctx = cm_get_context(security_state); 484532ed618SSoby Mathew assert(ctx); 485532ed618SSoby Mathew 486532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 487532ed618SSoby Mathew state = get_el3state_ctx(ctx); 488532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 489532ed618SSoby Mathew } 490532ed618SSoby Mathew 491532ed618SSoby Mathew /******************************************************************************* 492532ed618SSoby Mathew * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' 493532ed618SSoby Mathew * pertaining to the given security state 494532ed618SSoby Mathew ******************************************************************************/ 495532ed618SSoby Mathew void cm_set_elr_spsr_el3(uint32_t security_state, 496532ed618SSoby Mathew uintptr_t entrypoint, uint32_t spsr) 497532ed618SSoby Mathew { 498532ed618SSoby Mathew cpu_context_t *ctx; 499532ed618SSoby Mathew el3_state_t *state; 500532ed618SSoby Mathew 501532ed618SSoby Mathew ctx = cm_get_context(security_state); 502532ed618SSoby Mathew assert(ctx); 503532ed618SSoby Mathew 504532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 505532ed618SSoby Mathew state = get_el3state_ctx(ctx); 506532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 507532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, spsr); 508532ed618SSoby Mathew } 509532ed618SSoby Mathew 510532ed618SSoby Mathew /******************************************************************************* 511532ed618SSoby Mathew * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' 512532ed618SSoby Mathew * pertaining to the given security state using the value and bit position 513532ed618SSoby Mathew * specified in the parameters. It preserves all other bits. 514532ed618SSoby Mathew ******************************************************************************/ 515532ed618SSoby Mathew void cm_write_scr_el3_bit(uint32_t security_state, 516532ed618SSoby Mathew uint32_t bit_pos, 517532ed618SSoby Mathew uint32_t value) 518532ed618SSoby Mathew { 519532ed618SSoby Mathew cpu_context_t *ctx; 520532ed618SSoby Mathew el3_state_t *state; 521532ed618SSoby Mathew uint32_t scr_el3; 522532ed618SSoby Mathew 523532ed618SSoby Mathew ctx = cm_get_context(security_state); 524532ed618SSoby Mathew assert(ctx); 525532ed618SSoby Mathew 526532ed618SSoby Mathew /* Ensure that the bit position is a valid one */ 527532ed618SSoby Mathew assert((1 << bit_pos) & SCR_VALID_BIT_MASK); 528532ed618SSoby Mathew 529532ed618SSoby Mathew /* Ensure that the 'value' is only a bit wide */ 530532ed618SSoby Mathew assert(value <= 1); 531532ed618SSoby Mathew 532532ed618SSoby Mathew /* 533532ed618SSoby Mathew * Get the SCR_EL3 value from the cpu context, clear the desired bit 534532ed618SSoby Mathew * and set it to its new value. 535532ed618SSoby Mathew */ 536532ed618SSoby Mathew state = get_el3state_ctx(ctx); 537532ed618SSoby Mathew scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 538532ed618SSoby Mathew scr_el3 &= ~(1 << bit_pos); 539532ed618SSoby Mathew scr_el3 |= value << bit_pos; 540532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 541532ed618SSoby Mathew } 542532ed618SSoby Mathew 543532ed618SSoby Mathew /******************************************************************************* 544532ed618SSoby Mathew * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the 545532ed618SSoby Mathew * given security state. 546532ed618SSoby Mathew ******************************************************************************/ 547532ed618SSoby Mathew uint32_t cm_get_scr_el3(uint32_t security_state) 548532ed618SSoby Mathew { 549532ed618SSoby Mathew cpu_context_t *ctx; 550532ed618SSoby Mathew el3_state_t *state; 551532ed618SSoby Mathew 552532ed618SSoby Mathew ctx = cm_get_context(security_state); 553532ed618SSoby Mathew assert(ctx); 554532ed618SSoby Mathew 555532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 556532ed618SSoby Mathew state = get_el3state_ctx(ctx); 557532ed618SSoby Mathew return read_ctx_reg(state, CTX_SCR_EL3); 558532ed618SSoby Mathew } 559532ed618SSoby Mathew 560532ed618SSoby Mathew /******************************************************************************* 561532ed618SSoby Mathew * This function is used to program the context that's used for exception 562532ed618SSoby Mathew * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 563532ed618SSoby Mathew * the required security state 564532ed618SSoby Mathew ******************************************************************************/ 565532ed618SSoby Mathew void cm_set_next_eret_context(uint32_t security_state) 566532ed618SSoby Mathew { 567532ed618SSoby Mathew cpu_context_t *ctx; 568532ed618SSoby Mathew 569532ed618SSoby Mathew ctx = cm_get_context(security_state); 570532ed618SSoby Mathew assert(ctx); 571532ed618SSoby Mathew 572532ed618SSoby Mathew cm_set_next_context(ctx); 573532ed618SSoby Mathew } 574