xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 1a7c1cfe70d5cd6e43e7d292eecbc1b4beaae678)
1532ed618SSoby Mathew /*
2085e80ecSAntonio Nino Diaz  * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
3532ed618SSoby Mathew  *
482cb2c1aSdp-arm  * SPDX-License-Identifier: BSD-3-Clause
5532ed618SSoby Mathew  */
6532ed618SSoby Mathew 
7380559c1SDimitris Papastamos #include <amu.h>
8532ed618SSoby Mathew #include <arch.h>
9532ed618SSoby Mathew #include <arch_helpers.h>
10532ed618SSoby Mathew #include <assert.h>
11532ed618SSoby Mathew #include <bl_common.h>
12532ed618SSoby Mathew #include <context.h>
13532ed618SSoby Mathew #include <context_mgmt.h>
14532ed618SSoby Mathew #include <interrupt_mgmt.h>
15532ed618SSoby Mathew #include <platform.h>
16532ed618SSoby Mathew #include <platform_def.h>
1717b4c0ddSDimitris Papastamos #include <pubsub_events.h>
18085e80ecSAntonio Nino Diaz #include <smccc_helpers.h>
19281a08ccSDimitris Papastamos #include <spe.h>
20532ed618SSoby Mathew #include <string.h>
211a853370SDavid Cunado #include <sve.h>
2232f0d3c6SDouglas Raillard #include <utils.h>
23532ed618SSoby Mathew 
24532ed618SSoby Mathew 
25532ed618SSoby Mathew /*******************************************************************************
26532ed618SSoby Mathew  * Context management library initialisation routine. This library is used by
27532ed618SSoby Mathew  * runtime services to share pointers to 'cpu_context' structures for the secure
28532ed618SSoby Mathew  * and non-secure states. Management of the structures and their associated
29532ed618SSoby Mathew  * memory is not done by the context management library e.g. the PSCI service
30532ed618SSoby Mathew  * manages the cpu context used for entry from and exit to the non-secure state.
31532ed618SSoby Mathew  * The Secure payload dispatcher service manages the context(s) corresponding to
32532ed618SSoby Mathew  * the secure state. It also uses this library to get access to the non-secure
33532ed618SSoby Mathew  * state cpu context pointers.
34532ed618SSoby Mathew  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
35532ed618SSoby Mathew  * which will used for programming an entry into a lower EL. The same context
36532ed618SSoby Mathew  * will used to save state upon exception entry from that EL.
37532ed618SSoby Mathew  ******************************************************************************/
38532ed618SSoby Mathew void cm_init(void)
39532ed618SSoby Mathew {
40532ed618SSoby Mathew 	/*
41532ed618SSoby Mathew 	 * The context management library has only global data to intialize, but
42532ed618SSoby Mathew 	 * that will be done when the BSS is zeroed out
43532ed618SSoby Mathew 	 */
44532ed618SSoby Mathew }
45532ed618SSoby Mathew 
46532ed618SSoby Mathew /*******************************************************************************
47532ed618SSoby Mathew  * The following function initializes the cpu_context 'ctx' for
48532ed618SSoby Mathew  * first use, and sets the initial entrypoint state as specified by the
49532ed618SSoby Mathew  * entry_point_info structure.
50532ed618SSoby Mathew  *
51532ed618SSoby Mathew  * The security state to initialize is determined by the SECURE attribute
52532ed618SSoby Mathew  * of the entry_point_info. The function returns a pointer to the initialized
53532ed618SSoby Mathew  * context and sets this as the next context to return to.
54532ed618SSoby Mathew  *
55532ed618SSoby Mathew  * The EE and ST attributes are used to configure the endianess and secure
56532ed618SSoby Mathew  * timer availability for the new execution context.
57532ed618SSoby Mathew  *
58532ed618SSoby Mathew  * To prepare the register state for entry call cm_prepare_el3_exit() and
59532ed618SSoby Mathew  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
60532ed618SSoby Mathew  * cm_e1_sysreg_context_restore().
61532ed618SSoby Mathew  ******************************************************************************/
62532ed618SSoby Mathew static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
63532ed618SSoby Mathew {
64532ed618SSoby Mathew 	unsigned int security_state;
653e61b2b5SDavid Cunado 	uint32_t scr_el3, pmcr_el0;
66532ed618SSoby Mathew 	el3_state_t *state;
67532ed618SSoby Mathew 	gp_regs_t *gp_regs;
68532ed618SSoby Mathew 	unsigned long sctlr_elx;
69532ed618SSoby Mathew 
70532ed618SSoby Mathew 	assert(ctx);
71532ed618SSoby Mathew 
72532ed618SSoby Mathew 	security_state = GET_SECURITY_STATE(ep->h.attr);
73532ed618SSoby Mathew 
74532ed618SSoby Mathew 	/* Clear any residual register values from the context */
7532f0d3c6SDouglas Raillard 	zeromem(ctx, sizeof(*ctx));
76532ed618SSoby Mathew 
77532ed618SSoby Mathew 	/*
7818f2efd6SDavid Cunado 	 * SCR_EL3 was initialised during reset sequence in macro
7918f2efd6SDavid Cunado 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
8018f2efd6SDavid Cunado 	 * affect the next EL.
8118f2efd6SDavid Cunado 	 *
8218f2efd6SDavid Cunado 	 * The following fields are initially set to zero and then updated to
8318f2efd6SDavid Cunado 	 * the required value depending on the state of the SPSR_EL3 and the
8418f2efd6SDavid Cunado 	 * Security state and entrypoint attributes of the next EL.
85532ed618SSoby Mathew 	 */
86532ed618SSoby Mathew 	scr_el3 = read_scr();
87532ed618SSoby Mathew 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
88532ed618SSoby Mathew 			SCR_ST_BIT | SCR_HCE_BIT);
8918f2efd6SDavid Cunado 	/*
9018f2efd6SDavid Cunado 	 * SCR_NS: Set the security state of the next EL.
9118f2efd6SDavid Cunado 	 */
92532ed618SSoby Mathew 	if (security_state != SECURE)
93532ed618SSoby Mathew 		scr_el3 |= SCR_NS_BIT;
9418f2efd6SDavid Cunado 	/*
9518f2efd6SDavid Cunado 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
9618f2efd6SDavid Cunado 	 *  Exception level as specified by SPSR.
9718f2efd6SDavid Cunado 	 */
98532ed618SSoby Mathew 	if (GET_RW(ep->spsr) == MODE_RW_64)
99532ed618SSoby Mathew 		scr_el3 |= SCR_RW_BIT;
10018f2efd6SDavid Cunado 	/*
10118f2efd6SDavid Cunado 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
10218f2efd6SDavid Cunado 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
10318f2efd6SDavid Cunado 	 *  by the entrypoint attributes.
10418f2efd6SDavid Cunado 	 */
105532ed618SSoby Mathew 	if (EP_GET_ST(ep->h.attr))
106532ed618SSoby Mathew 		scr_el3 |= SCR_ST_BIT;
107532ed618SSoby Mathew 
108532ed618SSoby Mathew #ifndef HANDLE_EA_EL3_FIRST
10918f2efd6SDavid Cunado 	/*
11018f2efd6SDavid Cunado 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
11118f2efd6SDavid Cunado 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
11218f2efd6SDavid Cunado 	 *  Aborts are taken to EL3.
11318f2efd6SDavid Cunado 	 */
114532ed618SSoby Mathew 	scr_el3 &= ~SCR_EA_BIT;
115532ed618SSoby Mathew #endif
116532ed618SSoby Mathew 
117*1a7c1cfeSJeenu Viswambharan #if FAULT_INJECTION_SUPPORT
118*1a7c1cfeSJeenu Viswambharan 	/* Enable fault injection from lower ELs */
119*1a7c1cfeSJeenu Viswambharan 	scr_el3 |= SCR_FIEN_BIT;
120*1a7c1cfeSJeenu Viswambharan #endif
121*1a7c1cfeSJeenu Viswambharan 
1223d8256b2SMasahiro Yamada #ifdef IMAGE_BL31
123532ed618SSoby Mathew 	/*
12418f2efd6SDavid Cunado 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
12518f2efd6SDavid Cunado 	 *  indicated by the interrupt routing model for BL31.
126532ed618SSoby Mathew 	 */
127532ed618SSoby Mathew 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
128532ed618SSoby Mathew #endif
129532ed618SSoby Mathew 
130532ed618SSoby Mathew 	/*
13118f2efd6SDavid Cunado 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
13218f2efd6SDavid Cunado 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
13318f2efd6SDavid Cunado 	 * next mode is Hyp.
134532ed618SSoby Mathew 	 */
135532ed618SSoby Mathew 	if ((GET_RW(ep->spsr) == MODE_RW_64
136532ed618SSoby Mathew 	     && GET_EL(ep->spsr) == MODE_EL2)
137532ed618SSoby Mathew 	    || (GET_RW(ep->spsr) != MODE_RW_64
138532ed618SSoby Mathew 		&& GET_M32(ep->spsr) == MODE32_hyp)) {
139532ed618SSoby Mathew 		scr_el3 |= SCR_HCE_BIT;
140532ed618SSoby Mathew 	}
141532ed618SSoby Mathew 
14218f2efd6SDavid Cunado 	/*
14318f2efd6SDavid Cunado 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
14418f2efd6SDavid Cunado 	 * execution state setting all fields rather than relying of the hw.
14518f2efd6SDavid Cunado 	 * Some fields have architecturally UNKNOWN reset values and these are
14618f2efd6SDavid Cunado 	 * set to zero.
14718f2efd6SDavid Cunado 	 *
14818f2efd6SDavid Cunado 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
14918f2efd6SDavid Cunado 	 *
15018f2efd6SDavid Cunado 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
15118f2efd6SDavid Cunado 	 *  required by PSCI specification)
15218f2efd6SDavid Cunado 	 */
15318f2efd6SDavid Cunado 	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
15418f2efd6SDavid Cunado 	if (GET_RW(ep->spsr) == MODE_RW_64)
15518f2efd6SDavid Cunado 		sctlr_elx |= SCTLR_EL1_RES1;
15618f2efd6SDavid Cunado 	else {
15718f2efd6SDavid Cunado 		/*
15818f2efd6SDavid Cunado 		 * If the target execution state is AArch32 then the following
15918f2efd6SDavid Cunado 		 * fields need to be set.
16018f2efd6SDavid Cunado 		 *
16118f2efd6SDavid Cunado 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
16218f2efd6SDavid Cunado 		 *  instructions are not trapped to EL1.
16318f2efd6SDavid Cunado 		 *
16418f2efd6SDavid Cunado 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
16518f2efd6SDavid Cunado 		 *  instructions are not trapped to EL1.
16618f2efd6SDavid Cunado 		 *
16718f2efd6SDavid Cunado 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
16818f2efd6SDavid Cunado 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
16918f2efd6SDavid Cunado 		 */
17018f2efd6SDavid Cunado 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
17118f2efd6SDavid Cunado 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
17218f2efd6SDavid Cunado 	}
17318f2efd6SDavid Cunado 
17418f2efd6SDavid Cunado 	/*
17518f2efd6SDavid Cunado 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
1763e61b2b5SDavid Cunado 	 * and other EL2 registers are set up by cm_preapre_ns_entry() as they
17718f2efd6SDavid Cunado 	 * are not part of the stored cpu_context.
17818f2efd6SDavid Cunado 	 */
17918f2efd6SDavid Cunado 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
18018f2efd6SDavid Cunado 
1813e61b2b5SDavid Cunado 	if (security_state == SECURE) {
1823e61b2b5SDavid Cunado 		/*
1833e61b2b5SDavid Cunado 		 * Initialise PMCR_EL0 for secure context only, setting all
1843e61b2b5SDavid Cunado 		 * fields rather than relying on hw. Some fields are
1853e61b2b5SDavid Cunado 		 * architecturally UNKNOWN on reset.
1863e61b2b5SDavid Cunado 		 *
1873e61b2b5SDavid Cunado 		 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
1883e61b2b5SDavid Cunado 		 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
1893e61b2b5SDavid Cunado 		 *  that changes PMCCNTR_EL0[63] from 1 to 0.
1903e61b2b5SDavid Cunado 		 *
1913e61b2b5SDavid Cunado 		 * PMCR_EL0.DP: Set to one so that the cycle counter,
1923e61b2b5SDavid Cunado 		 *  PMCCNTR_EL0 does not count when event counting is prohibited.
1933e61b2b5SDavid Cunado 		 *
1943e61b2b5SDavid Cunado 		 * PMCR_EL0.X: Set to zero to disable export of events.
1953e61b2b5SDavid Cunado 		 *
1963e61b2b5SDavid Cunado 		 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
1973e61b2b5SDavid Cunado 		 *  counts on every clock cycle.
1983e61b2b5SDavid Cunado 		 */
1993e61b2b5SDavid Cunado 		pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
2003e61b2b5SDavid Cunado 				| PMCR_EL0_DP_BIT)
2013e61b2b5SDavid Cunado 				& ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
2023e61b2b5SDavid Cunado 		write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
2033e61b2b5SDavid Cunado 	}
2043e61b2b5SDavid Cunado 
205532ed618SSoby Mathew 	/* Populate EL3 state so that we've the right context before doing ERET */
206532ed618SSoby Mathew 	state = get_el3state_ctx(ctx);
207532ed618SSoby Mathew 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
208532ed618SSoby Mathew 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
209532ed618SSoby Mathew 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
210532ed618SSoby Mathew 
211532ed618SSoby Mathew 	/*
212532ed618SSoby Mathew 	 * Store the X0-X7 value from the entrypoint into the context
213532ed618SSoby Mathew 	 * Use memcpy as we are in control of the layout of the structures
214532ed618SSoby Mathew 	 */
215532ed618SSoby Mathew 	gp_regs = get_gpregs_ctx(ctx);
216532ed618SSoby Mathew 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
217532ed618SSoby Mathew }
218532ed618SSoby Mathew 
219532ed618SSoby Mathew /*******************************************************************************
2200fd0f222SDimitris Papastamos  * Enable architecture extensions on first entry to Non-secure world.
2210fd0f222SDimitris Papastamos  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
2220fd0f222SDimitris Papastamos  * it is zero.
2230fd0f222SDimitris Papastamos  ******************************************************************************/
2240fd0f222SDimitris Papastamos static void enable_extensions_nonsecure(int el2_unused)
2250fd0f222SDimitris Papastamos {
2260fd0f222SDimitris Papastamos #if IMAGE_BL31
227281a08ccSDimitris Papastamos #if ENABLE_SPE_FOR_LOWER_ELS
228281a08ccSDimitris Papastamos 	spe_enable(el2_unused);
229281a08ccSDimitris Papastamos #endif
230380559c1SDimitris Papastamos 
231380559c1SDimitris Papastamos #if ENABLE_AMU
232380559c1SDimitris Papastamos 	amu_enable(el2_unused);
233380559c1SDimitris Papastamos #endif
2341a853370SDavid Cunado 
2351a853370SDavid Cunado #if ENABLE_SVE_FOR_NS
2361a853370SDavid Cunado 	sve_enable(el2_unused);
2371a853370SDavid Cunado #endif
2380fd0f222SDimitris Papastamos #endif
2390fd0f222SDimitris Papastamos }
2400fd0f222SDimitris Papastamos 
2410fd0f222SDimitris Papastamos /*******************************************************************************
242532ed618SSoby Mathew  * The following function initializes the cpu_context for a CPU specified by
243532ed618SSoby Mathew  * its `cpu_idx` for first use, and sets the initial entrypoint state as
244532ed618SSoby Mathew  * specified by the entry_point_info structure.
245532ed618SSoby Mathew  ******************************************************************************/
246532ed618SSoby Mathew void cm_init_context_by_index(unsigned int cpu_idx,
247532ed618SSoby Mathew 			      const entry_point_info_t *ep)
248532ed618SSoby Mathew {
249532ed618SSoby Mathew 	cpu_context_t *ctx;
250532ed618SSoby Mathew 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
251532ed618SSoby Mathew 	cm_init_context_common(ctx, ep);
252532ed618SSoby Mathew }
253532ed618SSoby Mathew 
254532ed618SSoby Mathew /*******************************************************************************
255532ed618SSoby Mathew  * The following function initializes the cpu_context for the current CPU
256532ed618SSoby Mathew  * for first use, and sets the initial entrypoint state as specified by the
257532ed618SSoby Mathew  * entry_point_info structure.
258532ed618SSoby Mathew  ******************************************************************************/
259532ed618SSoby Mathew void cm_init_my_context(const entry_point_info_t *ep)
260532ed618SSoby Mathew {
261532ed618SSoby Mathew 	cpu_context_t *ctx;
262532ed618SSoby Mathew 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
263532ed618SSoby Mathew 	cm_init_context_common(ctx, ep);
264532ed618SSoby Mathew }
265532ed618SSoby Mathew 
266532ed618SSoby Mathew /*******************************************************************************
267532ed618SSoby Mathew  * Prepare the CPU system registers for first entry into secure or normal world
268532ed618SSoby Mathew  *
269532ed618SSoby Mathew  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
270532ed618SSoby Mathew  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
271532ed618SSoby Mathew  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
272532ed618SSoby Mathew  * For all entries, the EL1 registers are initialized from the cpu_context
273532ed618SSoby Mathew  ******************************************************************************/
274532ed618SSoby Mathew void cm_prepare_el3_exit(uint32_t security_state)
275532ed618SSoby Mathew {
276d832aee9Sdp-arm 	uint32_t sctlr_elx, scr_el3, mdcr_el2;
277532ed618SSoby Mathew 	cpu_context_t *ctx = cm_get_context(security_state);
2780fd0f222SDimitris Papastamos 	int el2_unused = 0;
279532ed618SSoby Mathew 
280532ed618SSoby Mathew 	assert(ctx);
281532ed618SSoby Mathew 
282532ed618SSoby Mathew 	if (security_state == NON_SECURE) {
283532ed618SSoby Mathew 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
284532ed618SSoby Mathew 		if (scr_el3 & SCR_HCE_BIT) {
285532ed618SSoby Mathew 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
286532ed618SSoby Mathew 			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
287532ed618SSoby Mathew 						 CTX_SCTLR_EL1);
2882e09d4f8SKen Kuang 			sctlr_elx &= SCTLR_EE_BIT;
289532ed618SSoby Mathew 			sctlr_elx |= SCTLR_EL2_RES1;
290532ed618SSoby Mathew 			write_sctlr_el2(sctlr_elx);
291f4c8aa90SJeenu Viswambharan 		} else if (EL_IMPLEMENTED(2)) {
2920fd0f222SDimitris Papastamos 			el2_unused = 1;
2930fd0f222SDimitris Papastamos 
29418f2efd6SDavid Cunado 			/*
29518f2efd6SDavid Cunado 			 * EL2 present but unused, need to disable safely.
29618f2efd6SDavid Cunado 			 * SCTLR_EL2 can be ignored in this case.
29718f2efd6SDavid Cunado 			 *
29818f2efd6SDavid Cunado 			 * Initialise all fields in HCR_EL2, except HCR_EL2.RW,
29918f2efd6SDavid Cunado 			 * to zero so that Non-secure operations do not trap to
30018f2efd6SDavid Cunado 			 * EL2.
30118f2efd6SDavid Cunado 			 *
30218f2efd6SDavid Cunado 			 * HCR_EL2.RW: Set this field to match SCR_EL3.RW
30318f2efd6SDavid Cunado 			 */
304532ed618SSoby Mathew 			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
305532ed618SSoby Mathew 
30618f2efd6SDavid Cunado 			/*
30718f2efd6SDavid Cunado 			 * Initialise CPTR_EL2 setting all fields rather than
30818f2efd6SDavid Cunado 			 * relying on the hw. All fields have architecturally
30918f2efd6SDavid Cunado 			 * UNKNOWN reset values.
31018f2efd6SDavid Cunado 			 *
31118f2efd6SDavid Cunado 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
31218f2efd6SDavid Cunado 			 *  accesses to the CPACR_EL1 or CPACR from both
31318f2efd6SDavid Cunado 			 *  Execution states do not trap to EL2.
31418f2efd6SDavid Cunado 			 *
31518f2efd6SDavid Cunado 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
31618f2efd6SDavid Cunado 			 *  register accesses to the trace registers from both
31718f2efd6SDavid Cunado 			 *  Execution states do not trap to EL2.
31818f2efd6SDavid Cunado 			 *
31918f2efd6SDavid Cunado 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
32018f2efd6SDavid Cunado 			 *  to SIMD and floating-point functionality from both
32118f2efd6SDavid Cunado 			 *  Execution states do not trap to EL2.
32218f2efd6SDavid Cunado 			 */
32318f2efd6SDavid Cunado 			write_cptr_el2(CPTR_EL2_RESET_VAL &
32418f2efd6SDavid Cunado 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
32518f2efd6SDavid Cunado 					| CPTR_EL2_TFP_BIT));
326532ed618SSoby Mathew 
32718f2efd6SDavid Cunado 			/*
32818f2efd6SDavid Cunado 			 * Initiliase CNTHCTL_EL2. All fields are
32918f2efd6SDavid Cunado 			 * architecturally UNKNOWN on reset and are set to zero
33018f2efd6SDavid Cunado 			 * except for field(s) listed below.
33118f2efd6SDavid Cunado 			 *
33218f2efd6SDavid Cunado 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
33318f2efd6SDavid Cunado 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
33418f2efd6SDavid Cunado 			 *  physical timer registers.
33518f2efd6SDavid Cunado 			 *
33618f2efd6SDavid Cunado 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
33718f2efd6SDavid Cunado 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
33818f2efd6SDavid Cunado 			 *  physical counter registers.
33918f2efd6SDavid Cunado 			 */
34018f2efd6SDavid Cunado 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
34118f2efd6SDavid Cunado 						EL1PCEN_BIT | EL1PCTEN_BIT);
342532ed618SSoby Mathew 
34318f2efd6SDavid Cunado 			/*
34418f2efd6SDavid Cunado 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
34518f2efd6SDavid Cunado 			 * architecturally UNKNOWN value.
34618f2efd6SDavid Cunado 			 */
347532ed618SSoby Mathew 			write_cntvoff_el2(0);
348532ed618SSoby Mathew 
34918f2efd6SDavid Cunado 			/*
35018f2efd6SDavid Cunado 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
35118f2efd6SDavid Cunado 			 * MPIDR_EL1 respectively.
35218f2efd6SDavid Cunado 			 */
353532ed618SSoby Mathew 			write_vpidr_el2(read_midr_el1());
354532ed618SSoby Mathew 			write_vmpidr_el2(read_mpidr_el1());
355532ed618SSoby Mathew 
356532ed618SSoby Mathew 			/*
35718f2efd6SDavid Cunado 			 * Initialise VTTBR_EL2. All fields are architecturally
35818f2efd6SDavid Cunado 			 * UNKNOWN on reset.
35918f2efd6SDavid Cunado 			 *
36018f2efd6SDavid Cunado 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
36118f2efd6SDavid Cunado 			 *  2 address translation is disabled, cache maintenance
36218f2efd6SDavid Cunado 			 *  operations depend on the VMID.
36318f2efd6SDavid Cunado 			 *
36418f2efd6SDavid Cunado 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
36518f2efd6SDavid Cunado 			 *  translation is disabled.
366532ed618SSoby Mathew 			 */
36718f2efd6SDavid Cunado 			write_vttbr_el2(VTTBR_RESET_VAL &
36818f2efd6SDavid Cunado 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
36918f2efd6SDavid Cunado 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
37018f2efd6SDavid Cunado 
371495f3d3cSDavid Cunado 			/*
37218f2efd6SDavid Cunado 			 * Initialise MDCR_EL2, setting all fields rather than
37318f2efd6SDavid Cunado 			 * relying on hw. Some fields are architecturally
37418f2efd6SDavid Cunado 			 * UNKNOWN on reset.
37518f2efd6SDavid Cunado 			 *
37618f2efd6SDavid Cunado 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
37718f2efd6SDavid Cunado 			 *  EL1 System register accesses to the Debug ROM
37818f2efd6SDavid Cunado 			 *  registers are not trapped to EL2.
37918f2efd6SDavid Cunado 			 *
38018f2efd6SDavid Cunado 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
38118f2efd6SDavid Cunado 			 *  System register accesses to the powerdown debug
38218f2efd6SDavid Cunado 			 *  registers are not trapped to EL2.
38318f2efd6SDavid Cunado 			 *
38418f2efd6SDavid Cunado 			 * MDCR_EL2.TDA: Set to zero so that System register
38518f2efd6SDavid Cunado 			 *  accesses to the debug registers do not trap to EL2.
38618f2efd6SDavid Cunado 			 *
38718f2efd6SDavid Cunado 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
38818f2efd6SDavid Cunado 			 *  are not routed to EL2.
38918f2efd6SDavid Cunado 			 *
39018f2efd6SDavid Cunado 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
39118f2efd6SDavid Cunado 			 *  Monitors.
39218f2efd6SDavid Cunado 			 *
39318f2efd6SDavid Cunado 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
39418f2efd6SDavid Cunado 			 *  EL1 accesses to all Performance Monitors registers
39518f2efd6SDavid Cunado 			 *  are not trapped to EL2.
39618f2efd6SDavid Cunado 			 *
39718f2efd6SDavid Cunado 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
39818f2efd6SDavid Cunado 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
39918f2efd6SDavid Cunado 			 *  trapped to EL2.
40018f2efd6SDavid Cunado 			 *
40118f2efd6SDavid Cunado 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
40218f2efd6SDavid Cunado 			 *  architecturally-defined reset value.
403495f3d3cSDavid Cunado 			 */
404d832aee9Sdp-arm 			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
40518f2efd6SDavid Cunado 					((read_pmcr_el0() & PMCR_EL0_N_BITS)
40618f2efd6SDavid Cunado 					>> PMCR_EL0_N_SHIFT)) &
40718f2efd6SDavid Cunado 					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
40818f2efd6SDavid Cunado 					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
40918f2efd6SDavid Cunado 					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
41018f2efd6SDavid Cunado 					| MDCR_EL2_TPMCR_BIT));
411d832aee9Sdp-arm 
412d832aee9Sdp-arm 			write_mdcr_el2(mdcr_el2);
413d832aee9Sdp-arm 
414939f66d6SDavid Cunado 			/*
41518f2efd6SDavid Cunado 			 * Initialise HSTR_EL2. All fields are architecturally
41618f2efd6SDavid Cunado 			 * UNKNOWN on reset.
41718f2efd6SDavid Cunado 			 *
41818f2efd6SDavid Cunado 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
41918f2efd6SDavid Cunado 			 *  Non-secure EL0 or EL1 accesses to System registers
42018f2efd6SDavid Cunado 			 *  do not trap to EL2.
421939f66d6SDavid Cunado 			 */
42218f2efd6SDavid Cunado 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
423939f66d6SDavid Cunado 			/*
42418f2efd6SDavid Cunado 			 * Initialise CNTHP_CTL_EL2. All fields are
42518f2efd6SDavid Cunado 			 * architecturally UNKNOWN on reset.
42618f2efd6SDavid Cunado 			 *
42718f2efd6SDavid Cunado 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
42818f2efd6SDavid Cunado 			 *  physical timer and prevent timer interrupts.
429939f66d6SDavid Cunado 			 */
43018f2efd6SDavid Cunado 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
43118f2efd6SDavid Cunado 						~(CNTHP_CTL_ENABLE_BIT));
432532ed618SSoby Mathew 		}
4330fd0f222SDimitris Papastamos 		enable_extensions_nonsecure(el2_unused);
434532ed618SSoby Mathew 	}
435532ed618SSoby Mathew 
43617b4c0ddSDimitris Papastamos 	cm_el1_sysregs_context_restore(security_state);
43717b4c0ddSDimitris Papastamos 	cm_set_next_eret_context(security_state);
438532ed618SSoby Mathew }
439532ed618SSoby Mathew 
440532ed618SSoby Mathew /*******************************************************************************
441532ed618SSoby Mathew  * The next four functions are used by runtime services to save and restore
442532ed618SSoby Mathew  * EL1 context on the 'cpu_context' structure for the specified security
443532ed618SSoby Mathew  * state.
444532ed618SSoby Mathew  ******************************************************************************/
445532ed618SSoby Mathew void cm_el1_sysregs_context_save(uint32_t security_state)
446532ed618SSoby Mathew {
447532ed618SSoby Mathew 	cpu_context_t *ctx;
448532ed618SSoby Mathew 
449532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
450532ed618SSoby Mathew 	assert(ctx);
451532ed618SSoby Mathew 
452532ed618SSoby Mathew 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
45317b4c0ddSDimitris Papastamos 
45417b4c0ddSDimitris Papastamos #if IMAGE_BL31
45517b4c0ddSDimitris Papastamos 	if (security_state == SECURE)
45617b4c0ddSDimitris Papastamos 		PUBLISH_EVENT(cm_exited_secure_world);
45717b4c0ddSDimitris Papastamos 	else
45817b4c0ddSDimitris Papastamos 		PUBLISH_EVENT(cm_exited_normal_world);
45917b4c0ddSDimitris Papastamos #endif
460532ed618SSoby Mathew }
461532ed618SSoby Mathew 
462532ed618SSoby Mathew void cm_el1_sysregs_context_restore(uint32_t security_state)
463532ed618SSoby Mathew {
464532ed618SSoby Mathew 	cpu_context_t *ctx;
465532ed618SSoby Mathew 
466532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
467532ed618SSoby Mathew 	assert(ctx);
468532ed618SSoby Mathew 
469532ed618SSoby Mathew 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
47017b4c0ddSDimitris Papastamos 
47117b4c0ddSDimitris Papastamos #if IMAGE_BL31
47217b4c0ddSDimitris Papastamos 	if (security_state == SECURE)
47317b4c0ddSDimitris Papastamos 		PUBLISH_EVENT(cm_entering_secure_world);
47417b4c0ddSDimitris Papastamos 	else
47517b4c0ddSDimitris Papastamos 		PUBLISH_EVENT(cm_entering_normal_world);
47617b4c0ddSDimitris Papastamos #endif
477532ed618SSoby Mathew }
478532ed618SSoby Mathew 
479532ed618SSoby Mathew /*******************************************************************************
480532ed618SSoby Mathew  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
481532ed618SSoby Mathew  * given security state with the given entrypoint
482532ed618SSoby Mathew  ******************************************************************************/
483532ed618SSoby Mathew void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
484532ed618SSoby Mathew {
485532ed618SSoby Mathew 	cpu_context_t *ctx;
486532ed618SSoby Mathew 	el3_state_t *state;
487532ed618SSoby Mathew 
488532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
489532ed618SSoby Mathew 	assert(ctx);
490532ed618SSoby Mathew 
491532ed618SSoby Mathew 	/* Populate EL3 state so that ERET jumps to the correct entry */
492532ed618SSoby Mathew 	state = get_el3state_ctx(ctx);
493532ed618SSoby Mathew 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
494532ed618SSoby Mathew }
495532ed618SSoby Mathew 
496532ed618SSoby Mathew /*******************************************************************************
497532ed618SSoby Mathew  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
498532ed618SSoby Mathew  * pertaining to the given security state
499532ed618SSoby Mathew  ******************************************************************************/
500532ed618SSoby Mathew void cm_set_elr_spsr_el3(uint32_t security_state,
501532ed618SSoby Mathew 			uintptr_t entrypoint, uint32_t spsr)
502532ed618SSoby Mathew {
503532ed618SSoby Mathew 	cpu_context_t *ctx;
504532ed618SSoby Mathew 	el3_state_t *state;
505532ed618SSoby Mathew 
506532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
507532ed618SSoby Mathew 	assert(ctx);
508532ed618SSoby Mathew 
509532ed618SSoby Mathew 	/* Populate EL3 state so that ERET jumps to the correct entry */
510532ed618SSoby Mathew 	state = get_el3state_ctx(ctx);
511532ed618SSoby Mathew 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
512532ed618SSoby Mathew 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
513532ed618SSoby Mathew }
514532ed618SSoby Mathew 
515532ed618SSoby Mathew /*******************************************************************************
516532ed618SSoby Mathew  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
517532ed618SSoby Mathew  * pertaining to the given security state using the value and bit position
518532ed618SSoby Mathew  * specified in the parameters. It preserves all other bits.
519532ed618SSoby Mathew  ******************************************************************************/
520532ed618SSoby Mathew void cm_write_scr_el3_bit(uint32_t security_state,
521532ed618SSoby Mathew 			  uint32_t bit_pos,
522532ed618SSoby Mathew 			  uint32_t value)
523532ed618SSoby Mathew {
524532ed618SSoby Mathew 	cpu_context_t *ctx;
525532ed618SSoby Mathew 	el3_state_t *state;
526532ed618SSoby Mathew 	uint32_t scr_el3;
527532ed618SSoby Mathew 
528532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
529532ed618SSoby Mathew 	assert(ctx);
530532ed618SSoby Mathew 
531532ed618SSoby Mathew 	/* Ensure that the bit position is a valid one */
532532ed618SSoby Mathew 	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
533532ed618SSoby Mathew 
534532ed618SSoby Mathew 	/* Ensure that the 'value' is only a bit wide */
535532ed618SSoby Mathew 	assert(value <= 1);
536532ed618SSoby Mathew 
537532ed618SSoby Mathew 	/*
538532ed618SSoby Mathew 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
539532ed618SSoby Mathew 	 * and set it to its new value.
540532ed618SSoby Mathew 	 */
541532ed618SSoby Mathew 	state = get_el3state_ctx(ctx);
542532ed618SSoby Mathew 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
543532ed618SSoby Mathew 	scr_el3 &= ~(1 << bit_pos);
544532ed618SSoby Mathew 	scr_el3 |= value << bit_pos;
545532ed618SSoby Mathew 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
546532ed618SSoby Mathew }
547532ed618SSoby Mathew 
548532ed618SSoby Mathew /*******************************************************************************
549532ed618SSoby Mathew  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
550532ed618SSoby Mathew  * given security state.
551532ed618SSoby Mathew  ******************************************************************************/
552532ed618SSoby Mathew uint32_t cm_get_scr_el3(uint32_t security_state)
553532ed618SSoby Mathew {
554532ed618SSoby Mathew 	cpu_context_t *ctx;
555532ed618SSoby Mathew 	el3_state_t *state;
556532ed618SSoby Mathew 
557532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
558532ed618SSoby Mathew 	assert(ctx);
559532ed618SSoby Mathew 
560532ed618SSoby Mathew 	/* Populate EL3 state so that ERET jumps to the correct entry */
561532ed618SSoby Mathew 	state = get_el3state_ctx(ctx);
562532ed618SSoby Mathew 	return read_ctx_reg(state, CTX_SCR_EL3);
563532ed618SSoby Mathew }
564532ed618SSoby Mathew 
565532ed618SSoby Mathew /*******************************************************************************
566532ed618SSoby Mathew  * This function is used to program the context that's used for exception
567532ed618SSoby Mathew  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
568532ed618SSoby Mathew  * the required security state
569532ed618SSoby Mathew  ******************************************************************************/
570532ed618SSoby Mathew void cm_set_next_eret_context(uint32_t security_state)
571532ed618SSoby Mathew {
572532ed618SSoby Mathew 	cpu_context_t *ctx;
573532ed618SSoby Mathew 
574532ed618SSoby Mathew 	ctx = cm_get_context(security_state);
575532ed618SSoby Mathew 	assert(ctx);
576532ed618SSoby Mathew 
577532ed618SSoby Mathew 	cm_set_next_context(ctx);
578532ed618SSoby Mathew }
579