1532ed618SSoby Mathew /* 232f0d3c6SDouglas Raillard * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved. 3532ed618SSoby Mathew * 482cb2c1aSdp-arm * SPDX-License-Identifier: BSD-3-Clause 5532ed618SSoby Mathew */ 6532ed618SSoby Mathew 7532ed618SSoby Mathew #include <arch.h> 8532ed618SSoby Mathew #include <arch_helpers.h> 9532ed618SSoby Mathew #include <assert.h> 10532ed618SSoby Mathew #include <bl_common.h> 11532ed618SSoby Mathew #include <context.h> 12532ed618SSoby Mathew #include <context_mgmt.h> 13532ed618SSoby Mathew #include <interrupt_mgmt.h> 14532ed618SSoby Mathew #include <platform.h> 15532ed618SSoby Mathew #include <platform_def.h> 16*17b4c0ddSDimitris Papastamos #include <pubsub_events.h> 17532ed618SSoby Mathew #include <smcc_helpers.h> 18532ed618SSoby Mathew #include <string.h> 1932f0d3c6SDouglas Raillard #include <utils.h> 20532ed618SSoby Mathew 21532ed618SSoby Mathew 22532ed618SSoby Mathew /******************************************************************************* 23532ed618SSoby Mathew * Context management library initialisation routine. This library is used by 24532ed618SSoby Mathew * runtime services to share pointers to 'cpu_context' structures for the secure 25532ed618SSoby Mathew * and non-secure states. Management of the structures and their associated 26532ed618SSoby Mathew * memory is not done by the context management library e.g. the PSCI service 27532ed618SSoby Mathew * manages the cpu context used for entry from and exit to the non-secure state. 28532ed618SSoby Mathew * The Secure payload dispatcher service manages the context(s) corresponding to 29532ed618SSoby Mathew * the secure state. It also uses this library to get access to the non-secure 30532ed618SSoby Mathew * state cpu context pointers. 31532ed618SSoby Mathew * Lastly, this library provides the api to make SP_EL3 point to the cpu context 32532ed618SSoby Mathew * which will used for programming an entry into a lower EL. The same context 33532ed618SSoby Mathew * will used to save state upon exception entry from that EL. 34532ed618SSoby Mathew ******************************************************************************/ 35532ed618SSoby Mathew void cm_init(void) 36532ed618SSoby Mathew { 37532ed618SSoby Mathew /* 38532ed618SSoby Mathew * The context management library has only global data to intialize, but 39532ed618SSoby Mathew * that will be done when the BSS is zeroed out 40532ed618SSoby Mathew */ 41532ed618SSoby Mathew } 42532ed618SSoby Mathew 43532ed618SSoby Mathew /******************************************************************************* 44532ed618SSoby Mathew * The following function initializes the cpu_context 'ctx' for 45532ed618SSoby Mathew * first use, and sets the initial entrypoint state as specified by the 46532ed618SSoby Mathew * entry_point_info structure. 47532ed618SSoby Mathew * 48532ed618SSoby Mathew * The security state to initialize is determined by the SECURE attribute 49532ed618SSoby Mathew * of the entry_point_info. The function returns a pointer to the initialized 50532ed618SSoby Mathew * context and sets this as the next context to return to. 51532ed618SSoby Mathew * 52532ed618SSoby Mathew * The EE and ST attributes are used to configure the endianess and secure 53532ed618SSoby Mathew * timer availability for the new execution context. 54532ed618SSoby Mathew * 55532ed618SSoby Mathew * To prepare the register state for entry call cm_prepare_el3_exit() and 56532ed618SSoby Mathew * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to 57532ed618SSoby Mathew * cm_e1_sysreg_context_restore(). 58532ed618SSoby Mathew ******************************************************************************/ 59532ed618SSoby Mathew static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) 60532ed618SSoby Mathew { 61532ed618SSoby Mathew unsigned int security_state; 623e61b2b5SDavid Cunado uint32_t scr_el3, pmcr_el0; 63532ed618SSoby Mathew el3_state_t *state; 64532ed618SSoby Mathew gp_regs_t *gp_regs; 65532ed618SSoby Mathew unsigned long sctlr_elx; 66532ed618SSoby Mathew 67532ed618SSoby Mathew assert(ctx); 68532ed618SSoby Mathew 69532ed618SSoby Mathew security_state = GET_SECURITY_STATE(ep->h.attr); 70532ed618SSoby Mathew 71532ed618SSoby Mathew /* Clear any residual register values from the context */ 7232f0d3c6SDouglas Raillard zeromem(ctx, sizeof(*ctx)); 73532ed618SSoby Mathew 74532ed618SSoby Mathew /* 7518f2efd6SDavid Cunado * SCR_EL3 was initialised during reset sequence in macro 7618f2efd6SDavid Cunado * el3_arch_init_common. This code modifies the SCR_EL3 fields that 7718f2efd6SDavid Cunado * affect the next EL. 7818f2efd6SDavid Cunado * 7918f2efd6SDavid Cunado * The following fields are initially set to zero and then updated to 8018f2efd6SDavid Cunado * the required value depending on the state of the SPSR_EL3 and the 8118f2efd6SDavid Cunado * Security state and entrypoint attributes of the next EL. 82532ed618SSoby Mathew */ 83532ed618SSoby Mathew scr_el3 = read_scr(); 84532ed618SSoby Mathew scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | 85532ed618SSoby Mathew SCR_ST_BIT | SCR_HCE_BIT); 8618f2efd6SDavid Cunado /* 8718f2efd6SDavid Cunado * SCR_NS: Set the security state of the next EL. 8818f2efd6SDavid Cunado */ 89532ed618SSoby Mathew if (security_state != SECURE) 90532ed618SSoby Mathew scr_el3 |= SCR_NS_BIT; 9118f2efd6SDavid Cunado /* 9218f2efd6SDavid Cunado * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next 9318f2efd6SDavid Cunado * Exception level as specified by SPSR. 9418f2efd6SDavid Cunado */ 95532ed618SSoby Mathew if (GET_RW(ep->spsr) == MODE_RW_64) 96532ed618SSoby Mathew scr_el3 |= SCR_RW_BIT; 9718f2efd6SDavid Cunado /* 9818f2efd6SDavid Cunado * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical 9918f2efd6SDavid Cunado * Secure timer registers to EL3, from AArch64 state only, if specified 10018f2efd6SDavid Cunado * by the entrypoint attributes. 10118f2efd6SDavid Cunado */ 102532ed618SSoby Mathew if (EP_GET_ST(ep->h.attr)) 103532ed618SSoby Mathew scr_el3 |= SCR_ST_BIT; 104532ed618SSoby Mathew 105532ed618SSoby Mathew #ifndef HANDLE_EA_EL3_FIRST 10618f2efd6SDavid Cunado /* 10718f2efd6SDavid Cunado * SCR_EL3.EA: Do not route External Abort and SError Interrupt External 10818f2efd6SDavid Cunado * to EL3 when executing at a lower EL. When executing at EL3, External 10918f2efd6SDavid Cunado * Aborts are taken to EL3. 11018f2efd6SDavid Cunado */ 111532ed618SSoby Mathew scr_el3 &= ~SCR_EA_BIT; 112532ed618SSoby Mathew #endif 113532ed618SSoby Mathew 1143d8256b2SMasahiro Yamada #ifdef IMAGE_BL31 115532ed618SSoby Mathew /* 11618f2efd6SDavid Cunado * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as 11718f2efd6SDavid Cunado * indicated by the interrupt routing model for BL31. 118532ed618SSoby Mathew */ 119532ed618SSoby Mathew scr_el3 |= get_scr_el3_from_routing_model(security_state); 120532ed618SSoby Mathew #endif 121532ed618SSoby Mathew 122532ed618SSoby Mathew /* 12318f2efd6SDavid Cunado * SCR_EL3.HCE: Enable HVC instructions if next execution state is 12418f2efd6SDavid Cunado * AArch64 and next EL is EL2, or if next execution state is AArch32 and 12518f2efd6SDavid Cunado * next mode is Hyp. 126532ed618SSoby Mathew */ 127532ed618SSoby Mathew if ((GET_RW(ep->spsr) == MODE_RW_64 128532ed618SSoby Mathew && GET_EL(ep->spsr) == MODE_EL2) 129532ed618SSoby Mathew || (GET_RW(ep->spsr) != MODE_RW_64 130532ed618SSoby Mathew && GET_M32(ep->spsr) == MODE32_hyp)) { 131532ed618SSoby Mathew scr_el3 |= SCR_HCE_BIT; 132532ed618SSoby Mathew } 133532ed618SSoby Mathew 13418f2efd6SDavid Cunado /* 13518f2efd6SDavid Cunado * Initialise SCTLR_EL1 to the reset value corresponding to the target 13618f2efd6SDavid Cunado * execution state setting all fields rather than relying of the hw. 13718f2efd6SDavid Cunado * Some fields have architecturally UNKNOWN reset values and these are 13818f2efd6SDavid Cunado * set to zero. 13918f2efd6SDavid Cunado * 14018f2efd6SDavid Cunado * SCTLR.EE: Endianness is taken from the entrypoint attributes. 14118f2efd6SDavid Cunado * 14218f2efd6SDavid Cunado * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as 14318f2efd6SDavid Cunado * required by PSCI specification) 14418f2efd6SDavid Cunado */ 14518f2efd6SDavid Cunado sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; 14618f2efd6SDavid Cunado if (GET_RW(ep->spsr) == MODE_RW_64) 14718f2efd6SDavid Cunado sctlr_elx |= SCTLR_EL1_RES1; 14818f2efd6SDavid Cunado else { 14918f2efd6SDavid Cunado /* 15018f2efd6SDavid Cunado * If the target execution state is AArch32 then the following 15118f2efd6SDavid Cunado * fields need to be set. 15218f2efd6SDavid Cunado * 15318f2efd6SDavid Cunado * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE 15418f2efd6SDavid Cunado * instructions are not trapped to EL1. 15518f2efd6SDavid Cunado * 15618f2efd6SDavid Cunado * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI 15718f2efd6SDavid Cunado * instructions are not trapped to EL1. 15818f2efd6SDavid Cunado * 15918f2efd6SDavid Cunado * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the 16018f2efd6SDavid Cunado * CP15DMB, CP15DSB, and CP15ISB instructions. 16118f2efd6SDavid Cunado */ 16218f2efd6SDavid Cunado sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT 16318f2efd6SDavid Cunado | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; 16418f2efd6SDavid Cunado } 16518f2efd6SDavid Cunado 16618f2efd6SDavid Cunado /* 16718f2efd6SDavid Cunado * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2 1683e61b2b5SDavid Cunado * and other EL2 registers are set up by cm_preapre_ns_entry() as they 16918f2efd6SDavid Cunado * are not part of the stored cpu_context. 17018f2efd6SDavid Cunado */ 17118f2efd6SDavid Cunado write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); 17218f2efd6SDavid Cunado 1733e61b2b5SDavid Cunado if (security_state == SECURE) { 1743e61b2b5SDavid Cunado /* 1753e61b2b5SDavid Cunado * Initialise PMCR_EL0 for secure context only, setting all 1763e61b2b5SDavid Cunado * fields rather than relying on hw. Some fields are 1773e61b2b5SDavid Cunado * architecturally UNKNOWN on reset. 1783e61b2b5SDavid Cunado * 1793e61b2b5SDavid Cunado * PMCR_EL0.LC: Set to one so that cycle counter overflow, that 1803e61b2b5SDavid Cunado * is recorded in PMOVSCLR_EL0[31], occurs on the increment 1813e61b2b5SDavid Cunado * that changes PMCCNTR_EL0[63] from 1 to 0. 1823e61b2b5SDavid Cunado * 1833e61b2b5SDavid Cunado * PMCR_EL0.DP: Set to one so that the cycle counter, 1843e61b2b5SDavid Cunado * PMCCNTR_EL0 does not count when event counting is prohibited. 1853e61b2b5SDavid Cunado * 1863e61b2b5SDavid Cunado * PMCR_EL0.X: Set to zero to disable export of events. 1873e61b2b5SDavid Cunado * 1883e61b2b5SDavid Cunado * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0 1893e61b2b5SDavid Cunado * counts on every clock cycle. 1903e61b2b5SDavid Cunado */ 1913e61b2b5SDavid Cunado pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT 1923e61b2b5SDavid Cunado | PMCR_EL0_DP_BIT) 1933e61b2b5SDavid Cunado & ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT)); 1943e61b2b5SDavid Cunado write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0); 1953e61b2b5SDavid Cunado } 1963e61b2b5SDavid Cunado 197532ed618SSoby Mathew /* Populate EL3 state so that we've the right context before doing ERET */ 198532ed618SSoby Mathew state = get_el3state_ctx(ctx); 199532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 200532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, ep->pc); 201532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); 202532ed618SSoby Mathew 203532ed618SSoby Mathew /* 204532ed618SSoby Mathew * Store the X0-X7 value from the entrypoint into the context 205532ed618SSoby Mathew * Use memcpy as we are in control of the layout of the structures 206532ed618SSoby Mathew */ 207532ed618SSoby Mathew gp_regs = get_gpregs_ctx(ctx); 208532ed618SSoby Mathew memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); 209532ed618SSoby Mathew } 210532ed618SSoby Mathew 211532ed618SSoby Mathew /******************************************************************************* 212532ed618SSoby Mathew * The following function initializes the cpu_context for a CPU specified by 213532ed618SSoby Mathew * its `cpu_idx` for first use, and sets the initial entrypoint state as 214532ed618SSoby Mathew * specified by the entry_point_info structure. 215532ed618SSoby Mathew ******************************************************************************/ 216532ed618SSoby Mathew void cm_init_context_by_index(unsigned int cpu_idx, 217532ed618SSoby Mathew const entry_point_info_t *ep) 218532ed618SSoby Mathew { 219532ed618SSoby Mathew cpu_context_t *ctx; 220532ed618SSoby Mathew ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 221532ed618SSoby Mathew cm_init_context_common(ctx, ep); 222532ed618SSoby Mathew } 223532ed618SSoby Mathew 224532ed618SSoby Mathew /******************************************************************************* 225532ed618SSoby Mathew * The following function initializes the cpu_context for the current CPU 226532ed618SSoby Mathew * for first use, and sets the initial entrypoint state as specified by the 227532ed618SSoby Mathew * entry_point_info structure. 228532ed618SSoby Mathew ******************************************************************************/ 229532ed618SSoby Mathew void cm_init_my_context(const entry_point_info_t *ep) 230532ed618SSoby Mathew { 231532ed618SSoby Mathew cpu_context_t *ctx; 232532ed618SSoby Mathew ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 233532ed618SSoby Mathew cm_init_context_common(ctx, ep); 234532ed618SSoby Mathew } 235532ed618SSoby Mathew 236532ed618SSoby Mathew /******************************************************************************* 237532ed618SSoby Mathew * Prepare the CPU system registers for first entry into secure or normal world 238532ed618SSoby Mathew * 239532ed618SSoby Mathew * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized 240532ed618SSoby Mathew * If execution is requested to non-secure EL1 or svc mode, and the CPU supports 241532ed618SSoby Mathew * EL2 then EL2 is disabled by configuring all necessary EL2 registers. 242532ed618SSoby Mathew * For all entries, the EL1 registers are initialized from the cpu_context 243532ed618SSoby Mathew ******************************************************************************/ 244532ed618SSoby Mathew void cm_prepare_el3_exit(uint32_t security_state) 245532ed618SSoby Mathew { 246d832aee9Sdp-arm uint32_t sctlr_elx, scr_el3, mdcr_el2; 247532ed618SSoby Mathew cpu_context_t *ctx = cm_get_context(security_state); 248532ed618SSoby Mathew 249532ed618SSoby Mathew assert(ctx); 250532ed618SSoby Mathew 251532ed618SSoby Mathew if (security_state == NON_SECURE) { 252532ed618SSoby Mathew scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); 253532ed618SSoby Mathew if (scr_el3 & SCR_HCE_BIT) { 254532ed618SSoby Mathew /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ 255532ed618SSoby Mathew sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx), 256532ed618SSoby Mathew CTX_SCTLR_EL1); 2572e09d4f8SKen Kuang sctlr_elx &= SCTLR_EE_BIT; 258532ed618SSoby Mathew sctlr_elx |= SCTLR_EL2_RES1; 259532ed618SSoby Mathew write_sctlr_el2(sctlr_elx); 260f4c8aa90SJeenu Viswambharan } else if (EL_IMPLEMENTED(2)) { 26118f2efd6SDavid Cunado /* 26218f2efd6SDavid Cunado * EL2 present but unused, need to disable safely. 26318f2efd6SDavid Cunado * SCTLR_EL2 can be ignored in this case. 26418f2efd6SDavid Cunado * 26518f2efd6SDavid Cunado * Initialise all fields in HCR_EL2, except HCR_EL2.RW, 26618f2efd6SDavid Cunado * to zero so that Non-secure operations do not trap to 26718f2efd6SDavid Cunado * EL2. 26818f2efd6SDavid Cunado * 26918f2efd6SDavid Cunado * HCR_EL2.RW: Set this field to match SCR_EL3.RW 27018f2efd6SDavid Cunado */ 271532ed618SSoby Mathew write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0); 272532ed618SSoby Mathew 27318f2efd6SDavid Cunado /* 27418f2efd6SDavid Cunado * Initialise CPTR_EL2 setting all fields rather than 27518f2efd6SDavid Cunado * relying on the hw. All fields have architecturally 27618f2efd6SDavid Cunado * UNKNOWN reset values. 27718f2efd6SDavid Cunado * 27818f2efd6SDavid Cunado * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1 27918f2efd6SDavid Cunado * accesses to the CPACR_EL1 or CPACR from both 28018f2efd6SDavid Cunado * Execution states do not trap to EL2. 28118f2efd6SDavid Cunado * 28218f2efd6SDavid Cunado * CPTR_EL2.TTA: Set to zero so that Non-secure System 28318f2efd6SDavid Cunado * register accesses to the trace registers from both 28418f2efd6SDavid Cunado * Execution states do not trap to EL2. 28518f2efd6SDavid Cunado * 28618f2efd6SDavid Cunado * CPTR_EL2.TFP: Set to zero so that Non-secure accesses 28718f2efd6SDavid Cunado * to SIMD and floating-point functionality from both 28818f2efd6SDavid Cunado * Execution states do not trap to EL2. 28918f2efd6SDavid Cunado */ 29018f2efd6SDavid Cunado write_cptr_el2(CPTR_EL2_RESET_VAL & 29118f2efd6SDavid Cunado ~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT 29218f2efd6SDavid Cunado | CPTR_EL2_TFP_BIT)); 293532ed618SSoby Mathew 29418f2efd6SDavid Cunado /* 29518f2efd6SDavid Cunado * Initiliase CNTHCTL_EL2. All fields are 29618f2efd6SDavid Cunado * architecturally UNKNOWN on reset and are set to zero 29718f2efd6SDavid Cunado * except for field(s) listed below. 29818f2efd6SDavid Cunado * 29918f2efd6SDavid Cunado * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to 30018f2efd6SDavid Cunado * Hyp mode of Non-secure EL0 and EL1 accesses to the 30118f2efd6SDavid Cunado * physical timer registers. 30218f2efd6SDavid Cunado * 30318f2efd6SDavid Cunado * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to 30418f2efd6SDavid Cunado * Hyp mode of Non-secure EL0 and EL1 accesses to the 30518f2efd6SDavid Cunado * physical counter registers. 30618f2efd6SDavid Cunado */ 30718f2efd6SDavid Cunado write_cnthctl_el2(CNTHCTL_RESET_VAL | 30818f2efd6SDavid Cunado EL1PCEN_BIT | EL1PCTEN_BIT); 309532ed618SSoby Mathew 31018f2efd6SDavid Cunado /* 31118f2efd6SDavid Cunado * Initialise CNTVOFF_EL2 to zero as it resets to an 31218f2efd6SDavid Cunado * architecturally UNKNOWN value. 31318f2efd6SDavid Cunado */ 314532ed618SSoby Mathew write_cntvoff_el2(0); 315532ed618SSoby Mathew 31618f2efd6SDavid Cunado /* 31718f2efd6SDavid Cunado * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and 31818f2efd6SDavid Cunado * MPIDR_EL1 respectively. 31918f2efd6SDavid Cunado */ 320532ed618SSoby Mathew write_vpidr_el2(read_midr_el1()); 321532ed618SSoby Mathew write_vmpidr_el2(read_mpidr_el1()); 322532ed618SSoby Mathew 323532ed618SSoby Mathew /* 32418f2efd6SDavid Cunado * Initialise VTTBR_EL2. All fields are architecturally 32518f2efd6SDavid Cunado * UNKNOWN on reset. 32618f2efd6SDavid Cunado * 32718f2efd6SDavid Cunado * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 32818f2efd6SDavid Cunado * 2 address translation is disabled, cache maintenance 32918f2efd6SDavid Cunado * operations depend on the VMID. 33018f2efd6SDavid Cunado * 33118f2efd6SDavid Cunado * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address 33218f2efd6SDavid Cunado * translation is disabled. 333532ed618SSoby Mathew */ 33418f2efd6SDavid Cunado write_vttbr_el2(VTTBR_RESET_VAL & 33518f2efd6SDavid Cunado ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) 33618f2efd6SDavid Cunado | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); 33718f2efd6SDavid Cunado 338495f3d3cSDavid Cunado /* 33918f2efd6SDavid Cunado * Initialise MDCR_EL2, setting all fields rather than 34018f2efd6SDavid Cunado * relying on hw. Some fields are architecturally 34118f2efd6SDavid Cunado * UNKNOWN on reset. 34218f2efd6SDavid Cunado * 343d832aee9Sdp-arm * MDCR_EL2.TPMS (ARM v8.2): Do not trap statistical 344d832aee9Sdp-arm * profiling controls to EL2. 345d832aee9Sdp-arm * 346d832aee9Sdp-arm * MDCR_EL2.E2PB (ARM v8.2): SPE enabled in non-secure 347d832aee9Sdp-arm * state. Accesses to profiling buffer controls at 348d832aee9Sdp-arm * non-secure EL1 are not trapped to EL2. 349d832aee9Sdp-arm * 35018f2efd6SDavid Cunado * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and 35118f2efd6SDavid Cunado * EL1 System register accesses to the Debug ROM 35218f2efd6SDavid Cunado * registers are not trapped to EL2. 35318f2efd6SDavid Cunado * 35418f2efd6SDavid Cunado * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 35518f2efd6SDavid Cunado * System register accesses to the powerdown debug 35618f2efd6SDavid Cunado * registers are not trapped to EL2. 35718f2efd6SDavid Cunado * 35818f2efd6SDavid Cunado * MDCR_EL2.TDA: Set to zero so that System register 35918f2efd6SDavid Cunado * accesses to the debug registers do not trap to EL2. 36018f2efd6SDavid Cunado * 36118f2efd6SDavid Cunado * MDCR_EL2.TDE: Set to zero so that debug exceptions 36218f2efd6SDavid Cunado * are not routed to EL2. 36318f2efd6SDavid Cunado * 36418f2efd6SDavid Cunado * MDCR_EL2.HPME: Set to zero to disable EL2 Performance 36518f2efd6SDavid Cunado * Monitors. 36618f2efd6SDavid Cunado * 36718f2efd6SDavid Cunado * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and 36818f2efd6SDavid Cunado * EL1 accesses to all Performance Monitors registers 36918f2efd6SDavid Cunado * are not trapped to EL2. 37018f2efd6SDavid Cunado * 37118f2efd6SDavid Cunado * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0 37218f2efd6SDavid Cunado * and EL1 accesses to the PMCR_EL0 or PMCR are not 37318f2efd6SDavid Cunado * trapped to EL2. 37418f2efd6SDavid Cunado * 37518f2efd6SDavid Cunado * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the 37618f2efd6SDavid Cunado * architecturally-defined reset value. 377495f3d3cSDavid Cunado */ 378d832aee9Sdp-arm mdcr_el2 = ((MDCR_EL2_RESET_VAL | 37918f2efd6SDavid Cunado ((read_pmcr_el0() & PMCR_EL0_N_BITS) 38018f2efd6SDavid Cunado >> PMCR_EL0_N_SHIFT)) & 38118f2efd6SDavid Cunado ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT 38218f2efd6SDavid Cunado | MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT 38318f2efd6SDavid Cunado | MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT 38418f2efd6SDavid Cunado | MDCR_EL2_TPMCR_BIT)); 385d832aee9Sdp-arm 386d832aee9Sdp-arm #if ENABLE_SPE_FOR_LOWER_ELS 387d832aee9Sdp-arm uint64_t id_aa64dfr0_el1; 388d832aee9Sdp-arm 389d832aee9Sdp-arm /* Detect if SPE is implemented */ 390d832aee9Sdp-arm id_aa64dfr0_el1 = read_id_aa64dfr0_el1() >> 391d832aee9Sdp-arm ID_AA64DFR0_PMS_SHIFT; 392d832aee9Sdp-arm if ((id_aa64dfr0_el1 & ID_AA64DFR0_PMS_MASK) == 1) { 393d832aee9Sdp-arm /* 394d832aee9Sdp-arm * Make sure traps to EL2 are not generated if 395d832aee9Sdp-arm * EL2 is implemented but not used. 396d832aee9Sdp-arm */ 397d832aee9Sdp-arm mdcr_el2 &= ~MDCR_EL2_TPMS; 398d832aee9Sdp-arm mdcr_el2 |= MDCR_EL2_E2PB(MDCR_EL2_E2PB_EL1); 399d832aee9Sdp-arm } 400d832aee9Sdp-arm #endif 401d832aee9Sdp-arm 402d832aee9Sdp-arm write_mdcr_el2(mdcr_el2); 403d832aee9Sdp-arm 404939f66d6SDavid Cunado /* 40518f2efd6SDavid Cunado * Initialise HSTR_EL2. All fields are architecturally 40618f2efd6SDavid Cunado * UNKNOWN on reset. 40718f2efd6SDavid Cunado * 40818f2efd6SDavid Cunado * HSTR_EL2.T<n>: Set all these fields to zero so that 40918f2efd6SDavid Cunado * Non-secure EL0 or EL1 accesses to System registers 41018f2efd6SDavid Cunado * do not trap to EL2. 411939f66d6SDavid Cunado */ 41218f2efd6SDavid Cunado write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); 413939f66d6SDavid Cunado /* 41418f2efd6SDavid Cunado * Initialise CNTHP_CTL_EL2. All fields are 41518f2efd6SDavid Cunado * architecturally UNKNOWN on reset. 41618f2efd6SDavid Cunado * 41718f2efd6SDavid Cunado * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 41818f2efd6SDavid Cunado * physical timer and prevent timer interrupts. 419939f66d6SDavid Cunado */ 42018f2efd6SDavid Cunado write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & 42118f2efd6SDavid Cunado ~(CNTHP_CTL_ENABLE_BIT)); 422532ed618SSoby Mathew } 423532ed618SSoby Mathew } 424532ed618SSoby Mathew 425*17b4c0ddSDimitris Papastamos cm_el1_sysregs_context_restore(security_state); 426*17b4c0ddSDimitris Papastamos cm_set_next_eret_context(security_state); 427532ed618SSoby Mathew } 428532ed618SSoby Mathew 429532ed618SSoby Mathew /******************************************************************************* 430532ed618SSoby Mathew * The next four functions are used by runtime services to save and restore 431532ed618SSoby Mathew * EL1 context on the 'cpu_context' structure for the specified security 432532ed618SSoby Mathew * state. 433532ed618SSoby Mathew ******************************************************************************/ 434532ed618SSoby Mathew void cm_el1_sysregs_context_save(uint32_t security_state) 435532ed618SSoby Mathew { 436532ed618SSoby Mathew cpu_context_t *ctx; 437532ed618SSoby Mathew 438532ed618SSoby Mathew ctx = cm_get_context(security_state); 439532ed618SSoby Mathew assert(ctx); 440532ed618SSoby Mathew 441532ed618SSoby Mathew el1_sysregs_context_save(get_sysregs_ctx(ctx)); 442d832aee9Sdp-arm el1_sysregs_context_save_post_ops(); 443*17b4c0ddSDimitris Papastamos 444*17b4c0ddSDimitris Papastamos #if IMAGE_BL31 445*17b4c0ddSDimitris Papastamos if (security_state == SECURE) 446*17b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_exited_secure_world); 447*17b4c0ddSDimitris Papastamos else 448*17b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_exited_normal_world); 449*17b4c0ddSDimitris Papastamos #endif 450532ed618SSoby Mathew } 451532ed618SSoby Mathew 452532ed618SSoby Mathew void cm_el1_sysregs_context_restore(uint32_t security_state) 453532ed618SSoby Mathew { 454532ed618SSoby Mathew cpu_context_t *ctx; 455532ed618SSoby Mathew 456532ed618SSoby Mathew ctx = cm_get_context(security_state); 457532ed618SSoby Mathew assert(ctx); 458532ed618SSoby Mathew 459532ed618SSoby Mathew el1_sysregs_context_restore(get_sysregs_ctx(ctx)); 460*17b4c0ddSDimitris Papastamos 461*17b4c0ddSDimitris Papastamos #if IMAGE_BL31 462*17b4c0ddSDimitris Papastamos if (security_state == SECURE) 463*17b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_entering_secure_world); 464*17b4c0ddSDimitris Papastamos else 465*17b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_entering_normal_world); 466*17b4c0ddSDimitris Papastamos #endif 467532ed618SSoby Mathew } 468532ed618SSoby Mathew 469532ed618SSoby Mathew /******************************************************************************* 470532ed618SSoby Mathew * This function populates ELR_EL3 member of 'cpu_context' pertaining to the 471532ed618SSoby Mathew * given security state with the given entrypoint 472532ed618SSoby Mathew ******************************************************************************/ 473532ed618SSoby Mathew void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) 474532ed618SSoby Mathew { 475532ed618SSoby Mathew cpu_context_t *ctx; 476532ed618SSoby Mathew el3_state_t *state; 477532ed618SSoby Mathew 478532ed618SSoby Mathew ctx = cm_get_context(security_state); 479532ed618SSoby Mathew assert(ctx); 480532ed618SSoby Mathew 481532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 482532ed618SSoby Mathew state = get_el3state_ctx(ctx); 483532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 484532ed618SSoby Mathew } 485532ed618SSoby Mathew 486532ed618SSoby Mathew /******************************************************************************* 487532ed618SSoby Mathew * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' 488532ed618SSoby Mathew * pertaining to the given security state 489532ed618SSoby Mathew ******************************************************************************/ 490532ed618SSoby Mathew void cm_set_elr_spsr_el3(uint32_t security_state, 491532ed618SSoby Mathew uintptr_t entrypoint, uint32_t spsr) 492532ed618SSoby Mathew { 493532ed618SSoby Mathew cpu_context_t *ctx; 494532ed618SSoby Mathew el3_state_t *state; 495532ed618SSoby Mathew 496532ed618SSoby Mathew ctx = cm_get_context(security_state); 497532ed618SSoby Mathew assert(ctx); 498532ed618SSoby Mathew 499532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 500532ed618SSoby Mathew state = get_el3state_ctx(ctx); 501532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 502532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, spsr); 503532ed618SSoby Mathew } 504532ed618SSoby Mathew 505532ed618SSoby Mathew /******************************************************************************* 506532ed618SSoby Mathew * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' 507532ed618SSoby Mathew * pertaining to the given security state using the value and bit position 508532ed618SSoby Mathew * specified in the parameters. It preserves all other bits. 509532ed618SSoby Mathew ******************************************************************************/ 510532ed618SSoby Mathew void cm_write_scr_el3_bit(uint32_t security_state, 511532ed618SSoby Mathew uint32_t bit_pos, 512532ed618SSoby Mathew uint32_t value) 513532ed618SSoby Mathew { 514532ed618SSoby Mathew cpu_context_t *ctx; 515532ed618SSoby Mathew el3_state_t *state; 516532ed618SSoby Mathew uint32_t scr_el3; 517532ed618SSoby Mathew 518532ed618SSoby Mathew ctx = cm_get_context(security_state); 519532ed618SSoby Mathew assert(ctx); 520532ed618SSoby Mathew 521532ed618SSoby Mathew /* Ensure that the bit position is a valid one */ 522532ed618SSoby Mathew assert((1 << bit_pos) & SCR_VALID_BIT_MASK); 523532ed618SSoby Mathew 524532ed618SSoby Mathew /* Ensure that the 'value' is only a bit wide */ 525532ed618SSoby Mathew assert(value <= 1); 526532ed618SSoby Mathew 527532ed618SSoby Mathew /* 528532ed618SSoby Mathew * Get the SCR_EL3 value from the cpu context, clear the desired bit 529532ed618SSoby Mathew * and set it to its new value. 530532ed618SSoby Mathew */ 531532ed618SSoby Mathew state = get_el3state_ctx(ctx); 532532ed618SSoby Mathew scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 533532ed618SSoby Mathew scr_el3 &= ~(1 << bit_pos); 534532ed618SSoby Mathew scr_el3 |= value << bit_pos; 535532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 536532ed618SSoby Mathew } 537532ed618SSoby Mathew 538532ed618SSoby Mathew /******************************************************************************* 539532ed618SSoby Mathew * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the 540532ed618SSoby Mathew * given security state. 541532ed618SSoby Mathew ******************************************************************************/ 542532ed618SSoby Mathew uint32_t cm_get_scr_el3(uint32_t security_state) 543532ed618SSoby Mathew { 544532ed618SSoby Mathew cpu_context_t *ctx; 545532ed618SSoby Mathew el3_state_t *state; 546532ed618SSoby Mathew 547532ed618SSoby Mathew ctx = cm_get_context(security_state); 548532ed618SSoby Mathew assert(ctx); 549532ed618SSoby Mathew 550532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 551532ed618SSoby Mathew state = get_el3state_ctx(ctx); 552532ed618SSoby Mathew return read_ctx_reg(state, CTX_SCR_EL3); 553532ed618SSoby Mathew } 554532ed618SSoby Mathew 555532ed618SSoby Mathew /******************************************************************************* 556532ed618SSoby Mathew * This function is used to program the context that's used for exception 557532ed618SSoby Mathew * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 558532ed618SSoby Mathew * the required security state 559532ed618SSoby Mathew ******************************************************************************/ 560532ed618SSoby Mathew void cm_set_next_eret_context(uint32_t security_state) 561532ed618SSoby Mathew { 562532ed618SSoby Mathew cpu_context_t *ctx; 563532ed618SSoby Mathew 564532ed618SSoby Mathew ctx = cm_get_context(security_state); 565532ed618SSoby Mathew assert(ctx); 566532ed618SSoby Mathew 567532ed618SSoby Mathew cm_set_next_context(ctx); 568532ed618SSoby Mathew } 569