1532ed618SSoby Mathew /* 2f1be00daSLouis Mayencourt * Copyright (c) 2013-2020, ARM Limited and Contributors. All rights reserved. 3532ed618SSoby Mathew * 482cb2c1aSdp-arm * SPDX-License-Identifier: BSD-3-Clause 5532ed618SSoby Mathew */ 6532ed618SSoby Mathew 7532ed618SSoby Mathew #include <assert.h> 840daecc1SAntonio Nino Diaz #include <stdbool.h> 9532ed618SSoby Mathew #include <string.h> 1009d40e0eSAntonio Nino Diaz 1109d40e0eSAntonio Nino Diaz #include <platform_def.h> 1209d40e0eSAntonio Nino Diaz 1309d40e0eSAntonio Nino Diaz #include <arch.h> 1409d40e0eSAntonio Nino Diaz #include <arch_helpers.h> 15b7e398d6SSoby Mathew #include <arch_features.h> 1609d40e0eSAntonio Nino Diaz #include <bl31/interrupt_mgmt.h> 1709d40e0eSAntonio Nino Diaz #include <common/bl_common.h> 1809d40e0eSAntonio Nino Diaz #include <context.h> 1909d40e0eSAntonio Nino Diaz #include <lib/el3_runtime/context_mgmt.h> 2009d40e0eSAntonio Nino Diaz #include <lib/el3_runtime/pubsub_events.h> 2109d40e0eSAntonio Nino Diaz #include <lib/extensions/amu.h> 2209d40e0eSAntonio Nino Diaz #include <lib/extensions/mpam.h> 2309d40e0eSAntonio Nino Diaz #include <lib/extensions/spe.h> 2409d40e0eSAntonio Nino Diaz #include <lib/extensions/sve.h> 256cac724dSjohpow01 #include <lib/extensions/twed.h> 2609d40e0eSAntonio Nino Diaz #include <lib/utils.h> 27532ed618SSoby Mathew 28532ed618SSoby Mathew 29532ed618SSoby Mathew /******************************************************************************* 30532ed618SSoby Mathew * Context management library initialisation routine. This library is used by 31532ed618SSoby Mathew * runtime services to share pointers to 'cpu_context' structures for the secure 32532ed618SSoby Mathew * and non-secure states. Management of the structures and their associated 33532ed618SSoby Mathew * memory is not done by the context management library e.g. the PSCI service 34532ed618SSoby Mathew * manages the cpu context used for entry from and exit to the non-secure state. 35532ed618SSoby Mathew * The Secure payload dispatcher service manages the context(s) corresponding to 36532ed618SSoby Mathew * the secure state. It also uses this library to get access to the non-secure 37532ed618SSoby Mathew * state cpu context pointers. 38532ed618SSoby Mathew * Lastly, this library provides the api to make SP_EL3 point to the cpu context 39532ed618SSoby Mathew * which will used for programming an entry into a lower EL. The same context 40532ed618SSoby Mathew * will used to save state upon exception entry from that EL. 41532ed618SSoby Mathew ******************************************************************************/ 4287c85134SDaniel Boulby void __init cm_init(void) 43532ed618SSoby Mathew { 44532ed618SSoby Mathew /* 45532ed618SSoby Mathew * The context management library has only global data to intialize, but 46532ed618SSoby Mathew * that will be done when the BSS is zeroed out 47532ed618SSoby Mathew */ 48532ed618SSoby Mathew } 49532ed618SSoby Mathew 50532ed618SSoby Mathew /******************************************************************************* 51532ed618SSoby Mathew * The following function initializes the cpu_context 'ctx' for 52532ed618SSoby Mathew * first use, and sets the initial entrypoint state as specified by the 53532ed618SSoby Mathew * entry_point_info structure. 54532ed618SSoby Mathew * 55532ed618SSoby Mathew * The security state to initialize is determined by the SECURE attribute 561634cae8SAntonio Nino Diaz * of the entry_point_info. 57532ed618SSoby Mathew * 588aabea33SPaul Beesley * The EE and ST attributes are used to configure the endianness and secure 59532ed618SSoby Mathew * timer availability for the new execution context. 60532ed618SSoby Mathew * 61532ed618SSoby Mathew * To prepare the register state for entry call cm_prepare_el3_exit() and 62532ed618SSoby Mathew * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to 63532ed618SSoby Mathew * cm_e1_sysreg_context_restore(). 64532ed618SSoby Mathew ******************************************************************************/ 651634cae8SAntonio Nino Diaz void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep) 66532ed618SSoby Mathew { 67532ed618SSoby Mathew unsigned int security_state; 68f1be00daSLouis Mayencourt u_register_t scr_el3; 69532ed618SSoby Mathew el3_state_t *state; 70532ed618SSoby Mathew gp_regs_t *gp_regs; 71eeb5a7b5SDeepika Bhavnani u_register_t sctlr_elx, actlr_elx; 72532ed618SSoby Mathew 73a0fee747SAntonio Nino Diaz assert(ctx != NULL); 74532ed618SSoby Mathew 75532ed618SSoby Mathew security_state = GET_SECURITY_STATE(ep->h.attr); 76532ed618SSoby Mathew 77532ed618SSoby Mathew /* Clear any residual register values from the context */ 7832f0d3c6SDouglas Raillard zeromem(ctx, sizeof(*ctx)); 79532ed618SSoby Mathew 80532ed618SSoby Mathew /* 8118f2efd6SDavid Cunado * SCR_EL3 was initialised during reset sequence in macro 8218f2efd6SDavid Cunado * el3_arch_init_common. This code modifies the SCR_EL3 fields that 8318f2efd6SDavid Cunado * affect the next EL. 8418f2efd6SDavid Cunado * 8518f2efd6SDavid Cunado * The following fields are initially set to zero and then updated to 8618f2efd6SDavid Cunado * the required value depending on the state of the SPSR_EL3 and the 8718f2efd6SDavid Cunado * Security state and entrypoint attributes of the next EL. 88532ed618SSoby Mathew */ 89f1be00daSLouis Mayencourt scr_el3 = read_scr(); 90532ed618SSoby Mathew scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | 91532ed618SSoby Mathew SCR_ST_BIT | SCR_HCE_BIT); 9218f2efd6SDavid Cunado /* 9318f2efd6SDavid Cunado * SCR_NS: Set the security state of the next EL. 9418f2efd6SDavid Cunado */ 95532ed618SSoby Mathew if (security_state != SECURE) 96532ed618SSoby Mathew scr_el3 |= SCR_NS_BIT; 9718f2efd6SDavid Cunado /* 9818f2efd6SDavid Cunado * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next 9918f2efd6SDavid Cunado * Exception level as specified by SPSR. 10018f2efd6SDavid Cunado */ 101532ed618SSoby Mathew if (GET_RW(ep->spsr) == MODE_RW_64) 102532ed618SSoby Mathew scr_el3 |= SCR_RW_BIT; 10318f2efd6SDavid Cunado /* 10418f2efd6SDavid Cunado * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical 10518f2efd6SDavid Cunado * Secure timer registers to EL3, from AArch64 state only, if specified 10618f2efd6SDavid Cunado * by the entrypoint attributes. 10718f2efd6SDavid Cunado */ 108a0fee747SAntonio Nino Diaz if (EP_GET_ST(ep->h.attr) != 0U) 109532ed618SSoby Mathew scr_el3 |= SCR_ST_BIT; 110532ed618SSoby Mathew 11124f671f3SJulius Werner #if !HANDLE_EA_EL3_FIRST 11218f2efd6SDavid Cunado /* 11318f2efd6SDavid Cunado * SCR_EL3.EA: Do not route External Abort and SError Interrupt External 11418f2efd6SDavid Cunado * to EL3 when executing at a lower EL. When executing at EL3, External 11518f2efd6SDavid Cunado * Aborts are taken to EL3. 11618f2efd6SDavid Cunado */ 117532ed618SSoby Mathew scr_el3 &= ~SCR_EA_BIT; 118532ed618SSoby Mathew #endif 119532ed618SSoby Mathew 1201a7c1cfeSJeenu Viswambharan #if FAULT_INJECTION_SUPPORT 1211a7c1cfeSJeenu Viswambharan /* Enable fault injection from lower ELs */ 1221a7c1cfeSJeenu Viswambharan scr_el3 |= SCR_FIEN_BIT; 1231a7c1cfeSJeenu Viswambharan #endif 1241a7c1cfeSJeenu Viswambharan 1255283962eSAntonio Nino Diaz #if !CTX_INCLUDE_PAUTH_REGS 1265283962eSAntonio Nino Diaz /* 1275283962eSAntonio Nino Diaz * If the pointer authentication registers aren't saved during world 1285283962eSAntonio Nino Diaz * switches the value of the registers can be leaked from the Secure to 1295283962eSAntonio Nino Diaz * the Non-secure world. To prevent this, rather than enabling pointer 1305283962eSAntonio Nino Diaz * authentication everywhere, we only enable it in the Non-secure world. 1315283962eSAntonio Nino Diaz * 1325283962eSAntonio Nino Diaz * If the Secure world wants to use pointer authentication, 1335283962eSAntonio Nino Diaz * CTX_INCLUDE_PAUTH_REGS must be set to 1. 1345283962eSAntonio Nino Diaz */ 1355283962eSAntonio Nino Diaz if (security_state == NON_SECURE) 1365283962eSAntonio Nino Diaz scr_el3 |= SCR_API_BIT | SCR_APK_BIT; 1375283962eSAntonio Nino Diaz #endif /* !CTX_INCLUDE_PAUTH_REGS */ 1385283962eSAntonio Nino Diaz 139b7e398d6SSoby Mathew /* 1409dd94382SJustin Chadwell * Enable MTE support. Support is enabled unilaterally for the normal 1419dd94382SJustin Chadwell * world, and only for the secure world when CTX_INCLUDE_MTE_REGS is 1429dd94382SJustin Chadwell * set. 143b7e398d6SSoby Mathew */ 1449dd94382SJustin Chadwell #if CTX_INCLUDE_MTE_REGS 145019b03a3SJustin Chadwell assert(get_armv8_5_mte_support() == MTE_IMPLEMENTED_ELX); 1469dd94382SJustin Chadwell scr_el3 |= SCR_ATA_BIT; 1479dd94382SJustin Chadwell #else 148019b03a3SJustin Chadwell unsigned int mte = get_armv8_5_mte_support(); 1499dd94382SJustin Chadwell if (mte == MTE_IMPLEMENTED_EL0) { 1509dd94382SJustin Chadwell /* 1519dd94382SJustin Chadwell * Can enable MTE across both worlds as no MTE registers are 1529dd94382SJustin Chadwell * used 1539dd94382SJustin Chadwell */ 1549dd94382SJustin Chadwell scr_el3 |= SCR_ATA_BIT; 1559dd94382SJustin Chadwell } else if (mte == MTE_IMPLEMENTED_ELX && security_state == NON_SECURE) { 1569dd94382SJustin Chadwell /* 1579dd94382SJustin Chadwell * Can only enable MTE in Non-Secure world without register 1589dd94382SJustin Chadwell * saving 1599dd94382SJustin Chadwell */ 160b7e398d6SSoby Mathew scr_el3 |= SCR_ATA_BIT; 161b7e398d6SSoby Mathew } 1629dd94382SJustin Chadwell #endif 163b7e398d6SSoby Mathew 1643d8256b2SMasahiro Yamada #ifdef IMAGE_BL31 165532ed618SSoby Mathew /* 1668aabea33SPaul Beesley * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as 16718f2efd6SDavid Cunado * indicated by the interrupt routing model for BL31. 168532ed618SSoby Mathew */ 169532ed618SSoby Mathew scr_el3 |= get_scr_el3_from_routing_model(security_state); 170532ed618SSoby Mathew #endif 171532ed618SSoby Mathew 172532ed618SSoby Mathew /* 17318f2efd6SDavid Cunado * SCR_EL3.HCE: Enable HVC instructions if next execution state is 17418f2efd6SDavid Cunado * AArch64 and next EL is EL2, or if next execution state is AArch32 and 17518f2efd6SDavid Cunado * next mode is Hyp. 176*110ee433SJimmy Brisson * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the 177*110ee433SJimmy Brisson * same conditions as HVC instructions and when the processor supports 178*110ee433SJimmy Brisson * ARMv8.6-FGT. 179532ed618SSoby Mathew */ 180a0fee747SAntonio Nino Diaz if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2)) 181a0fee747SAntonio Nino Diaz || ((GET_RW(ep->spsr) != MODE_RW_64) 182a0fee747SAntonio Nino Diaz && (GET_M32(ep->spsr) == MODE32_hyp))) { 183532ed618SSoby Mathew scr_el3 |= SCR_HCE_BIT; 184*110ee433SJimmy Brisson 185*110ee433SJimmy Brisson if (is_armv8_6_fgt_present()) { 186*110ee433SJimmy Brisson scr_el3 |= SCR_FGTEN_BIT; 187*110ee433SJimmy Brisson } 188532ed618SSoby Mathew } 189532ed618SSoby Mathew 1900376e7c4SAchin Gupta /* Enable S-EL2 if the next EL is EL2 and security state is secure */ 191db3ae853SArtsem Artsemenka if ((security_state == SECURE) && (GET_EL(ep->spsr) == MODE_EL2)) { 192db3ae853SArtsem Artsemenka if (GET_RW(ep->spsr) != MODE_RW_64) { 193db3ae853SArtsem Artsemenka ERROR("S-EL2 can not be used in AArch32."); 194db3ae853SArtsem Artsemenka panic(); 195db3ae853SArtsem Artsemenka } 196db3ae853SArtsem Artsemenka 1970376e7c4SAchin Gupta scr_el3 |= SCR_EEL2_BIT; 198db3ae853SArtsem Artsemenka } 1990376e7c4SAchin Gupta 20018f2efd6SDavid Cunado /* 20118f2efd6SDavid Cunado * Initialise SCTLR_EL1 to the reset value corresponding to the target 20218f2efd6SDavid Cunado * execution state setting all fields rather than relying of the hw. 20318f2efd6SDavid Cunado * Some fields have architecturally UNKNOWN reset values and these are 20418f2efd6SDavid Cunado * set to zero. 20518f2efd6SDavid Cunado * 20618f2efd6SDavid Cunado * SCTLR.EE: Endianness is taken from the entrypoint attributes. 20718f2efd6SDavid Cunado * 20818f2efd6SDavid Cunado * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as 20918f2efd6SDavid Cunado * required by PSCI specification) 21018f2efd6SDavid Cunado */ 211a0fee747SAntonio Nino Diaz sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U; 21218f2efd6SDavid Cunado if (GET_RW(ep->spsr) == MODE_RW_64) 21318f2efd6SDavid Cunado sctlr_elx |= SCTLR_EL1_RES1; 21418f2efd6SDavid Cunado else { 21518f2efd6SDavid Cunado /* 21618f2efd6SDavid Cunado * If the target execution state is AArch32 then the following 21718f2efd6SDavid Cunado * fields need to be set. 21818f2efd6SDavid Cunado * 21918f2efd6SDavid Cunado * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE 22018f2efd6SDavid Cunado * instructions are not trapped to EL1. 22118f2efd6SDavid Cunado * 22218f2efd6SDavid Cunado * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI 22318f2efd6SDavid Cunado * instructions are not trapped to EL1. 22418f2efd6SDavid Cunado * 22518f2efd6SDavid Cunado * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the 22618f2efd6SDavid Cunado * CP15DMB, CP15DSB, and CP15ISB instructions. 22718f2efd6SDavid Cunado */ 22818f2efd6SDavid Cunado sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT 22918f2efd6SDavid Cunado | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; 23018f2efd6SDavid Cunado } 23118f2efd6SDavid Cunado 2325f5d1ed7SLouis Mayencourt #if ERRATA_A75_764081 2335f5d1ed7SLouis Mayencourt /* 2345f5d1ed7SLouis Mayencourt * If workaround of errata 764081 for Cortex-A75 is used then set 2355f5d1ed7SLouis Mayencourt * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier. 2365f5d1ed7SLouis Mayencourt */ 2375f5d1ed7SLouis Mayencourt sctlr_elx |= SCTLR_IESB_BIT; 2385f5d1ed7SLouis Mayencourt #endif 2395f5d1ed7SLouis Mayencourt 2406cac724dSjohpow01 /* Enable WFE trap delay in SCR_EL3 if supported and configured */ 2416cac724dSjohpow01 if (is_armv8_6_twed_present()) { 2426cac724dSjohpow01 uint32_t delay = plat_arm_set_twedel_scr_el3(); 2436cac724dSjohpow01 2446cac724dSjohpow01 if (delay != TWED_DISABLED) { 2456cac724dSjohpow01 /* Make sure delay value fits */ 2466cac724dSjohpow01 assert((delay & ~SCR_TWEDEL_MASK) == 0U); 2476cac724dSjohpow01 2486cac724dSjohpow01 /* Set delay in SCR_EL3 */ 2496cac724dSjohpow01 scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT); 2506cac724dSjohpow01 scr_el3 |= ((delay & SCR_TWEDEL_MASK) 2516cac724dSjohpow01 << SCR_TWEDEL_SHIFT); 2526cac724dSjohpow01 2536cac724dSjohpow01 /* Enable WFE delay */ 2546cac724dSjohpow01 scr_el3 |= SCR_TWEDEn_BIT; 2556cac724dSjohpow01 } 2566cac724dSjohpow01 } 2576cac724dSjohpow01 25818f2efd6SDavid Cunado /* 25918f2efd6SDavid Cunado * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2 2608aabea33SPaul Beesley * and other EL2 registers are set up by cm_prepare_ns_entry() as they 26118f2efd6SDavid Cunado * are not part of the stored cpu_context. 26218f2efd6SDavid Cunado */ 2632825946eSMax Shvetsov write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); 26418f2efd6SDavid Cunado 2652ab9617eSVarun Wadekar /* 2662ab9617eSVarun Wadekar * Base the context ACTLR_EL1 on the current value, as it is 2672ab9617eSVarun Wadekar * implementation defined. The context restore process will write 2682ab9617eSVarun Wadekar * the value from the context to the actual register and can cause 2692ab9617eSVarun Wadekar * problems for processor cores that don't expect certain bits to 2702ab9617eSVarun Wadekar * be zero. 2712ab9617eSVarun Wadekar */ 2722ab9617eSVarun Wadekar actlr_elx = read_actlr_el1(); 2732825946eSMax Shvetsov write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx)); 2742ab9617eSVarun Wadekar 2753e61b2b5SDavid Cunado /* 276e290a8fcSAlexei Fedorov * Populate EL3 state so that we've the right context 277e290a8fcSAlexei Fedorov * before doing ERET 2783e61b2b5SDavid Cunado */ 279532ed618SSoby Mathew state = get_el3state_ctx(ctx); 280532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 281532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, ep->pc); 282532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); 283532ed618SSoby Mathew 284532ed618SSoby Mathew /* 285532ed618SSoby Mathew * Store the X0-X7 value from the entrypoint into the context 286532ed618SSoby Mathew * Use memcpy as we are in control of the layout of the structures 287532ed618SSoby Mathew */ 288532ed618SSoby Mathew gp_regs = get_gpregs_ctx(ctx); 289532ed618SSoby Mathew memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); 290532ed618SSoby Mathew } 291532ed618SSoby Mathew 292532ed618SSoby Mathew /******************************************************************************* 2930fd0f222SDimitris Papastamos * Enable architecture extensions on first entry to Non-secure world. 2940fd0f222SDimitris Papastamos * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise 2950fd0f222SDimitris Papastamos * it is zero. 2960fd0f222SDimitris Papastamos ******************************************************************************/ 29740daecc1SAntonio Nino Diaz static void enable_extensions_nonsecure(bool el2_unused) 2980fd0f222SDimitris Papastamos { 2990fd0f222SDimitris Papastamos #if IMAGE_BL31 300281a08ccSDimitris Papastamos #if ENABLE_SPE_FOR_LOWER_ELS 301281a08ccSDimitris Papastamos spe_enable(el2_unused); 302281a08ccSDimitris Papastamos #endif 303380559c1SDimitris Papastamos 304380559c1SDimitris Papastamos #if ENABLE_AMU 305380559c1SDimitris Papastamos amu_enable(el2_unused); 306380559c1SDimitris Papastamos #endif 3071a853370SDavid Cunado 3081a853370SDavid Cunado #if ENABLE_SVE_FOR_NS 3091a853370SDavid Cunado sve_enable(el2_unused); 3101a853370SDavid Cunado #endif 3115f835918SJeenu Viswambharan 3125f835918SJeenu Viswambharan #if ENABLE_MPAM_FOR_LOWER_ELS 3135f835918SJeenu Viswambharan mpam_enable(el2_unused); 3145f835918SJeenu Viswambharan #endif 3150fd0f222SDimitris Papastamos #endif 3160fd0f222SDimitris Papastamos } 3170fd0f222SDimitris Papastamos 3180fd0f222SDimitris Papastamos /******************************************************************************* 319532ed618SSoby Mathew * The following function initializes the cpu_context for a CPU specified by 320532ed618SSoby Mathew * its `cpu_idx` for first use, and sets the initial entrypoint state as 321532ed618SSoby Mathew * specified by the entry_point_info structure. 322532ed618SSoby Mathew ******************************************************************************/ 323532ed618SSoby Mathew void cm_init_context_by_index(unsigned int cpu_idx, 324532ed618SSoby Mathew const entry_point_info_t *ep) 325532ed618SSoby Mathew { 326532ed618SSoby Mathew cpu_context_t *ctx; 327532ed618SSoby Mathew ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 3281634cae8SAntonio Nino Diaz cm_setup_context(ctx, ep); 329532ed618SSoby Mathew } 330532ed618SSoby Mathew 331532ed618SSoby Mathew /******************************************************************************* 332532ed618SSoby Mathew * The following function initializes the cpu_context for the current CPU 333532ed618SSoby Mathew * for first use, and sets the initial entrypoint state as specified by the 334532ed618SSoby Mathew * entry_point_info structure. 335532ed618SSoby Mathew ******************************************************************************/ 336532ed618SSoby Mathew void cm_init_my_context(const entry_point_info_t *ep) 337532ed618SSoby Mathew { 338532ed618SSoby Mathew cpu_context_t *ctx; 339532ed618SSoby Mathew ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 3401634cae8SAntonio Nino Diaz cm_setup_context(ctx, ep); 341532ed618SSoby Mathew } 342532ed618SSoby Mathew 343532ed618SSoby Mathew /******************************************************************************* 344532ed618SSoby Mathew * Prepare the CPU system registers for first entry into secure or normal world 345532ed618SSoby Mathew * 346532ed618SSoby Mathew * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized 347532ed618SSoby Mathew * If execution is requested to non-secure EL1 or svc mode, and the CPU supports 348532ed618SSoby Mathew * EL2 then EL2 is disabled by configuring all necessary EL2 registers. 349532ed618SSoby Mathew * For all entries, the EL1 registers are initialized from the cpu_context 350532ed618SSoby Mathew ******************************************************************************/ 351532ed618SSoby Mathew void cm_prepare_el3_exit(uint32_t security_state) 352532ed618SSoby Mathew { 353f1be00daSLouis Mayencourt u_register_t sctlr_elx, scr_el3, mdcr_el2; 354532ed618SSoby Mathew cpu_context_t *ctx = cm_get_context(security_state); 35540daecc1SAntonio Nino Diaz bool el2_unused = false; 356a0fee747SAntonio Nino Diaz uint64_t hcr_el2 = 0U; 357532ed618SSoby Mathew 358a0fee747SAntonio Nino Diaz assert(ctx != NULL); 359532ed618SSoby Mathew 360532ed618SSoby Mathew if (security_state == NON_SECURE) { 361f1be00daSLouis Mayencourt scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), 362a0fee747SAntonio Nino Diaz CTX_SCR_EL3); 363a0fee747SAntonio Nino Diaz if ((scr_el3 & SCR_HCE_BIT) != 0U) { 364532ed618SSoby Mathew /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ 3652825946eSMax Shvetsov sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx), 366532ed618SSoby Mathew CTX_SCTLR_EL1); 3672e09d4f8SKen Kuang sctlr_elx &= SCTLR_EE_BIT; 368532ed618SSoby Mathew sctlr_elx |= SCTLR_EL2_RES1; 3695f5d1ed7SLouis Mayencourt #if ERRATA_A75_764081 3705f5d1ed7SLouis Mayencourt /* 3715f5d1ed7SLouis Mayencourt * If workaround of errata 764081 for Cortex-A75 is used 3725f5d1ed7SLouis Mayencourt * then set SCTLR_EL2.IESB to enable Implicit Error 3735f5d1ed7SLouis Mayencourt * Synchronization Barrier. 3745f5d1ed7SLouis Mayencourt */ 3755f5d1ed7SLouis Mayencourt sctlr_elx |= SCTLR_IESB_BIT; 3765f5d1ed7SLouis Mayencourt #endif 377532ed618SSoby Mathew write_sctlr_el2(sctlr_elx); 378a0fee747SAntonio Nino Diaz } else if (el_implemented(2) != EL_IMPL_NONE) { 37940daecc1SAntonio Nino Diaz el2_unused = true; 3800fd0f222SDimitris Papastamos 38118f2efd6SDavid Cunado /* 38218f2efd6SDavid Cunado * EL2 present but unused, need to disable safely. 38318f2efd6SDavid Cunado * SCTLR_EL2 can be ignored in this case. 38418f2efd6SDavid Cunado * 3853ff4aaacSJeenu Viswambharan * Set EL2 register width appropriately: Set HCR_EL2 3863ff4aaacSJeenu Viswambharan * field to match SCR_EL3.RW. 38718f2efd6SDavid Cunado */ 388a0fee747SAntonio Nino Diaz if ((scr_el3 & SCR_RW_BIT) != 0U) 3893ff4aaacSJeenu Viswambharan hcr_el2 |= HCR_RW_BIT; 3903ff4aaacSJeenu Viswambharan 3913ff4aaacSJeenu Viswambharan /* 3923ff4aaacSJeenu Viswambharan * For Armv8.3 pointer authentication feature, disable 3933ff4aaacSJeenu Viswambharan * traps to EL2 when accessing key registers or using 3943ff4aaacSJeenu Viswambharan * pointer authentication instructions from lower ELs. 3953ff4aaacSJeenu Viswambharan */ 3963ff4aaacSJeenu Viswambharan hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT); 3973ff4aaacSJeenu Viswambharan 3983ff4aaacSJeenu Viswambharan write_hcr_el2(hcr_el2); 399532ed618SSoby Mathew 40018f2efd6SDavid Cunado /* 40118f2efd6SDavid Cunado * Initialise CPTR_EL2 setting all fields rather than 40218f2efd6SDavid Cunado * relying on the hw. All fields have architecturally 40318f2efd6SDavid Cunado * UNKNOWN reset values. 40418f2efd6SDavid Cunado * 40518f2efd6SDavid Cunado * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1 40618f2efd6SDavid Cunado * accesses to the CPACR_EL1 or CPACR from both 40718f2efd6SDavid Cunado * Execution states do not trap to EL2. 40818f2efd6SDavid Cunado * 40918f2efd6SDavid Cunado * CPTR_EL2.TTA: Set to zero so that Non-secure System 41018f2efd6SDavid Cunado * register accesses to the trace registers from both 41118f2efd6SDavid Cunado * Execution states do not trap to EL2. 41218f2efd6SDavid Cunado * 41318f2efd6SDavid Cunado * CPTR_EL2.TFP: Set to zero so that Non-secure accesses 41418f2efd6SDavid Cunado * to SIMD and floating-point functionality from both 41518f2efd6SDavid Cunado * Execution states do not trap to EL2. 41618f2efd6SDavid Cunado */ 41718f2efd6SDavid Cunado write_cptr_el2(CPTR_EL2_RESET_VAL & 41818f2efd6SDavid Cunado ~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT 41918f2efd6SDavid Cunado | CPTR_EL2_TFP_BIT)); 420532ed618SSoby Mathew 42118f2efd6SDavid Cunado /* 4228aabea33SPaul Beesley * Initialise CNTHCTL_EL2. All fields are 42318f2efd6SDavid Cunado * architecturally UNKNOWN on reset and are set to zero 42418f2efd6SDavid Cunado * except for field(s) listed below. 42518f2efd6SDavid Cunado * 42618f2efd6SDavid Cunado * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to 42718f2efd6SDavid Cunado * Hyp mode of Non-secure EL0 and EL1 accesses to the 42818f2efd6SDavid Cunado * physical timer registers. 42918f2efd6SDavid Cunado * 43018f2efd6SDavid Cunado * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to 43118f2efd6SDavid Cunado * Hyp mode of Non-secure EL0 and EL1 accesses to the 43218f2efd6SDavid Cunado * physical counter registers. 43318f2efd6SDavid Cunado */ 43418f2efd6SDavid Cunado write_cnthctl_el2(CNTHCTL_RESET_VAL | 43518f2efd6SDavid Cunado EL1PCEN_BIT | EL1PCTEN_BIT); 436532ed618SSoby Mathew 43718f2efd6SDavid Cunado /* 43818f2efd6SDavid Cunado * Initialise CNTVOFF_EL2 to zero as it resets to an 43918f2efd6SDavid Cunado * architecturally UNKNOWN value. 44018f2efd6SDavid Cunado */ 441532ed618SSoby Mathew write_cntvoff_el2(0); 442532ed618SSoby Mathew 44318f2efd6SDavid Cunado /* 44418f2efd6SDavid Cunado * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and 44518f2efd6SDavid Cunado * MPIDR_EL1 respectively. 44618f2efd6SDavid Cunado */ 447532ed618SSoby Mathew write_vpidr_el2(read_midr_el1()); 448532ed618SSoby Mathew write_vmpidr_el2(read_mpidr_el1()); 449532ed618SSoby Mathew 450532ed618SSoby Mathew /* 45118f2efd6SDavid Cunado * Initialise VTTBR_EL2. All fields are architecturally 45218f2efd6SDavid Cunado * UNKNOWN on reset. 45318f2efd6SDavid Cunado * 45418f2efd6SDavid Cunado * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 45518f2efd6SDavid Cunado * 2 address translation is disabled, cache maintenance 45618f2efd6SDavid Cunado * operations depend on the VMID. 45718f2efd6SDavid Cunado * 45818f2efd6SDavid Cunado * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address 45918f2efd6SDavid Cunado * translation is disabled. 460532ed618SSoby Mathew */ 46118f2efd6SDavid Cunado write_vttbr_el2(VTTBR_RESET_VAL & 46218f2efd6SDavid Cunado ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) 46318f2efd6SDavid Cunado | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); 46418f2efd6SDavid Cunado 465495f3d3cSDavid Cunado /* 46618f2efd6SDavid Cunado * Initialise MDCR_EL2, setting all fields rather than 46718f2efd6SDavid Cunado * relying on hw. Some fields are architecturally 46818f2efd6SDavid Cunado * UNKNOWN on reset. 46918f2efd6SDavid Cunado * 470e290a8fcSAlexei Fedorov * MDCR_EL2.HLP: Set to one so that event counter 471e290a8fcSAlexei Fedorov * overflow, that is recorded in PMOVSCLR_EL0[0-30], 472e290a8fcSAlexei Fedorov * occurs on the increment that changes 473e290a8fcSAlexei Fedorov * PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is 474e290a8fcSAlexei Fedorov * implemented. This bit is RES0 in versions of the 475e290a8fcSAlexei Fedorov * architecture earlier than ARMv8.5, setting it to 1 476e290a8fcSAlexei Fedorov * doesn't have any effect on them. 477e290a8fcSAlexei Fedorov * 478e290a8fcSAlexei Fedorov * MDCR_EL2.TTRF: Set to zero so that access to Trace 479e290a8fcSAlexei Fedorov * Filter Control register TRFCR_EL1 at EL1 is not 480e290a8fcSAlexei Fedorov * trapped to EL2. This bit is RES0 in versions of 481e290a8fcSAlexei Fedorov * the architecture earlier than ARMv8.4. 482e290a8fcSAlexei Fedorov * 483e290a8fcSAlexei Fedorov * MDCR_EL2.HPMD: Set to one so that event counting is 484e290a8fcSAlexei Fedorov * prohibited at EL2. This bit is RES0 in versions of 485e290a8fcSAlexei Fedorov * the architecture earlier than ARMv8.1, setting it 486e290a8fcSAlexei Fedorov * to 1 doesn't have any effect on them. 487e290a8fcSAlexei Fedorov * 488e290a8fcSAlexei Fedorov * MDCR_EL2.TPMS: Set to zero so that accesses to 489e290a8fcSAlexei Fedorov * Statistical Profiling control registers from EL1 490e290a8fcSAlexei Fedorov * do not trap to EL2. This bit is RES0 when SPE is 491e290a8fcSAlexei Fedorov * not implemented. 492e290a8fcSAlexei Fedorov * 49318f2efd6SDavid Cunado * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and 49418f2efd6SDavid Cunado * EL1 System register accesses to the Debug ROM 49518f2efd6SDavid Cunado * registers are not trapped to EL2. 49618f2efd6SDavid Cunado * 49718f2efd6SDavid Cunado * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 49818f2efd6SDavid Cunado * System register accesses to the powerdown debug 49918f2efd6SDavid Cunado * registers are not trapped to EL2. 50018f2efd6SDavid Cunado * 50118f2efd6SDavid Cunado * MDCR_EL2.TDA: Set to zero so that System register 50218f2efd6SDavid Cunado * accesses to the debug registers do not trap to EL2. 50318f2efd6SDavid Cunado * 50418f2efd6SDavid Cunado * MDCR_EL2.TDE: Set to zero so that debug exceptions 50518f2efd6SDavid Cunado * are not routed to EL2. 50618f2efd6SDavid Cunado * 50718f2efd6SDavid Cunado * MDCR_EL2.HPME: Set to zero to disable EL2 Performance 50818f2efd6SDavid Cunado * Monitors. 50918f2efd6SDavid Cunado * 51018f2efd6SDavid Cunado * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and 51118f2efd6SDavid Cunado * EL1 accesses to all Performance Monitors registers 51218f2efd6SDavid Cunado * are not trapped to EL2. 51318f2efd6SDavid Cunado * 51418f2efd6SDavid Cunado * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0 51518f2efd6SDavid Cunado * and EL1 accesses to the PMCR_EL0 or PMCR are not 51618f2efd6SDavid Cunado * trapped to EL2. 51718f2efd6SDavid Cunado * 51818f2efd6SDavid Cunado * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the 51918f2efd6SDavid Cunado * architecturally-defined reset value. 520495f3d3cSDavid Cunado */ 521e290a8fcSAlexei Fedorov mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP | 522e290a8fcSAlexei Fedorov MDCR_EL2_HPMD) | 52318f2efd6SDavid Cunado ((read_pmcr_el0() & PMCR_EL0_N_BITS) 52418f2efd6SDavid Cunado >> PMCR_EL0_N_SHIFT)) & 525e290a8fcSAlexei Fedorov ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS | 526e290a8fcSAlexei Fedorov MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | 527e290a8fcSAlexei Fedorov MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT | 528e290a8fcSAlexei Fedorov MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT | 529e290a8fcSAlexei Fedorov MDCR_EL2_TPMCR_BIT); 530d832aee9Sdp-arm 531d832aee9Sdp-arm write_mdcr_el2(mdcr_el2); 532d832aee9Sdp-arm 533939f66d6SDavid Cunado /* 53418f2efd6SDavid Cunado * Initialise HSTR_EL2. All fields are architecturally 53518f2efd6SDavid Cunado * UNKNOWN on reset. 53618f2efd6SDavid Cunado * 53718f2efd6SDavid Cunado * HSTR_EL2.T<n>: Set all these fields to zero so that 53818f2efd6SDavid Cunado * Non-secure EL0 or EL1 accesses to System registers 53918f2efd6SDavid Cunado * do not trap to EL2. 540939f66d6SDavid Cunado */ 54118f2efd6SDavid Cunado write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); 542939f66d6SDavid Cunado /* 54318f2efd6SDavid Cunado * Initialise CNTHP_CTL_EL2. All fields are 54418f2efd6SDavid Cunado * architecturally UNKNOWN on reset. 54518f2efd6SDavid Cunado * 54618f2efd6SDavid Cunado * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 54718f2efd6SDavid Cunado * physical timer and prevent timer interrupts. 548939f66d6SDavid Cunado */ 54918f2efd6SDavid Cunado write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & 55018f2efd6SDavid Cunado ~(CNTHP_CTL_ENABLE_BIT)); 551532ed618SSoby Mathew } 5520fd0f222SDimitris Papastamos enable_extensions_nonsecure(el2_unused); 553532ed618SSoby Mathew } 554532ed618SSoby Mathew 55517b4c0ddSDimitris Papastamos cm_el1_sysregs_context_restore(security_state); 55617b4c0ddSDimitris Papastamos cm_set_next_eret_context(security_state); 557532ed618SSoby Mathew } 558532ed618SSoby Mathew 55928f39f02SMax Shvetsov #if CTX_INCLUDE_EL2_REGS 56028f39f02SMax Shvetsov /******************************************************************************* 56128f39f02SMax Shvetsov * Save EL2 sysreg context 56228f39f02SMax Shvetsov ******************************************************************************/ 56328f39f02SMax Shvetsov void cm_el2_sysregs_context_save(uint32_t security_state) 56428f39f02SMax Shvetsov { 56528f39f02SMax Shvetsov u_register_t scr_el3 = read_scr(); 56628f39f02SMax Shvetsov 56728f39f02SMax Shvetsov /* 56828f39f02SMax Shvetsov * Always save the non-secure EL2 context, only save the 56928f39f02SMax Shvetsov * S-EL2 context if S-EL2 is enabled. 57028f39f02SMax Shvetsov */ 57128f39f02SMax Shvetsov if ((security_state == NON_SECURE) || 57228f39f02SMax Shvetsov ((scr_el3 & SCR_EEL2_BIT) != 0U)) { 57328f39f02SMax Shvetsov cpu_context_t *ctx; 57428f39f02SMax Shvetsov 57528f39f02SMax Shvetsov ctx = cm_get_context(security_state); 57628f39f02SMax Shvetsov assert(ctx != NULL); 57728f39f02SMax Shvetsov 5782825946eSMax Shvetsov el2_sysregs_context_save(get_el2_sysregs_ctx(ctx)); 57928f39f02SMax Shvetsov } 58028f39f02SMax Shvetsov } 58128f39f02SMax Shvetsov 58228f39f02SMax Shvetsov /******************************************************************************* 58328f39f02SMax Shvetsov * Restore EL2 sysreg context 58428f39f02SMax Shvetsov ******************************************************************************/ 58528f39f02SMax Shvetsov void cm_el2_sysregs_context_restore(uint32_t security_state) 58628f39f02SMax Shvetsov { 58728f39f02SMax Shvetsov u_register_t scr_el3 = read_scr(); 58828f39f02SMax Shvetsov 58928f39f02SMax Shvetsov /* 59028f39f02SMax Shvetsov * Always restore the non-secure EL2 context, only restore the 59128f39f02SMax Shvetsov * S-EL2 context if S-EL2 is enabled. 59228f39f02SMax Shvetsov */ 59328f39f02SMax Shvetsov if ((security_state == NON_SECURE) || 59428f39f02SMax Shvetsov ((scr_el3 & SCR_EEL2_BIT) != 0U)) { 59528f39f02SMax Shvetsov cpu_context_t *ctx; 59628f39f02SMax Shvetsov 59728f39f02SMax Shvetsov ctx = cm_get_context(security_state); 59828f39f02SMax Shvetsov assert(ctx != NULL); 59928f39f02SMax Shvetsov 6002825946eSMax Shvetsov el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx)); 60128f39f02SMax Shvetsov } 60228f39f02SMax Shvetsov } 60328f39f02SMax Shvetsov #endif /* CTX_INCLUDE_EL2_REGS */ 60428f39f02SMax Shvetsov 605532ed618SSoby Mathew /******************************************************************************* 606532ed618SSoby Mathew * The next four functions are used by runtime services to save and restore 607532ed618SSoby Mathew * EL1 context on the 'cpu_context' structure for the specified security 608532ed618SSoby Mathew * state. 609532ed618SSoby Mathew ******************************************************************************/ 610532ed618SSoby Mathew void cm_el1_sysregs_context_save(uint32_t security_state) 611532ed618SSoby Mathew { 612532ed618SSoby Mathew cpu_context_t *ctx; 613532ed618SSoby Mathew 614532ed618SSoby Mathew ctx = cm_get_context(security_state); 615a0fee747SAntonio Nino Diaz assert(ctx != NULL); 616532ed618SSoby Mathew 6172825946eSMax Shvetsov el1_sysregs_context_save(get_el1_sysregs_ctx(ctx)); 61817b4c0ddSDimitris Papastamos 61917b4c0ddSDimitris Papastamos #if IMAGE_BL31 62017b4c0ddSDimitris Papastamos if (security_state == SECURE) 62117b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_exited_secure_world); 62217b4c0ddSDimitris Papastamos else 62317b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_exited_normal_world); 62417b4c0ddSDimitris Papastamos #endif 625532ed618SSoby Mathew } 626532ed618SSoby Mathew 627532ed618SSoby Mathew void cm_el1_sysregs_context_restore(uint32_t security_state) 628532ed618SSoby Mathew { 629532ed618SSoby Mathew cpu_context_t *ctx; 630532ed618SSoby Mathew 631532ed618SSoby Mathew ctx = cm_get_context(security_state); 632a0fee747SAntonio Nino Diaz assert(ctx != NULL); 633532ed618SSoby Mathew 6342825946eSMax Shvetsov el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx)); 63517b4c0ddSDimitris Papastamos 63617b4c0ddSDimitris Papastamos #if IMAGE_BL31 63717b4c0ddSDimitris Papastamos if (security_state == SECURE) 63817b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_entering_secure_world); 63917b4c0ddSDimitris Papastamos else 64017b4c0ddSDimitris Papastamos PUBLISH_EVENT(cm_entering_normal_world); 64117b4c0ddSDimitris Papastamos #endif 642532ed618SSoby Mathew } 643532ed618SSoby Mathew 644532ed618SSoby Mathew /******************************************************************************* 645532ed618SSoby Mathew * This function populates ELR_EL3 member of 'cpu_context' pertaining to the 646532ed618SSoby Mathew * given security state with the given entrypoint 647532ed618SSoby Mathew ******************************************************************************/ 648532ed618SSoby Mathew void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) 649532ed618SSoby Mathew { 650532ed618SSoby Mathew cpu_context_t *ctx; 651532ed618SSoby Mathew el3_state_t *state; 652532ed618SSoby Mathew 653532ed618SSoby Mathew ctx = cm_get_context(security_state); 654a0fee747SAntonio Nino Diaz assert(ctx != NULL); 655532ed618SSoby Mathew 656532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 657532ed618SSoby Mathew state = get_el3state_ctx(ctx); 658532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 659532ed618SSoby Mathew } 660532ed618SSoby Mathew 661532ed618SSoby Mathew /******************************************************************************* 662532ed618SSoby Mathew * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' 663532ed618SSoby Mathew * pertaining to the given security state 664532ed618SSoby Mathew ******************************************************************************/ 665532ed618SSoby Mathew void cm_set_elr_spsr_el3(uint32_t security_state, 666532ed618SSoby Mathew uintptr_t entrypoint, uint32_t spsr) 667532ed618SSoby Mathew { 668532ed618SSoby Mathew cpu_context_t *ctx; 669532ed618SSoby Mathew el3_state_t *state; 670532ed618SSoby Mathew 671532ed618SSoby Mathew ctx = cm_get_context(security_state); 672a0fee747SAntonio Nino Diaz assert(ctx != NULL); 673532ed618SSoby Mathew 674532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 675532ed618SSoby Mathew state = get_el3state_ctx(ctx); 676532ed618SSoby Mathew write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 677532ed618SSoby Mathew write_ctx_reg(state, CTX_SPSR_EL3, spsr); 678532ed618SSoby Mathew } 679532ed618SSoby Mathew 680532ed618SSoby Mathew /******************************************************************************* 681532ed618SSoby Mathew * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' 682532ed618SSoby Mathew * pertaining to the given security state using the value and bit position 683532ed618SSoby Mathew * specified in the parameters. It preserves all other bits. 684532ed618SSoby Mathew ******************************************************************************/ 685532ed618SSoby Mathew void cm_write_scr_el3_bit(uint32_t security_state, 686532ed618SSoby Mathew uint32_t bit_pos, 687532ed618SSoby Mathew uint32_t value) 688532ed618SSoby Mathew { 689532ed618SSoby Mathew cpu_context_t *ctx; 690532ed618SSoby Mathew el3_state_t *state; 691f1be00daSLouis Mayencourt u_register_t scr_el3; 692532ed618SSoby Mathew 693532ed618SSoby Mathew ctx = cm_get_context(security_state); 694a0fee747SAntonio Nino Diaz assert(ctx != NULL); 695532ed618SSoby Mathew 696532ed618SSoby Mathew /* Ensure that the bit position is a valid one */ 697a0fee747SAntonio Nino Diaz assert(((1U << bit_pos) & SCR_VALID_BIT_MASK) != 0U); 698532ed618SSoby Mathew 699532ed618SSoby Mathew /* Ensure that the 'value' is only a bit wide */ 700a0fee747SAntonio Nino Diaz assert(value <= 1U); 701532ed618SSoby Mathew 702532ed618SSoby Mathew /* 703532ed618SSoby Mathew * Get the SCR_EL3 value from the cpu context, clear the desired bit 704532ed618SSoby Mathew * and set it to its new value. 705532ed618SSoby Mathew */ 706532ed618SSoby Mathew state = get_el3state_ctx(ctx); 707f1be00daSLouis Mayencourt scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 708a0fee747SAntonio Nino Diaz scr_el3 &= ~(1U << bit_pos); 709f1be00daSLouis Mayencourt scr_el3 |= (u_register_t)value << bit_pos; 710532ed618SSoby Mathew write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 711532ed618SSoby Mathew } 712532ed618SSoby Mathew 713532ed618SSoby Mathew /******************************************************************************* 714532ed618SSoby Mathew * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the 715532ed618SSoby Mathew * given security state. 716532ed618SSoby Mathew ******************************************************************************/ 717f1be00daSLouis Mayencourt u_register_t cm_get_scr_el3(uint32_t security_state) 718532ed618SSoby Mathew { 719532ed618SSoby Mathew cpu_context_t *ctx; 720532ed618SSoby Mathew el3_state_t *state; 721532ed618SSoby Mathew 722532ed618SSoby Mathew ctx = cm_get_context(security_state); 723a0fee747SAntonio Nino Diaz assert(ctx != NULL); 724532ed618SSoby Mathew 725532ed618SSoby Mathew /* Populate EL3 state so that ERET jumps to the correct entry */ 726532ed618SSoby Mathew state = get_el3state_ctx(ctx); 727f1be00daSLouis Mayencourt return read_ctx_reg(state, CTX_SCR_EL3); 728532ed618SSoby Mathew } 729532ed618SSoby Mathew 730532ed618SSoby Mathew /******************************************************************************* 731532ed618SSoby Mathew * This function is used to program the context that's used for exception 732532ed618SSoby Mathew * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 733532ed618SSoby Mathew * the required security state 734532ed618SSoby Mathew ******************************************************************************/ 735532ed618SSoby Mathew void cm_set_next_eret_context(uint32_t security_state) 736532ed618SSoby Mathew { 737532ed618SSoby Mathew cpu_context_t *ctx; 738532ed618SSoby Mathew 739532ed618SSoby Mathew ctx = cm_get_context(security_state); 740a0fee747SAntonio Nino Diaz assert(ctx != NULL); 741532ed618SSoby Mathew 742532ed618SSoby Mathew cm_set_next_context(ctx); 743532ed618SSoby Mathew } 744