xref: /rk3399_ARM-atf/lib/el3_runtime/aarch32/context_mgmt.c (revision ff2743e544f0f82381ebb9dff8f14eacb837d2e0)
1 /*
2  * Copyright (c) 2016-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <amu.h>
8 #include <arch.h>
9 #include <arch_helpers.h>
10 #include <assert.h>
11 #include <bl_common.h>
12 #include <context.h>
13 #include <context_mgmt.h>
14 #include <platform.h>
15 #include <platform_def.h>
16 #include <smccc_helpers.h>
17 #include <string.h>
18 #include <utils.h>
19 
20 /*******************************************************************************
21  * Context management library initialisation routine. This library is used by
22  * runtime services to share pointers to 'cpu_context' structures for the secure
23  * and non-secure states. Management of the structures and their associated
24  * memory is not done by the context management library e.g. the PSCI service
25  * manages the cpu context used for entry from and exit to the non-secure state.
26  * The Secure payload manages the context(s) corresponding to the secure state.
27  * It also uses this library to get access to the non-secure
28  * state cpu context pointers.
29  ******************************************************************************/
30 void cm_init(void)
31 {
32 	/*
33 	 * The context management library has only global data to initialize, but
34 	 * that will be done when the BSS is zeroed out
35 	 */
36 }
37 
38 /*******************************************************************************
39  * The following function initializes the cpu_context 'ctx' for
40  * first use, and sets the initial entrypoint state as specified by the
41  * entry_point_info structure.
42  *
43  * The security state to initialize is determined by the SECURE attribute
44  * of the entry_point_info.
45  *
46  * The EE and ST attributes are used to configure the endianness and secure
47  * timer availability for the new execution context.
48  *
49  * To prepare the register state for entry call cm_prepare_el3_exit() and
50  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
51  * cm_e1_sysreg_context_restore().
52  ******************************************************************************/
53 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
54 {
55 	unsigned int security_state;
56 	uint32_t scr, sctlr;
57 	regs_t *reg_ctx;
58 
59 	assert(ctx);
60 
61 	security_state = GET_SECURITY_STATE(ep->h.attr);
62 
63 	/* Clear any residual register values from the context */
64 	zeromem(ctx, sizeof(*ctx));
65 
66 	reg_ctx = get_regs_ctx(ctx);
67 
68 	/*
69 	 * Base the context SCR on the current value, adjust for entry point
70 	 * specific requirements
71 	 */
72 	scr = read_scr();
73 	scr &= ~(SCR_NS_BIT | SCR_HCE_BIT);
74 
75 	if (security_state != SECURE)
76 		scr |= SCR_NS_BIT;
77 
78 	if (security_state != SECURE) {
79 		/*
80 		 * Set up SCTLR for the Non-secure context.
81 		 *
82 		 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
83 		 *
84 		 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
85 		 *  required by PSCI specification)
86 		 *
87 		 * Set remaining SCTLR fields to their architecturally defined
88 		 * values. Some fields reset to an IMPLEMENTATION DEFINED value:
89 		 *
90 		 * SCTLR.TE: Set to zero so that exceptions to an Exception
91 		 *  Level executing at PL1 are taken to A32 state.
92 		 *
93 		 * SCTLR.V: Set to zero to select the normal exception vectors
94 		 *  with base address held in VBAR.
95 		 */
96 		assert(((ep->spsr >> SPSR_E_SHIFT) & SPSR_E_MASK) ==
97 			(EP_GET_EE(ep->h.attr) >> EP_EE_SHIFT));
98 
99 		sctlr = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
100 		sctlr |= (SCTLR_RESET_VAL & ~(SCTLR_TE_BIT | SCTLR_V_BIT));
101 		write_ctx_reg(reg_ctx, CTX_NS_SCTLR, sctlr);
102 	}
103 
104 	/*
105 	 * The target exception level is based on the spsr mode requested. If
106 	 * execution is requested to hyp mode, HVC is enabled via SCR.HCE.
107 	 */
108 	if (GET_M32(ep->spsr) == MODE32_hyp)
109 		scr |= SCR_HCE_BIT;
110 
111 	/*
112 	 * Store the initialised values for SCTLR and SCR in the cpu_context.
113 	 * The Hyp mode registers are not part of the saved context and are
114 	 * set-up in cm_prepare_el3_exit().
115 	 */
116 	write_ctx_reg(reg_ctx, CTX_SCR, scr);
117 	write_ctx_reg(reg_ctx, CTX_LR, ep->pc);
118 	write_ctx_reg(reg_ctx, CTX_SPSR, ep->spsr);
119 
120 	/*
121 	 * Store the r0-r3 value from the entrypoint into the context
122 	 * Use memcpy as we are in control of the layout of the structures
123 	 */
124 	memcpy((void *)reg_ctx, (void *)&ep->args, sizeof(aapcs32_params_t));
125 }
126 
127 /*******************************************************************************
128  * Enable architecture extensions on first entry to Non-secure world.
129  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
130  * it is zero.
131  ******************************************************************************/
132 static void enable_extensions_nonsecure(int el2_unused)
133 {
134 #if IMAGE_BL32
135 #if ENABLE_AMU
136 	amu_enable(el2_unused);
137 #endif
138 #endif
139 }
140 
141 /*******************************************************************************
142  * The following function initializes the cpu_context for a CPU specified by
143  * its `cpu_idx` for first use, and sets the initial entrypoint state as
144  * specified by the entry_point_info structure.
145  ******************************************************************************/
146 void cm_init_context_by_index(unsigned int cpu_idx,
147 			      const entry_point_info_t *ep)
148 {
149 	cpu_context_t *ctx;
150 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
151 	cm_setup_context(ctx, ep);
152 }
153 
154 /*******************************************************************************
155  * The following function initializes the cpu_context for the current CPU
156  * for first use, and sets the initial entrypoint state as specified by the
157  * entry_point_info structure.
158  ******************************************************************************/
159 void cm_init_my_context(const entry_point_info_t *ep)
160 {
161 	cpu_context_t *ctx;
162 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
163 	cm_setup_context(ctx, ep);
164 }
165 
166 /*******************************************************************************
167  * Prepare the CPU system registers for first entry into secure or normal world
168  *
169  * If execution is requested to hyp mode, HSCTLR is initialized
170  * If execution is requested to non-secure PL1, and the CPU supports
171  * HYP mode then HYP mode is disabled by configuring all necessary HYP mode
172  * registers.
173  ******************************************************************************/
174 void cm_prepare_el3_exit(uint32_t security_state)
175 {
176 	uint32_t hsctlr, scr;
177 	cpu_context_t *ctx = cm_get_context(security_state);
178 	int el2_unused = 0;
179 
180 	assert(ctx);
181 
182 	if (security_state == NON_SECURE) {
183 		scr = read_ctx_reg(get_regs_ctx(ctx), CTX_SCR);
184 		if (scr & SCR_HCE_BIT) {
185 			/* Use SCTLR value to initialize HSCTLR */
186 			hsctlr = read_ctx_reg(get_regs_ctx(ctx),
187 						 CTX_NS_SCTLR);
188 			hsctlr |= HSCTLR_RES1;
189 			/* Temporarily set the NS bit to access HSCTLR */
190 			write_scr(read_scr() | SCR_NS_BIT);
191 			/*
192 			 * Make sure the write to SCR is complete so that
193 			 * we can access HSCTLR
194 			 */
195 			isb();
196 			write_hsctlr(hsctlr);
197 			isb();
198 
199 			write_scr(read_scr() & ~SCR_NS_BIT);
200 			isb();
201 		} else if (read_id_pfr1() &
202 			(ID_PFR1_VIRTEXT_MASK << ID_PFR1_VIRTEXT_SHIFT)) {
203 			el2_unused = 1;
204 
205 			/*
206 			 * Set the NS bit to access NS copies of certain banked
207 			 * registers
208 			 */
209 			write_scr(read_scr() | SCR_NS_BIT);
210 			isb();
211 
212 			/*
213 			 * Hyp / PL2 present but unused, need to disable safely.
214 			 * HSCTLR can be ignored in this case.
215 			 *
216 			 * Set HCR to its architectural reset value so that
217 			 * Non-secure operations do not trap to Hyp mode.
218 			 */
219 			write_hcr(HCR_RESET_VAL);
220 
221 			/*
222 			 * Set HCPTR to its architectural reset value so that
223 			 * Non-secure access from EL1 or EL0 to trace and to
224 			 * Advanced SIMD and floating point functionality does
225 			 * not trap to Hyp mode.
226 			 */
227 			write_hcptr(HCPTR_RESET_VAL);
228 
229 			/*
230 			 * Initialise CNTHCTL. All fields are architecturally
231 			 * UNKNOWN on reset and are set to zero except for
232 			 * field(s) listed below.
233 			 *
234 			 * CNTHCTL.PL1PCEN: Disable traps to Hyp mode of
235 			 *  Non-secure EL0 and EL1 accessed to the physical
236 			 *  timer registers.
237 			 *
238 			 * CNTHCTL.PL1PCTEN: Disable traps to Hyp mode of
239 			 *  Non-secure EL0 and EL1 accessed to the physical
240 			 *  counter registers.
241 			 */
242 			write_cnthctl(CNTHCTL_RESET_VAL |
243 					PL1PCEN_BIT | PL1PCTEN_BIT);
244 
245 			/*
246 			 * Initialise CNTVOFF to zero as it resets to an
247 			 * IMPLEMENTATION DEFINED value.
248 			 */
249 			write64_cntvoff(0);
250 
251 			/*
252 			 * Set VPIDR and VMPIDR to match MIDR_EL1 and MPIDR
253 			 * respectively.
254 			 */
255 			write_vpidr(read_midr());
256 			write_vmpidr(read_mpidr());
257 
258 			/*
259 			 * Initialise VTTBR, setting all fields rather than
260 			 * relying on the hw. Some fields are architecturally
261 			 * UNKNOWN at reset.
262 			 *
263 			 * VTTBR.VMID: Set to zero which is the architecturally
264 			 *  defined reset value. Even though EL1&0 stage 2
265 			 *  address translation is disabled, cache maintenance
266 			 *  operations depend on the VMID.
267 			 *
268 			 * VTTBR.BADDR: Set to zero as EL1&0 stage 2 address
269 			 *  translation is disabled.
270 			 */
271 			write64_vttbr(VTTBR_RESET_VAL &
272 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
273 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
274 
275 			/*
276 			 * Initialise HDCR, setting all the fields rather than
277 			 * relying on hw.
278 			 *
279 			 * HDCR.HPMN: Set to value of PMCR.N which is the
280 			 *  architecturally-defined reset value.
281 			 */
282 			write_hdcr(HDCR_RESET_VAL |
283 				((read_pmcr() & PMCR_N_BITS) >> PMCR_N_SHIFT));
284 
285 			/*
286 			 * Set HSTR to its architectural reset value so that
287 			 * access to system registers in the cproc=1111
288 			 * encoding space do not trap to Hyp mode.
289 			 */
290 			write_hstr(HSTR_RESET_VAL);
291 			/*
292 			 * Set CNTHP_CTL to its architectural reset value to
293 			 * disable the EL2 physical timer and prevent timer
294 			 * interrupts. Some fields are architecturally UNKNOWN
295 			 * on reset and are set to zero.
296 			 */
297 			write_cnthp_ctl(CNTHP_CTL_RESET_VAL);
298 			isb();
299 
300 			write_scr(read_scr() & ~SCR_NS_BIT);
301 			isb();
302 		}
303 		enable_extensions_nonsecure(el2_unused);
304 	}
305 }
306