xref: /rk3399_ARM-atf/lib/el3_runtime/aarch32/context_mgmt.c (revision d4582d30885673987240cf01fd4f5d2e6780e84c)
1 /*
2  * Copyright (c) 2016-2021, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <common/bl_common.h>
16 #include <context.h>
17 #include <lib/el3_runtime/context_mgmt.h>
18 #include <lib/extensions/amu.h>
19 #include <lib/extensions/sys_reg_trace.h>
20 #include <lib/utils.h>
21 
22 /*******************************************************************************
23  * Context management library initialisation routine. This library is used by
24  * runtime services to share pointers to 'cpu_context' structures for the secure
25  * and non-secure states. Management of the structures and their associated
26  * memory is not done by the context management library e.g. the PSCI service
27  * manages the cpu context used for entry from and exit to the non-secure state.
28  * The Secure payload manages the context(s) corresponding to the secure state.
29  * It also uses this library to get access to the non-secure
30  * state cpu context pointers.
31  ******************************************************************************/
32 void cm_init(void)
33 {
34 	/*
35 	 * The context management library has only global data to initialize, but
36 	 * that will be done when the BSS is zeroed out
37 	 */
38 }
39 
40 /*******************************************************************************
41  * The following function initializes the cpu_context 'ctx' for
42  * first use, and sets the initial entrypoint state as specified by the
43  * entry_point_info structure.
44  *
45  * The security state to initialize is determined by the SECURE attribute
46  * of the entry_point_info.
47  *
48  * The EE and ST attributes are used to configure the endianness and secure
49  * timer availability for the new execution context.
50  *
51  * To prepare the register state for entry call cm_prepare_el3_exit() and
52  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
53  * cm_el1_sysregs_context_restore().
54  ******************************************************************************/
55 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
56 {
57 	unsigned int security_state;
58 	uint32_t scr, sctlr;
59 	regs_t *reg_ctx;
60 
61 	assert(ctx != NULL);
62 
63 	security_state = GET_SECURITY_STATE(ep->h.attr);
64 
65 	/* Clear any residual register values from the context */
66 	zeromem(ctx, sizeof(*ctx));
67 
68 	reg_ctx = get_regs_ctx(ctx);
69 
70 	/*
71 	 * Base the context SCR on the current value, adjust for entry point
72 	 * specific requirements
73 	 */
74 	scr = read_scr();
75 	scr &= ~(SCR_NS_BIT | SCR_HCE_BIT);
76 
77 	if (security_state != SECURE)
78 		scr |= SCR_NS_BIT;
79 
80 	if (security_state != SECURE) {
81 		/*
82 		 * Set up SCTLR for the Non-secure context.
83 		 *
84 		 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
85 		 *
86 		 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
87 		 *  required by PSCI specification)
88 		 *
89 		 * Set remaining SCTLR fields to their architecturally defined
90 		 * values. Some fields reset to an IMPLEMENTATION DEFINED value:
91 		 *
92 		 * SCTLR.TE: Set to zero so that exceptions to an Exception
93 		 *  Level executing at PL1 are taken to A32 state.
94 		 *
95 		 * SCTLR.V: Set to zero to select the normal exception vectors
96 		 *  with base address held in VBAR.
97 		 */
98 		assert(((ep->spsr >> SPSR_E_SHIFT) & SPSR_E_MASK) ==
99 			(EP_GET_EE(ep->h.attr) >> EP_EE_SHIFT));
100 
101 		sctlr = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
102 		sctlr |= (SCTLR_RESET_VAL & ~(SCTLR_TE_BIT | SCTLR_V_BIT));
103 		write_ctx_reg(reg_ctx, CTX_NS_SCTLR, sctlr);
104 	}
105 
106 	/*
107 	 * The target exception level is based on the spsr mode requested. If
108 	 * execution is requested to hyp mode, HVC is enabled via SCR.HCE.
109 	 */
110 	if (GET_M32(ep->spsr) == MODE32_hyp)
111 		scr |= SCR_HCE_BIT;
112 
113 	/*
114 	 * Store the initialised values for SCTLR and SCR in the cpu_context.
115 	 * The Hyp mode registers are not part of the saved context and are
116 	 * set-up in cm_prepare_el3_exit().
117 	 */
118 	write_ctx_reg(reg_ctx, CTX_SCR, scr);
119 	write_ctx_reg(reg_ctx, CTX_LR, ep->pc);
120 	write_ctx_reg(reg_ctx, CTX_SPSR, ep->spsr);
121 
122 	/*
123 	 * Store the r0-r3 value from the entrypoint into the context
124 	 * Use memcpy as we are in control of the layout of the structures
125 	 */
126 	memcpy((void *)reg_ctx, (void *)&ep->args, sizeof(aapcs32_params_t));
127 }
128 
129 /*******************************************************************************
130  * Enable architecture extensions on first entry to Non-secure world.
131  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
132  * it is zero.
133  ******************************************************************************/
134 static void enable_extensions_nonsecure(bool el2_unused)
135 {
136 #if IMAGE_BL32
137 #if ENABLE_AMU
138 	amu_enable(el2_unused);
139 #endif
140 
141 #if ENABLE_SYS_REG_TRACE_FOR_NS
142 	sys_reg_trace_enable();
143 #endif /* ENABLE_SYS_REG_TRACE_FOR_NS */
144 #endif
145 }
146 
147 /*******************************************************************************
148  * The following function initializes the cpu_context for a CPU specified by
149  * its `cpu_idx` for first use, and sets the initial entrypoint state as
150  * specified by the entry_point_info structure.
151  ******************************************************************************/
152 void cm_init_context_by_index(unsigned int cpu_idx,
153 			      const entry_point_info_t *ep)
154 {
155 	cpu_context_t *ctx;
156 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
157 	cm_setup_context(ctx, ep);
158 }
159 
160 /*******************************************************************************
161  * The following function initializes the cpu_context for the current CPU
162  * for first use, and sets the initial entrypoint state as specified by the
163  * entry_point_info structure.
164  ******************************************************************************/
165 void cm_init_my_context(const entry_point_info_t *ep)
166 {
167 	cpu_context_t *ctx;
168 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
169 	cm_setup_context(ctx, ep);
170 }
171 
172 /*******************************************************************************
173  * Prepare the CPU system registers for first entry into secure or normal world
174  *
175  * If execution is requested to hyp mode, HSCTLR is initialized
176  * If execution is requested to non-secure PL1, and the CPU supports
177  * HYP mode then HYP mode is disabled by configuring all necessary HYP mode
178  * registers.
179  ******************************************************************************/
180 void cm_prepare_el3_exit(uint32_t security_state)
181 {
182 	uint32_t hsctlr, scr;
183 	cpu_context_t *ctx = cm_get_context(security_state);
184 	bool el2_unused = false;
185 
186 	assert(ctx != NULL);
187 
188 	if (security_state == NON_SECURE) {
189 		scr = read_ctx_reg(get_regs_ctx(ctx), CTX_SCR);
190 		if ((scr & SCR_HCE_BIT) != 0U) {
191 			/* Use SCTLR value to initialize HSCTLR */
192 			hsctlr = read_ctx_reg(get_regs_ctx(ctx),
193 						 CTX_NS_SCTLR);
194 			hsctlr |= HSCTLR_RES1;
195 			/* Temporarily set the NS bit to access HSCTLR */
196 			write_scr(read_scr() | SCR_NS_BIT);
197 			/*
198 			 * Make sure the write to SCR is complete so that
199 			 * we can access HSCTLR
200 			 */
201 			isb();
202 			write_hsctlr(hsctlr);
203 			isb();
204 
205 			write_scr(read_scr() & ~SCR_NS_BIT);
206 			isb();
207 		} else if ((read_id_pfr1() &
208 			(ID_PFR1_VIRTEXT_MASK << ID_PFR1_VIRTEXT_SHIFT)) != 0U) {
209 			el2_unused = true;
210 
211 			/*
212 			 * Set the NS bit to access NS copies of certain banked
213 			 * registers
214 			 */
215 			write_scr(read_scr() | SCR_NS_BIT);
216 			isb();
217 
218 			/*
219 			 * Hyp / PL2 present but unused, need to disable safely.
220 			 * HSCTLR can be ignored in this case.
221 			 *
222 			 * Set HCR to its architectural reset value so that
223 			 * Non-secure operations do not trap to Hyp mode.
224 			 */
225 			write_hcr(HCR_RESET_VAL);
226 
227 			/*
228 			 * Set HCPTR to its architectural reset value so that
229 			 * Non-secure access from EL1 or EL0 to trace and to
230 			 * Advanced SIMD and floating point functionality does
231 			 * not trap to Hyp mode.
232 			 */
233 			write_hcptr(HCPTR_RESET_VAL);
234 
235 			/*
236 			 * Initialise CNTHCTL. All fields are architecturally
237 			 * UNKNOWN on reset and are set to zero except for
238 			 * field(s) listed below.
239 			 *
240 			 * CNTHCTL.PL1PCEN: Disable traps to Hyp mode of
241 			 *  Non-secure EL0 and EL1 accessed to the physical
242 			 *  timer registers.
243 			 *
244 			 * CNTHCTL.PL1PCTEN: Disable traps to Hyp mode of
245 			 *  Non-secure EL0 and EL1 accessed to the physical
246 			 *  counter registers.
247 			 */
248 			write_cnthctl(CNTHCTL_RESET_VAL |
249 					PL1PCEN_BIT | PL1PCTEN_BIT);
250 
251 			/*
252 			 * Initialise CNTVOFF to zero as it resets to an
253 			 * IMPLEMENTATION DEFINED value.
254 			 */
255 			write64_cntvoff(0);
256 
257 			/*
258 			 * Set VPIDR and VMPIDR to match MIDR_EL1 and MPIDR
259 			 * respectively.
260 			 */
261 			write_vpidr(read_midr());
262 			write_vmpidr(read_mpidr());
263 
264 			/*
265 			 * Initialise VTTBR, setting all fields rather than
266 			 * relying on the hw. Some fields are architecturally
267 			 * UNKNOWN at reset.
268 			 *
269 			 * VTTBR.VMID: Set to zero which is the architecturally
270 			 *  defined reset value. Even though EL1&0 stage 2
271 			 *  address translation is disabled, cache maintenance
272 			 *  operations depend on the VMID.
273 			 *
274 			 * VTTBR.BADDR: Set to zero as EL1&0 stage 2 address
275 			 *  translation is disabled.
276 			 */
277 			write64_vttbr(VTTBR_RESET_VAL &
278 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
279 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
280 
281 			/*
282 			 * Initialise HDCR, setting all the fields rather than
283 			 * relying on hw.
284 			 *
285 			 * HDCR.HPMN: Set to value of PMCR.N which is the
286 			 *  architecturally-defined reset value.
287 			 *
288 			 * HDCR.HLP: Set to one so that event counter
289 			 *  overflow, that is recorded in PMOVSCLR[0-30],
290 			 *  occurs on the increment that changes
291 			 *  PMEVCNTR<n>[63] from 1 to 0, when ARMv8.5-PMU is
292 			 *  implemented. This bit is RES0 in versions of the
293 			 *  architecture earlier than ARMv8.5, setting it to 1
294 			 *  doesn't have any effect on them.
295 			 *  This bit is Reserved, UNK/SBZP in ARMv7.
296 			 *
297 			 * HDCR.HPME: Set to zero to disable EL2 Event
298 			 *  counters.
299 			 */
300 #if (ARM_ARCH_MAJOR > 7)
301 			write_hdcr((HDCR_RESET_VAL | HDCR_HLP_BIT |
302 				   ((read_pmcr() & PMCR_N_BITS) >>
303 				    PMCR_N_SHIFT)) & ~HDCR_HPME_BIT);
304 #else
305 			write_hdcr((HDCR_RESET_VAL |
306 				   ((read_pmcr() & PMCR_N_BITS) >>
307 				    PMCR_N_SHIFT)) & ~HDCR_HPME_BIT);
308 #endif
309 			/*
310 			 * Set HSTR to its architectural reset value so that
311 			 * access to system registers in the cproc=1111
312 			 * encoding space do not trap to Hyp mode.
313 			 */
314 			write_hstr(HSTR_RESET_VAL);
315 			/*
316 			 * Set CNTHP_CTL to its architectural reset value to
317 			 * disable the EL2 physical timer and prevent timer
318 			 * interrupts. Some fields are architecturally UNKNOWN
319 			 * on reset and are set to zero.
320 			 */
321 			write_cnthp_ctl(CNTHP_CTL_RESET_VAL);
322 			isb();
323 
324 			write_scr(read_scr() & ~SCR_NS_BIT);
325 			isb();
326 		}
327 		enable_extensions_nonsecure(el2_unused);
328 	}
329 }
330