xref: /rk3399_ARM-atf/lib/el3_runtime/aarch32/context_mgmt.c (revision c434b76510118b179ab11189ff938632160e3ea4)
1 /*
2  * Copyright (c) 2016-2025, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_features.h>
15 #include <arch_helpers.h>
16 #include <common/bl_common.h>
17 #include <context.h>
18 #include <lib/el3_runtime/context_mgmt.h>
19 #include <lib/extensions/amu.h>
20 #include <lib/extensions/pmuv3.h>
21 #include <lib/extensions/sys_reg_trace.h>
22 #include <lib/extensions/trf.h>
23 #include <lib/utils.h>
24 
25 /*******************************************************************************
26  * Context management library initialisation routine. This library is used by
27  * runtime services to share pointers to 'cpu_context' structures for the secure
28  * and non-secure states. Management of the structures and their associated
29  * memory is not done by the context management library e.g. the PSCI service
30  * manages the cpu context used for entry from and exit to the non-secure state.
31  * The Secure payload manages the context(s) corresponding to the secure state.
32  * It also uses this library to get access to the non-secure
33  * state cpu context pointers.
34  ******************************************************************************/
35 void cm_init(void)
36 {
37 	/*
38 	 * The context management library has only global data to initialize, but
39 	 * that will be done when the BSS is zeroed out
40 	 */
41 }
42 
43 /*******************************************************************************
44  * The following function initializes the cpu_context 'ctx' for
45  * first use, and sets the initial entrypoint state as specified by the
46  * entry_point_info structure.
47  *
48  * The security state to initialize is determined by the SECURE attribute
49  * of the entry_point_info.
50  *
51  * The EE and ST attributes are used to configure the endianness and secure
52  * timer availability for the new execution context.
53  *
54  * To prepare the register state for entry call cm_prepare_el3_exit() and
55  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
56  * cm_el1_sysregs_context_restore().
57  ******************************************************************************/
58 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
59 {
60 	unsigned int security_state;
61 	uint32_t scr, sctlr;
62 	regs_t *reg_ctx;
63 
64 	assert(ctx != NULL);
65 
66 	security_state = GET_SECURITY_STATE(ep->h.attr);
67 
68 	/* Clear any residual register values from the context */
69 	zeromem(ctx, sizeof(*ctx));
70 
71 	reg_ctx = get_regs_ctx(ctx);
72 
73 	/*
74 	 * Base the context SCR on the current value, adjust for entry point
75 	 * specific requirements
76 	 */
77 	scr = read_scr();
78 	scr &= ~(SCR_NS_BIT | SCR_HCE_BIT);
79 
80 	if (security_state != SECURE)
81 		scr |= SCR_NS_BIT;
82 
83 	if (security_state != SECURE) {
84 		/*
85 		 * Set up SCTLR for the Non-secure context.
86 		 *
87 		 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
88 		 *
89 		 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
90 		 *  required by PSCI specification)
91 		 *
92 		 * Set remaining SCTLR fields to their architecturally defined
93 		 * values. Some fields reset to an IMPLEMENTATION DEFINED value:
94 		 *
95 		 * SCTLR.TE: Set to zero so that exceptions to an Exception
96 		 *  Level executing at PL1 are taken to A32 state.
97 		 *
98 		 * SCTLR.V: Set to zero to select the normal exception vectors
99 		 *  with base address held in VBAR.
100 		 */
101 		assert(((ep->spsr >> SPSR_E_SHIFT) & SPSR_E_MASK) ==
102 			(EP_GET_EE(ep->h.attr) >> EP_EE_SHIFT));
103 
104 		sctlr = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
105 		sctlr |= (SCTLR_RESET_VAL & ~(SCTLR_TE_BIT | SCTLR_V_BIT));
106 		write_ctx_reg(reg_ctx, CTX_NS_SCTLR, sctlr);
107 	}
108 
109 	/*
110 	 * The target exception level is based on the spsr mode requested. If
111 	 * execution is requested to hyp mode, HVC is enabled via SCR.HCE.
112 	 */
113 	if (GET_M32(ep->spsr) == MODE32_hyp)
114 		scr |= SCR_HCE_BIT;
115 
116 	/*
117 	 * Store the initialised values for SCTLR and SCR in the cpu_context.
118 	 * The Hyp mode registers are not part of the saved context and are
119 	 * set-up in cm_prepare_el3_exit().
120 	 */
121 	write_ctx_reg(reg_ctx, CTX_SCR, scr);
122 	write_ctx_reg(reg_ctx, CTX_LR, ep->pc);
123 	write_ctx_reg(reg_ctx, CTX_SPSR, ep->spsr);
124 
125 	/*
126 	 * Store the r0-r3 value from the entrypoint into the context
127 	 * Use memcpy as we are in control of the layout of the structures
128 	 */
129 	memcpy((void *)reg_ctx, (void *)&ep->args, sizeof(aapcs32_params_t));
130 }
131 
132 /*******************************************************************************
133  * Enable architecture extensions on first entry to Non-secure world.
134  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
135  * it is zero.
136  ******************************************************************************/
137 static void enable_extensions_nonsecure(bool el2_unused)
138 {
139 #if IMAGE_BL32
140 	if (is_feat_amu_supported()) {
141 		amu_enable(el2_unused);
142 	}
143 
144 	if (is_feat_sys_reg_trace_supported()) {
145 		sys_reg_trace_init_el3();
146 	}
147 
148 	if (is_feat_trf_supported()) {
149 		trf_init_el3();
150 	}
151 
152 	if (is_feat_pmuv3_present()) {
153 		pmuv3_init_el3();
154 	}
155 #endif /*  IMAGE_BL32 */
156 }
157 
158 /*******************************************************************************
159  * The following function initializes the cpu_context for the current CPU
160  * for first use, and sets the initial entrypoint state as specified by the
161  * entry_point_info structure.
162  ******************************************************************************/
163 void cm_init_my_context(const entry_point_info_t *ep)
164 {
165 	cpu_context_t *ctx;
166 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
167 	cm_setup_context(ctx, ep);
168 }
169 
170 /*******************************************************************************
171  * Prepare the CPU system registers for first entry into secure or normal world
172  *
173  * If execution is requested to hyp mode, HSCTLR is initialized
174  * If execution is requested to non-secure PL1, and the CPU supports
175  * HYP mode then HYP mode is disabled by configuring all necessary HYP mode
176  * registers.
177  ******************************************************************************/
178 void cm_prepare_el3_exit(size_t security_state)
179 {
180 	uint32_t hsctlr, scr;
181 	cpu_context_t *ctx = cm_get_context(security_state);
182 	bool el2_unused = false;
183 
184 	assert(ctx != NULL);
185 
186 	if (security_state == NON_SECURE) {
187 		scr = read_ctx_reg(get_regs_ctx(ctx), CTX_SCR);
188 		if ((scr & SCR_HCE_BIT) != 0U) {
189 			/* Use SCTLR value to initialize HSCTLR */
190 			hsctlr = read_ctx_reg(get_regs_ctx(ctx),
191 						 CTX_NS_SCTLR);
192 			hsctlr |= HSCTLR_RES1;
193 			/* Temporarily set the NS bit to access HSCTLR */
194 			write_scr(read_scr() | SCR_NS_BIT);
195 			/*
196 			 * Make sure the write to SCR is complete so that
197 			 * we can access HSCTLR
198 			 */
199 			isb();
200 			write_hsctlr(hsctlr);
201 			isb();
202 
203 			write_scr(read_scr() & ~SCR_NS_BIT);
204 			isb();
205 		} else if ((read_id_pfr1() &
206 			(ID_PFR1_VIRTEXT_MASK << ID_PFR1_VIRTEXT_SHIFT)) != 0U) {
207 			el2_unused = true;
208 
209 			/*
210 			 * Set the NS bit to access NS copies of certain banked
211 			 * registers
212 			 */
213 			write_scr(read_scr() | SCR_NS_BIT);
214 			isb();
215 
216 			/*
217 			 * Hyp / PL2 present but unused, need to disable safely.
218 			 * HSCTLR can be ignored in this case.
219 			 *
220 			 * Set HCR to its architectural reset value so that
221 			 * Non-secure operations do not trap to Hyp mode.
222 			 */
223 			write_hcr(HCR_RESET_VAL);
224 
225 			/*
226 			 * Set HCPTR to its architectural reset value so that
227 			 * Non-secure access from EL1 or EL0 to trace and to
228 			 * Advanced SIMD and floating point functionality does
229 			 * not trap to Hyp mode.
230 			 */
231 			write_hcptr(HCPTR_RESET_VAL);
232 
233 			/*
234 			 * Initialise CNTHCTL. All fields are architecturally
235 			 * UNKNOWN on reset and are set to zero except for
236 			 * field(s) listed below.
237 			 *
238 			 * CNTHCTL.PL1PCEN: Disable traps to Hyp mode of
239 			 *  Non-secure EL0 and EL1 accessed to the physical
240 			 *  timer registers.
241 			 *
242 			 * CNTHCTL.PL1PCTEN: Disable traps to Hyp mode of
243 			 *  Non-secure EL0 and EL1 accessed to the physical
244 			 *  counter registers.
245 			 */
246 			write_cnthctl(CNTHCTL_RESET_VAL |
247 					PL1PCEN_BIT | PL1PCTEN_BIT);
248 
249 			/*
250 			 * Initialise CNTVOFF to zero as it resets to an
251 			 * IMPLEMENTATION DEFINED value.
252 			 */
253 			write64_cntvoff(0);
254 
255 			/*
256 			 * Set VPIDR and VMPIDR to match MIDR_EL1 and MPIDR
257 			 * respectively.
258 			 */
259 			write_vpidr(read_midr());
260 			write_vmpidr(read_mpidr());
261 
262 			/*
263 			 * Initialise VTTBR, setting all fields rather than
264 			 * relying on the hw. Some fields are architecturally
265 			 * UNKNOWN at reset.
266 			 *
267 			 * VTTBR.VMID: Set to zero which is the architecturally
268 			 *  defined reset value. Even though EL1&0 stage 2
269 			 *  address translation is disabled, cache maintenance
270 			 *  operations depend on the VMID.
271 			 *
272 			 * VTTBR.BADDR: Set to zero as EL1&0 stage 2 address
273 			 *  translation is disabled.
274 			 */
275 			write64_vttbr(VTTBR_RESET_VAL &
276 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
277 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
278 
279 			/*
280 			 * Initialise HDCR, setting all the fields rather than
281 			 * relying on hw.
282 			 *
283 			 * HDCR.HPMN: Set to value of PMCR.N which is the
284 			 *  architecturally-defined reset value.
285 			 *
286 			 * HDCR.HLP: Set to one so that event counter
287 			 *  overflow, that is recorded in PMOVSCLR[0-30],
288 			 *  occurs on the increment that changes
289 			 *  PMEVCNTR<n>[63] from 1 to 0, when ARMv8.5-PMU is
290 			 *  implemented. This bit is RES0 in versions of the
291 			 *  architecture earlier than ARMv8.5, setting it to 1
292 			 *  doesn't have any effect on them.
293 			 *  This bit is Reserved, UNK/SBZP in ARMv7.
294 			 *
295 			 * HDCR.HPME: Set to zero to disable EL2 Event
296 			 *  counters.
297 			 */
298 #if (ARM_ARCH_MAJOR > 7)
299 			write_hdcr((HDCR_RESET_VAL | HDCR_HLP_BIT |
300 				   ((read_pmcr() & PMCR_N_BITS) >>
301 				    PMCR_N_SHIFT)) & ~HDCR_HPME_BIT);
302 #else
303 			write_hdcr((HDCR_RESET_VAL |
304 				   ((read_pmcr() & PMCR_N_BITS) >>
305 				    PMCR_N_SHIFT)) & ~HDCR_HPME_BIT);
306 #endif
307 			/*
308 			 * Set HSTR to its architectural reset value so that
309 			 * access to system registers in the cproc=1111
310 			 * encoding space do not trap to Hyp mode.
311 			 */
312 			write_hstr(HSTR_RESET_VAL);
313 			/*
314 			 * Set CNTHP_CTL to its architectural reset value to
315 			 * disable the EL2 physical timer and prevent timer
316 			 * interrupts. Some fields are architecturally UNKNOWN
317 			 * on reset and are set to zero.
318 			 */
319 			write_cnthp_ctl(CNTHP_CTL_RESET_VAL);
320 			isb();
321 
322 			write_scr(read_scr() & ~SCR_NS_BIT);
323 			isb();
324 		}
325 		enable_extensions_nonsecure(el2_unused);
326 	}
327 }
328 
329 /*******************************************************************************
330  * This function is used to exit to Non-secure world. It simply calls the
331  * cm_prepare_el3_exit function for AArch32.
332  ******************************************************************************/
333 void cm_prepare_el3_exit_ns(void)
334 {
335 	cm_prepare_el3_exit(NON_SECURE);
336 }
337