xref: /rk3399_ARM-atf/lib/el3_runtime/aarch32/context_mgmt.c (revision 82cb2c1ad9897473743f08437d0a3995bed561b9)
1 /*
2  * Copyright (c) 2016-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <bl_common.h>
11 #include <context.h>
12 #include <context_mgmt.h>
13 #include <platform.h>
14 #include <platform_def.h>
15 #include <smcc_helpers.h>
16 #include <string.h>
17 #include <utils.h>
18 
19 /*******************************************************************************
20  * Context management library initialisation routine. This library is used by
21  * runtime services to share pointers to 'cpu_context' structures for the secure
22  * and non-secure states. Management of the structures and their associated
23  * memory is not done by the context management library e.g. the PSCI service
24  * manages the cpu context used for entry from and exit to the non-secure state.
25  * The Secure payload manages the context(s) corresponding to the secure state.
26  * It also uses this library to get access to the non-secure
27  * state cpu context pointers.
28  ******************************************************************************/
29 void cm_init(void)
30 {
31 	/*
32 	 * The context management library has only global data to initialize, but
33 	 * that will be done when the BSS is zeroed out
34 	 */
35 }
36 
37 /*******************************************************************************
38  * The following function initializes the cpu_context 'ctx' for
39  * first use, and sets the initial entrypoint state as specified by the
40  * entry_point_info structure.
41  *
42  * The security state to initialize is determined by the SECURE attribute
43  * of the entry_point_info. The function returns a pointer to the initialized
44  * context and sets this as the next context to return to.
45  *
46  * The EE and ST attributes are used to configure the endianness and secure
47  * timer availability for the new execution context.
48  *
49  * To prepare the register state for entry call cm_prepare_el3_exit() and
50  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
51  * cm_e1_sysreg_context_restore().
52  ******************************************************************************/
53 static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
54 {
55 	unsigned int security_state;
56 	uint32_t scr, sctlr;
57 	regs_t *reg_ctx;
58 
59 	assert(ctx);
60 
61 	security_state = GET_SECURITY_STATE(ep->h.attr);
62 
63 	/* Clear any residual register values from the context */
64 	zeromem(ctx, sizeof(*ctx));
65 
66 	reg_ctx = get_regs_ctx(ctx);
67 
68 	/*
69 	 * Base the context SCR on the current value, adjust for entry point
70 	 * specific requirements
71 	 */
72 	scr = read_scr();
73 	scr &= ~(SCR_NS_BIT | SCR_HCE_BIT);
74 
75 	if (security_state != SECURE)
76 		scr |= SCR_NS_BIT;
77 
78 	/*
79 	 * Set up SCTLR for the Non Secure context.
80 	 * EE bit is taken from the entrypoint attributes
81 	 * M, C and I bits must be zero (as required by PSCI specification)
82 	 *
83 	 * The target exception level is based on the spsr mode requested.
84 	 * If execution is requested to hyp mode, HVC is enabled
85 	 * via SCR.HCE.
86 	 *
87 	 * Always compute the SCTLR_EL1 value and save in the cpu_context
88 	 * - the HYP registers are set up by cm_preapre_ns_entry() as they
89 	 * are not part of the stored cpu_context
90 	 *
91 	 * TODO: In debug builds the spsr should be validated and checked
92 	 * against the CPU support, security state, endianness and pc
93 	 */
94 	if (security_state != SECURE) {
95 		sctlr = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
96 		/*
97 		 * In addition to SCTLR_RES1, set the CP15_BEN, nTWI & nTWE
98 		 * bits that architecturally reset to 1.
99 		 */
100 		sctlr |= SCTLR_RES1 | SCTLR_CP15BEN_BIT |
101 				SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
102 		write_ctx_reg(reg_ctx, CTX_NS_SCTLR, sctlr);
103 	}
104 
105 	if (GET_M32(ep->spsr) == MODE32_hyp)
106 		scr |= SCR_HCE_BIT;
107 
108 	write_ctx_reg(reg_ctx, CTX_SCR, scr);
109 	write_ctx_reg(reg_ctx, CTX_LR, ep->pc);
110 	write_ctx_reg(reg_ctx, CTX_SPSR, ep->spsr);
111 
112 	/*
113 	 * Store the r0-r3 value from the entrypoint into the context
114 	 * Use memcpy as we are in control of the layout of the structures
115 	 */
116 	memcpy((void *)reg_ctx, (void *)&ep->args, sizeof(aapcs32_params_t));
117 }
118 
119 /*******************************************************************************
120  * The following function initializes the cpu_context for a CPU specified by
121  * its `cpu_idx` for first use, and sets the initial entrypoint state as
122  * specified by the entry_point_info structure.
123  ******************************************************************************/
124 void cm_init_context_by_index(unsigned int cpu_idx,
125 			      const entry_point_info_t *ep)
126 {
127 	cpu_context_t *ctx;
128 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
129 	cm_init_context_common(ctx, ep);
130 }
131 
132 /*******************************************************************************
133  * The following function initializes the cpu_context for the current CPU
134  * for first use, and sets the initial entrypoint state as specified by the
135  * entry_point_info structure.
136  ******************************************************************************/
137 void cm_init_my_context(const entry_point_info_t *ep)
138 {
139 	cpu_context_t *ctx;
140 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
141 	cm_init_context_common(ctx, ep);
142 }
143 
144 /*******************************************************************************
145  * Prepare the CPU system registers for first entry into secure or normal world
146  *
147  * If execution is requested to hyp mode, HSCTLR is initialized
148  * If execution is requested to non-secure PL1, and the CPU supports
149  * HYP mode then HYP mode is disabled by configuring all necessary HYP mode
150  * registers.
151  ******************************************************************************/
152 void cm_prepare_el3_exit(uint32_t security_state)
153 {
154 	uint32_t sctlr, scr, hcptr;
155 	cpu_context_t *ctx = cm_get_context(security_state);
156 
157 	assert(ctx);
158 
159 	if (security_state == NON_SECURE) {
160 		scr = read_ctx_reg(get_regs_ctx(ctx), CTX_SCR);
161 		if (scr & SCR_HCE_BIT) {
162 			/* Use SCTLR value to initialize HSCTLR */
163 			sctlr = read_ctx_reg(get_regs_ctx(ctx),
164 						 CTX_NS_SCTLR);
165 			sctlr |= HSCTLR_RES1;
166 			/* Temporarily set the NS bit to access HSCTLR */
167 			write_scr(read_scr() | SCR_NS_BIT);
168 			/*
169 			 * Make sure the write to SCR is complete so that
170 			 * we can access HSCTLR
171 			 */
172 			isb();
173 			write_hsctlr(sctlr);
174 			isb();
175 
176 			write_scr(read_scr() & ~SCR_NS_BIT);
177 			isb();
178 		} else if (read_id_pfr1() &
179 			(ID_PFR1_VIRTEXT_MASK << ID_PFR1_VIRTEXT_SHIFT)) {
180 			/*
181 			 * Set the NS bit to access NS copies of certain banked
182 			 * registers
183 			 */
184 			write_scr(read_scr() | SCR_NS_BIT);
185 			isb();
186 
187 			/* PL2 present but unused, need to disable safely */
188 			write_hcr(0);
189 
190 			/* HSCTLR : can be ignored when bypassing */
191 
192 			/* HCPTR : disable all traps TCPAC, TTA, TCP */
193 			hcptr = read_hcptr();
194 			hcptr &= ~(TCPAC_BIT | TTA_BIT | TCP11_BIT | TCP10_BIT);
195 			write_hcptr(hcptr);
196 
197 			/* Enable EL1 access to timer */
198 			write_cnthctl(PL1PCEN_BIT | PL1PCTEN_BIT);
199 
200 			/* Reset CNTVOFF_EL2 */
201 			write64_cntvoff(0);
202 
203 			/* Set VPIDR, VMPIDR to match MIDR, MPIDR */
204 			write_vpidr(read_midr());
205 			write_vmpidr(read_mpidr());
206 
207 			/*
208 			 * Reset VTTBR.
209 			 * Needed because cache maintenance operations depend on
210 			 * the VMID even when non-secure EL1&0 stage 2 address
211 			 * translation are disabled.
212 			 */
213 			write64_vttbr(0);
214 
215 			/*
216 			 * Avoid unexpected debug traps in case where HDCR
217 			 * is not completely reset by the hardware - set
218 			 * HDCR.HPMN to PMCR.N and zero the remaining bits.
219 			 * The HDCR.HPMN and PMCR.N fields are the same size
220 			 * (5 bits) and HPMN is at offset zero within HDCR.
221 			 */
222 			write_hdcr((read_pmcr() & PMCR_N_BITS) >> PMCR_N_SHIFT);
223 
224 			/*
225 			 * Reset CNTHP_CTL to disable the EL2 physical timer and
226 			 * therefore prevent timer interrupts.
227 			 */
228 			write_cnthp_ctl(0);
229 			isb();
230 
231 			write_scr(read_scr() & ~SCR_NS_BIT);
232 			isb();
233 		}
234 	}
235 }
236